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past or the future
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The use of ML in agronomy has been increasing exponentially since the start of

the century, including data-driven predictions of crop yields from farm-level

information on soil, climate andmanagement. However, little is known about the

effect of data partitioning schemes on the actual performance of the models, in

special when they are built for yield forecast. In this study, we explore the effect

of the choice of predictive algorithm, amount of data, and data partitioning

strategies on predictive performance, using synthetic datasets from biophysical

crop models. We simulated sunflower and wheat data using OilcropSun and

Ceres-Wheat from DSSAT for the period 2001-2020 in 5 areas of Spain.

Simulations were performed in farms differing in soil depth and management.

The data set of farm simulated yields was analyzed with different algorithms

(regularized linear models, random forest, artificial neural networks) as a function

of seasonal weather, management, and soil. The analysis was performed with

Keras for neural networks and R packages for all other algorithms. Data

partitioning for training and testing was performed with ordered data (i.e.,

older data for training, newest data for testing) in order to compare the

different algorithms in their ability to predict yields in the future by

extrapolating from past data. The Random Forest algorithm had a better

performance (Root Mean Square Error 35-38%) than artificial neural networks

(37-141%) and regularized linear models (64-65%) and was easier to execute.

However, even the best models showed a limited advantage over the predictions

of a sensible baseline (average yield of the farm in the training set) which showed

RMSE of 42%. Errors in seasonal weather forecasting were not taken into

account, so real-world performance is expected to be even closer to the

baseline. Application of AI algorithms for yield prediction should always include

a comparison with the best guess to evaluate if the additional cost of data

required for the model compensates for the increase in predictive power.

Random partitioning of data for training and validation should be avoided in

models for yield forecasting. Crop models validated for the region and cultivars

of interest may be used before actual data collection to establish the potential

advantage as illustrated in this study.
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1 Introduction

Turing (1950) was the first to launch the idea of “learning

machines”, applied to digital computers, although the mathematics

of artificial neural networks had already been established

(McCulloch and Pitts, 1943). Strictly speaking, Machine Learning

(ML) is a set of techniques to develop systems able to learn and

adapt with minimal or no human intervention. In a broader sense, it

encompasses different mathematical techniques used for building

data-driven models for prediction and decision-making and can

deal with both qualitative and quantitative data. In its infancy, ML,

as part of Artificial Intelligence (AI), tried to solve identification

problems, which led to the development of Artificial Neural

Networks (ANN). Later, in the 1980s, ANN (Dreyfus, 1990) and

decision trees (Breiman et al., 1984) became available for regression

problems. These algorithms have improved the capacity for

generating value from data and has led to a wide variety of

algorithms that have thrived in the literature of the past 30 years.

The use of ML in agronomy has been increasing exponentially

since the start of the century. In particular, artificial neural networks

(ANN) have been used successfully for identification and

classification problems that are typical of crop protection (e.g.

Mohanty et al., 2016), mechanization of harvest (Bargoti and

Underwood, 2017) and product quality sorting (Noh and Lu,

2007). In these cases, no other alternative method exists except

for human intervention, so these applications are faithful to the

original goals of ML and AI methods. ANN have been also widely

used in regression problems, i.e. for fitting empirical quantitative

models. They are a powerful alternative to Linear Models (LM)

because of their flexibility, i.e. a single hidden layer ANN with

enough cells is able to fit any continuous mathematical function

within a given interval (Hecht-Nielsen, 1987; Hornik et al., 1989), as

long as enough data and computational power are available.

General rules have been proposed to determine the data

requirement to train ANN’s, in special in classification problems

(e.g. Mohanty et al., 2016) but much less is known in the case of

regression models for crop yield.

Among the numerous applications of ML in agronomy for

regression problems, we find mostly studies directed at calibrating

(training according to ML terminology) and testing empirical

models for predicting important agronomic variables from proxy

measurements. These may be structural canopy parameters (e.g.

LAI, Kira et al., 2016; biomass, Wang et al., 2019) based on remote

data or agronomic variables (yield, crop quality), using soil, weather

and management data as inputs (Kaul et al., 2005). In that last

application, ML would be an alternative to biophysical crop models

(Basso and Liu, 2019) which have the added advantage of providing

a framework for understanding the system. Such interpretability is

also important in the use of predictions for decision making, since

eventually “all models are wrong”. