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Maize (Zea mays) inbred lines vary greatly in flowering time, but the genetic basis

of this variation is unknown. In this study, three maize flowering-related traits

(DTT, days to tasselling; DTP, days to pollen shed; DTS, days to silking) were

evaluated with an association panel consisting of 226 maize inbred lines and an

F2:3 population with 120 offspring from a cross between the T32 and Qi319 lines

in different environments. A total of 82 significant single nucleotide

polymorphisms (SNPs) and 117 candidate genes were identified by genome-

wide association analysis. Twenty-one quantitative trait loci (QTLs) and 65

candidate genes were found for maize flowering time by linkage analysis with

the constructed high-density genetic map. Transcriptome analysis was

performed for Qi319, which is an early-maturing inbred line, and T32, which is

a late-maturing inbred line, in two different environments. Compared with T32,

Qi319 showed upregulation of 3815 genes and downregulation of 3906 genes.

By integrating a genome-wide association study (GWAS), linkage analysis and

transcriptome analysis, 25 important candidate genes for maize flowering time

were identified. Together, our results provide an important resource and a

foundation for an enhanced understanding of flowering time in maize.
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1 Introduction

Maize, one of the most important crops in the world (Yang and

Yan, 2021), originated in the lowland tropics of South America.

Since it was first domesticated 9000 years ago, its planting area has

expanded (Matsuoka et al., 2002), and this spread to various parts of

the globe has resulted in rich phenotypic and genetic variation (Li

et al., 2016). Among the phenotypic variations in maize, the

variation in flowering time is an important factor in determining

adaptation to local environments and is also a key selection

standard for maize breeding and germplasm innovation (Shi

et al., 2022).

In recent decades, the main genetic factors controlling flowering

time in the model plant Arabidopsis thaliana have begun to be

determined (Song et al., 2013; Johansson and Staiger, 2015; Freytes

et al., 2021). Moreover, some important flowering time genes from

other plant species have been cloned, such as FLOWERING LOCUS

T (FT ) , CONSTANS (CO ) , a n d SUPPRES SOR OF

OVEREXPRESSION OF CONSTANS (SOC1), which has been

helpful for understanding the plant molecular regulatory network

controlling flowering time (Wickland and Hanzawa, 2015; Liu et al.,

2008; Shim et al., 2017). In maize, flowering time shows rich

variation, with the earliest flowering time being 35 days and the

latest being 120 days (Colasanti and Muszynski, 2009). Recently,

many genes that regulate maize flowering time have been cloned

(Kozaki et al., 2004; Hung et al., 2012; Yang et al., 2013; Guo et al.,

2018). For example, ZmCCT is a homologous gene of the rice

photoperiod response regulator Ghd7 (Hung et al., 2012; Yang et al.,

2013), ZCN8 is homologous to the Arabidopsis FT gene (Guo et al.,

2018), and ID1 has a zinc finger domain (Kozaki et al., 2004). These

findings are of great significance for understanding the genetic

regulatory network of maize flowering time. However, maize

flowering time is a typical quantitative trait and is jointly

regulated by multiple genes (Buckler et al., 2009). Therefore, it is

necessary to further analyse the genetic basis of flowering time

regulation in maize and to explore new genetic regulatory loci.

Linkage analysis and genome-wide association studies (GWASs)

have proven to be effective methods for mining quantitative trait loci

(QTLs) for important traits, including maize flowering time. Buckler

et al. (2009) systematically studied the genetic basis of maize

flowering time by using the nested association mapping (NAM)

population, which contains 5000 recombinant inbred lines (RILs).

On this basis, an additive genetic model was proposed to explain the

flowering time of maize: maize flowering time is controlled by

multiple micro-QTLs (Buckler et al., 2009). In subsequent studies,

Li et al. (2016) identified nearly 1000 significant single nucleotide

polymorphisms (SNPs), which were associated with 220 candidate

genes related to maize flowering time, by using an extensive

association mapping population of more than 8000 lines. Notably,

due to the high diversity among maize inbred lines, it is difficult to

determine all the factors regulating flowering time (Hufford et al.,

2021). Moreover, the significant loci identified for different

populations are not consistent (Li et al., 2016). Therefore, it is
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necessary to investigate additional populations to discover new

genetic regulatory loci and candidate genes for flowering time to

provide a basis for subsequent maize germplasm improvement.

In this study, we used two maize germplasm panels, (i) a natural

association panel with 226 inbred lines and (ii) a linkage mapping

population with 120 F2:3 offspring obtained from the cross between

the T32 and Qi319 maize lines, to identify the genetic loci associated

with maize flowering time. Three flowering time-related traits

(DTT, days to tasselling; DTP, days to pollen shed; DTS, days to

silking) were analyzed in different environments. The GWAS

approach, QTL analysis and transcriptomic analysis were

combined in this study to identify new loci and reveal candidate

genes for maize flowering time.
2 Materials and methods

2.1 Plant materials

A linkage population with 120 F2:3 offspring developed from

parents of the maize T32 (renamed Ki32) and Qi319 lines and the

association mapping panel with 226 inbred lines were selected as the

plant experimental materials in this study. T32 is a tropical maize line

derived from the Suwan population and is widely used for breeding in

southern China. Qi319 is a temperate line and has been widely used

in temperate regions, especially in northern China (Wu et al., 2019).
2.2 Field experiment and flowering
time-related trait evaluation

The association panel materials were planted and phenotyped

in Guiyang (GY, 106.7°N, 26.5°E), Guizhou Province; in Sanya (SA,

18.36°N, 109.16°E), Hainan Province; and in Zhangye (ZY, 38.93N,

100.45°E), Gansu Province in 2020. The linkage population was

planted and phenotyped in Sanya (2019) and Guiyang (2020). Each

line was planted in a single row 3 m in length with 12 individual

plants per row. The fertilization, irrigation, pest control and weed

management for all field trials were the same as those of the local

field. Three flowering time-related traits (DTT, DTS, DTP) were

recorded when 50% of plants exhibited the corresponding traits.
2.3 DNA extraction and genotyping

Genomic DNA was extracted from young leaves of F2 plants using

the cetyltrimethylammonium bromide (CTAB) procedure based on

our previously described methods (Wu et al., 2015). DNA quality

testing and genotyping by sequencing (GBS) assessments were

completed by the Beijing Compass Biotechnology Company by using

previously described methods (Elshire et al., 2011). The high-quality

SNPs between parents were identified by alignment with B73
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RefGen_v4 using the BWA package and GATK (Lai et al., 2010;

McKenna et al., 2010). The calling and annotation of SNPs were

accomplished using SAMTOOLS software (Li and Durbin, 2009). In

addition, genotyping, population structure detection, kinship

determination, and principal component analysis (PCA) of the

association panel had already been completed in our previous

research (Wu et al., 2019).
2.4 QTL mapping and genome-wide
association study

A total of 169,108 high-quality SNPs were selected to construct

a genetic map using the ordering algorithm. QTL analyses were

conducted using QTL IciMapping software Version 4.1 (Li et al.,

2008). A total of 43,252 SNPs were selected to perform a

phenotype–genotype GWAS by using TASSEL v5.2.80 software,

with a mixed linear model (MLM) in which population structure

and pairwise kinship were treated as covariates (Yu et al., 2006). The

significant cut-off value was defined as a logarithm of odds (LOD)

score >4.
2.5 Transcriptome data analysis

T32 and Qi319 were planted at the Sanya and Zhangye sites.

Leaves were collected from three replicates of each inbred line at the

V9 stage. A total of 42 samples were collected for total RNA

extraction. Total RNA was collected by using TRIzol reagent, and

the construction of cDNA libraries and RNA sequencing were

performed by Biomarker Technologies (Beijing, China) with the

Illumina HiSeq 2000 platform. The clean reads were mapped to the

maize B73 reference genome assembly V4 by using TopHat2

(Trapnell et al., 2012). The gene expression level was estimated by

using the fragments per kilobase per million reads (FPKM) value.

The differentially expressed genes were obtained by using the R

statistical software package DESeq with Padj < 0.05 and | log2(fold

change [FC])| ≥ 1 (Anders and Huber, 2010).
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2.6 Candidate gene detection and
qRT-PCR analysis

Based on the maize B73 reference genome assembly V4, genes

located within two times the linkage disequilibrium distance of one

quantitative trait nucleotide were determined to be candidate genes

for flowering time-related traits. Functional annotations of these

candidate genes were completed using the Protein–Protein Basic

Local Alignment Search Tool (BlastP) and conserved domain

search tools. The qRT-PCR primers were designed by Primer5

software and are listed in Table S1. The GAPDH gene was used for

data normalization, and three biological replicates were used for

each sample. To analyse the data, the 2−(△△CT) method was used

(Livak and Schmittgen, 2001).
3 Results

3.1 Phenotypic variation in
different environments

The results showed that the average DTT was 59.03 days in

Sanya, 76.56 days in Guiyang, and 93.69 days in Zhangye

(Figure 1A, Table S2). The average DTP was 60.11 days in Sanya,

77.57 days in Guiyang and 94.97 days in Zhangye (Figure 1B, Table

S2). The average DTS was 60.91 days in Sanya, 77.98 days in

Guiyang and 95.93 days in Zhangye (Figure 1C, Table S2). The

population at the Zhangye site had a higher DTT, DTP and DTS

than those at the Sanya and Guiyang sites (Figure 1). There were

significant correlations between the three traits in different site-

specific environments (Table S3). Significant effects of genotype and

genotype × environment (G×E) were found for flowering time-

related traits in the association panel (Table S4). The H2 for DTT,

DTP and DTS was 0.75, 0.74 and 0.74, respectively, as calculated as

described in a previous study. These results showed that flowering

time was influenced by the environment.

Based on our previous results, the association mapping panel

could be divided into seven subgroups (HCL645 subgroup, T32
A B C

FIGURE 1

Flowering time-related traits for association mapping in three different site-specific environments (in Sanya, Guiyang and Zhangye). (A) days to
tasselling (DTT); (B) days to pollen shed (DTP); (C) days to silking (DTS). A t test was used for analysis.
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subgroup, QR273 subgroup, Mo17 subgroup, A801 subgroup, B73

subgroup and mixed subgroup). Based on the statistical analysis,

population structure was not significantly different for the three

traits (Table S5). Among the seven subgroups, the A801 subgroup

had the greatest values for DTT, DTP and DTS, and the HCL645

subgroup had the smallest value for maize flowering time.
3.2 GWAS of maize flowering time

To identify the significant loci (LOD >4) associated with maize

flowering time, an MLM analysis was performed on the association

panel (Figure 2, Table S6). For DTT, 48, 11 and 4 significant loci

were found in the populations at the Zhangye, Guiyang and Sanya

sites, respectively (Figure 2A, Table S6). For DTP, a total of 41, 22,

and 4 significant loci were identified at the Zhangye, Guiyang and

Sanya sites, respectively (Figure 2B, Table S6). Thirty-three, 25 and

3 loci were found to be significantly associated with DTS at the

Zhangye, Guiyang and Sanya sites, respectively (Figure 2C, Table

S6). The amount of phenotypic variation explained by these

significant loci ranged from 9.2% to 14.0% (Table S6). PZE-

106004147, which was found to be associated with DTT at the

Sanya site and was located on Chr6, explained the least phenotypic

variation, and PZE-108068611, which was found to be associated

with DTS at Guiyang and located on Chr8, explained the most.

In addition, these significant loci related to maize flowering time

were detected only in certain site-specific environments. In the three

different site-specific environments (in Zhangye, Guiyang and Sanya),
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DTT, DTP and DTS were significantly correlated with only 2 (PZE-

104072142 and PZE-104096936), 3 (PZE-101256915, PZE-104072142

and PZE-104096936) and 3 (PZE-108090522, PZE-104072142 and

PZE-104096936) loci, respectively (Figures 2D–F). Here, a total of 43

loci were found to be significantly associated with DTT, DTP and DTS

simultaneously (Figure 2G). There were also 9 loci that regulated DTT

and DTP simultaneously and 7 loci that regulated DTP and DTS

simultaneously. These results indicated that there is a significant genetic

correlation between flowering time-related traits and that these traits

are highly susceptible to site-specific environmental impacts.

A total of 117 candidate genes were found around the 82

significant SNPs (Table S6). Among these candidate genes, some

genes known to be related to flowering time in plants were detected.

For example, Zm00001d050018 (bzip68) encodes the ABI5 protein,

and its homologue in Arabidopsis delays flowering (Chang et al.,

2019). Zm00001d044272 (bhlh94) encodes the bHLH transcription

factor, and homologous genes can upregulate the expression level of

FT to regulate flowering time in Arabidopsis (Li et al., 2017). Gene

Ontology (GO) analysis and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis were conducted for the 117 candidate

genes. The GO results showed that eight genes were involved in

GTP binding and six genes were involved in the carbohydrate

metabolic process (Figure 3A). The KEGG results showed that these

genes were involved in four main processes (genetic information

process, metabolism, organismal systems cellular process and

environmental information process), six genes were involved in

the amino acid biosynthesis process, and five genes were involved in

the plant hormone signal transduction process (Figure 3B).
A B

D E F G

C

FIGURE 2

The GWAS for maize flowering time. (A) DTT; (B) DTP; (C) DTS. The three circles from outer to inner indicate three different local environments (in
Sanya, Guiyang and Zhangye). (D–F) show the common significant SNPs in the three local environments for DTT, DTP and DTS, respectively. (G) shows
that the common significant SNPs were simultaneously related to DTT, DTP and DTS.
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3.3 QTL analysis

T32 and Qi319 exhibited significant differences in flowering

time in different environments (Figure 4A). T32 had a longer

flowering time than Qi319 in Guiyang and Zhangye (Table S7).

For DTT, DTP and DTS, this F2:3 population showed more

variation at the Zhangye site than at the Guiyang site (Figure 4B,

Table S7). In this population, the H2 values for DTT, DTP and DTS

were 0.559, 0.557 and 0.558, respectively, which suggests that the

environment plays an important role in maize flowering time. A

total of 169,108 SNP markers were used to construct the genetic

linkage map (Figure S1). The SNP number for each chromosome

ranged from 12,112 (Chr9) to 23,145 (Chr1).

For DTT, a total of eleven QTLs were found in the Zhangye

(eight QTLs) and Guiyang (three QTLs) environments (Figure 4C,

Table S8). The phenotypic variation in DTT explained by each locus

ranged from 11.4% (qZYDTT5) to 32.5% (qGYDTT1). For DTP,

four QTLs (one QTL found at the Zhangye site and three QTLs

found in Guiyang) were identified in this population (Figure 4C,

Table S8). The amount of phenotypic variation explained ranged

from 22.4% (qZYDTP1) to 35.4% (qGYDTP2). For DTS, six QTLs

were found in the Zhangye (three QTLs) and Guiyang (three QTLs)
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environments (Figure 4C, Table S8). The phenotypic variation

ranged from 7.8% (qZYDTS2) to 32.6% (qGYDTS1). Among the

QTLs related to DTT, DTP and DTS, two genetic regions exhibited

pleiotropic effects: qGYDTT1 and qGYDTP1 were both located at

304.2 Mb on Chr1, and qGYDTT3 and qGYDTP3 were both located

at 180.1 Mb on Chr8 (Table S8). These results suggested that these

two genomic regions can simultaneously regulate DTT and DTP

in maize.

Sixty-five candidate genes were detected in these QTL interval

regions, and some important genes related to plant flowering time

were found. For example, Zm00001d011669, which is located in the

qZYDTT7 region, encodes an MYB transcription factor;

Zm00001d029584, which is located in the qZYDTS1 region,

encodes a zinc finger protein; and Zm00001d003293 encodes an

NAC transcription factor.
3.4 Transcriptome analysis

To identify the genes involved in maize flowering time, the

differentially expressed genes (DEGs) between T32 and Qi319 in

different environments (Sanya and Zhangye) were identified
frontiersin.or
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FIGURE 3

GO and KEGG analyses for the candidate genes identified by GWAS. (A) GO analysis. (B) KEGG analysis.
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(Figure 5A, Tables S9, S10). In Sanya, 2776 genes were upregulated

and 2098 genes were downregulated in Qi319 compared with T32.

In Zhangye, 2586 genes were upregulated and 3139 genes were

downregulated in Qi319. Among these DEGs, 1477 common genes

were upregulated and 1331 common genes were downregulated in

the two different environments (Figure 5B). To identify the

biological functions of these DEGs, GO enrichment analyses were

conducted. There was a significant difference among the

upregulated and downregulated genes. Among the upregulated

genes, 58 genes were involved in oxidoreductase activity, 25 genes

were related to light stimulus, 23 genes were involved in

polysaccharide binding, and 15 genes were involved in

photosynthesis (Figure 5C). Among the downregulated genes, 113

genes had protein serine/threonine kinase activity, 45 genes were

involved in the protein folding process, and 28 genes were involved

in the ABA process (Figure 5D).
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3.5 Combining linkage analysis, the GWAS
approach and transcriptome analysis to
identify candidate genes for maize
flowering time

To identify the candidate genes for maize flowering time, the

results of GWASs and linkage and transcriptome analyses were

integrated. Among the 117 candidate genes identified by using

GWAS, 16 genes were differentially expressed between T32 and

Qi319 (Figure 6A). Among these 16 genes, six genes were

differentially expressed in both environments. For example, the

expression levels of Zm00001d003058, which encodes a threonine

aldolase protein (Figure 6B), and Zm00001d053684, which encodes

a citrate synthase protein, were higher in T32 than in Qi319 in

Zhangye and Sanya (Figure 6C). The expression levels of

Zm00001d040569 and Zm00001d049023 were higher in Qi319
A B

C

FIGURE 4

Linkage analysis for flowering time in the F2:3 population. (A) Performance of the parents (T32 and Qi319) in the different site-specific environments
(Guiyang and Zhangye). (B) The distribution of DTT, DTP and DTS in the F2:3 population at the Zhangye site and in Guiyang. (C) The QTLs identified
in this population.
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than in T32 in the two environments (Figures 6D, E). In addition,

we also found that four genes had different expression levels only in

Zhangye. For example, Zm00001d010635, which encodes a zinc

finger protein, differed in expression between T32 and Qi319 only

in Zhangye (Figure 6F). Five genes were found to have different

expression levels in Sanya, such as Zm00001d044272, which

encodes a bHLH transcription factor (Figure 6G).

Among the 65 candidate genes identified by QTL analysis, 9

genes were differentially expressed between T32 and Qi319

(Figure 7A). Three genes were differentially expressed in the two

environments: Zm00001d003294 was downregulated in Qi319 at

the Zhangye and Sanya sites (Figure 7B), and Zm00001d007345 was

upregulated in Qi319 at the Zhangye and Sanya sites (Figure 7C).

Four genes were downregulated in Qi319 only at the Zhangye site,

such as Zm00001d029448, which encodes a TIFY 10B protein

(Figure 7D). Two genes were differentially expressed only in

Sanya. The results of qRT-PCR were consistent with the results of

transcriptome analysis (Figures 7B–E).
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To further narrow the genomic regions related to maize flowering

time, the results of QTL analysis and the GWAS approach were

integrated in this study. Interestingly, one major QTL related to DTT,

which was found in plants at the Zhangye site (qZYDTT7, LOD =

4.91, R2 =26.85%), was identified by GWAS (Figures 8A, B). PZE-

108104613, which is located in the interval of qZYDTT7, was

significantly (LOD = 5.16, R2 =12.77%) related to DTT in plants at

the Zhangye site. This SNP has two alleles (A and G), and the average

DTT associated with the A allele (97.8 days) was significantly different

from that associated with the G allele (92.1 days) (Figure 8C). Based

on the B73 reference genome, a total of 17 genes were found in this

interval (Chr8, 158-159 Mb). Among these genes, Zm00001d011666,

which encodes a calcium-dependent protein kinase family protein,

and Zm00001d011668, which encodes the DNAJ family protein, had

different expression levels between T32 and Qi319 in Zhangye

(Figure 8D, E), and Zm00001d011673, which is also named fps2

and is related to the development of maize leaves, had different

expression level between T32 and Qi319 at the Sanya site (Figure 8F).
A

B D

C

FIGURE 5

The DEGs identified between T32 and Qi319 in different site-specific environments (in Zhangye and Sanya). (A) The number of DEGs in different
environments. (B) The common DEGs in different environments. (C) The most enriched GO terms for the upregulated genes. (D) The most enriched
GO terms for the downregulated genes.
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4 Discussion

Compared with teosinte, which can only grow in tropical

environments, maize has become one of the most widely planted

crops in the world (Yang and Yan, 2021). The main reason is that

maize adapts to different geographical environments via flowering

time regulation (Li et al., 2016). During Chinese maize breeding

practices, T32 was a foundation parental line derived from the

Suwan germplasm, which showed a high combining ability but a

longer reproductive period. It matured later than another

foundation parental line, Qi319, derived from temperate maize

germplasm in tropical regions. T32 cannot flower normally in

temperate environments based on breeding experience, but Q319

can flower normally in different environments. Therefore, maize

flowering time is an important characteristic that determines local

environmental adaptation and is easily affected by the local

environment. Similar to the findings of a previous study (Shi

et al., 2022), the interaction effect of genotype and the

environment on maize flowering time-related traits was

significant in this study. Revealing the potential genetic basis of

flowering time will aid in the selection of stable varieties in different

local environments and will improve maize yields.

The GWAS approach has been shown to be an effective strategy

for mining genetic loci for flowering time in maize (Buckler et al.,

2009; Li et al., 2016; Shi et al., 2022). For example, a total of 18 SNPs

and 19 candidate genes involved in maize flowering time were

found in an association panel that consisted of 252 inbred lines
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(Vanous et al., 2018), and Li et al. (2016) identified nearly 1000

SNPs and 220 candidate genes using an extremely large association

panel. In this study, a total of 82 SNPs and 117 candidate genes for

maize flowering time-related traits were found in plants growing in

different site-specific environments. Compared with the results of Li

et al. (2016), 14 common SNPs were found in our study (Table S6).

Among these candidate genes, some important candidate genes for

flowering time were found. For example, Zm00001d007191 encodes

an MYB transcription factor, and many previous studies have

shown that MYB transcription factors, such as MYB30 (Liu et al.,

2014), MYB106 (Hong et al., 2021), and CmMYB2 (Zhu et al.,

2020), play an important role in the development of flowers.

Zm00001d044272 encodes a bHLH transcription factor. In

Arabidopsis, the bHLH transcription factors MYC2, MYC3, and

MYC4 delay flowering time via the jasmonate pathway (Wang et al.,

2017). In rice, two bHLH transcription factors (HBP1 and POH1)

control flowering time by regulating the expression level of Hd1

(Yin et al., 2023). In addition, Zm00001d050018, which encodes the

ABI5 protein, was also found to be an important candidate gene for

maize flowering time. In Arabidopsis, AtU2AF65b functions in

abscisic acid (ABA)-mediated flowering by regulating the precursor

messenger RNA splicing of ABI5 (Xiong et al., 2019).

QTL analysis is another effective method for mining the genetic

loci for quantitative traits (Maschietto et al., 2017; Su et al., 2017;

Wang et al., 2018). The resolution of QTL analysis can be enhanced

by using a high-density genetic map (Maschietto et al., 2017; Su

et al., 2017; Wang et al., 2018). In this study, a high-density genetic
A B
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C

FIGURE 6

Candidate genes identified by GWAS and transcriptome analysis. (A) Information on sixteen DEGs. B-G, qRT-PCR results for selected genes.
(B) Zm00001d003058; (C) Zm00001d053684; (D) Zm00001d040569; (E) Zm00001d049023; (F) Zm00001d010635; (G) Zm00001d044272.
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map was constructed with 169,108 markers by using the GBS

method. In this study, we found nine QTL regions that were also

found in a previous study (Table S8). For example, qZYDTT1 and

qZYDTT3 were also found in Li et al. (2016) as CN_QTL_17 and

CN_QTL_21, respectively. These results showed that the nine QTL

regions may be hotspot regions related to maize flowering time.

Among the 65 candidate genes, some genes have been identified as

important for plant flowering time. For example, Zm00001d023424

encodes the bZIP transcription factor, and Zm00001d047250

encodes the PLATZ transcription factor. In rice, OsbZIP62, which

is a functional orthologue of FLOWERING LOCUS D, regulates the

floral transition and panicle development (Kaur et al., 2021). In

grapevine, VviPLATZ1 is a major factor that controls female flower

morphology determination (Iocco-Corena et al., 2021).

The combination of the GWAS approach, linkage analysis and

transcriptome analysis can help us quickly identify candidate genes.

For example, ZmWRKY14, which is a regulator of maize leaf

number, flowering time and biomass yield, has been identified
Frontiers in Plant Science 09
based on GWAS and linkage analysis (Li et al., 2021). By using

the same strategy, seventeen candidate genes significantly associated

with maize flowering time and leaf number have been found (Shi

et al., 2022). In this study, 25 important candidate genes were found

by integrating the results of GWASs, QTL mapping, and

transcriptome analysis. Among the 25 DEGs, some genes had an

important role in plant flowering time, such as Zm00001d044272,

which encodes the bHLH transcr ip t ion fac tor , and

Zm00001d05008, which is the ABI5 gene. In addition, we found

that one genome region located on Chr 8 (158 Mb) was significantly

associated with DTT, which we were able to identify simultaneously

by linkage analysis and GWAS. After combining these results with

the results of transcriptome analysis, three important candidate

genes were found. Zm00001d011666 encodes a calcium-dependent

protein kinase (CPK) family protein. A previous study showed that

the CPK32 gene can control pollen tube growth in tobacco and

maize (Zhou et al., 2014; Li et al., 2018). Zm00001d011668 encodes

the DNAJ family protein, and previous studies have shown that the
A B
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FIGURE 7

Candidate genes identified by QTL mapping and transcriptome analysis. (A) Information on nine DEGs. (B–E) qRT-PCR results for selected genes.
(B) Zm00001d003294; (C) Zm00001d007345; (D) Zm00001d029448; (E) Zm00001d029583.
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DNAJ family protein plays an important role in seed filling and

abiotic stress response (Hajduch et al., 2010). Zm00001d011673,

which is also named fps2, encodes the farnesyl diphosphate synthase

2 protein. A previous study showed that Zm00001d011673 can

interact with ZmIPT2, which can regulate leaf senescence and grain

yield in maize (Song et al., 2022).
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In conclusion, in this study, a total of 82 significant SNPs with

117 candidate genes and 21 QTLs with 65 candidate genes

associated with maize flowering time were found by using the

GWAS approach and QTL analysis, which can be evaluated and

used in molecular-assisted breeding practices in the future. By

combining the GWAS, QTL and transcriptome analysis results,
A

B
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FIGURE 8

The candidate genes identified by the combination of QTL analysis, the GWAS approach and transcriptome analysis. (A) qZYDTT7, which was found to
be significantly related to DTT at the Zhangye site, is located on Chr8 (158 Mb). (B) PZE-105104613, which was found to be related to DTT at the
Zhangye site and is located in the same genomic region. (C) Haplotype analysis of PZE-105104613 with DTT. T tests were used for analysis. (D–F) The
expression of the three candidate genes in the T32 and Qi319 lines in different site-specific environments. (D) Zm00001d011666; (E) Zm00001d011668;
(F) Zm00001d011673.
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25 DEGs were found, and among these genes, three important

candidate genes (Zm00001d011666, Zm00001d011668 and

Zm00001d011673) were inferred as regulators of flowering time

in maize. Our results provide an important gene resource for maize

breeding to improve flowering time.
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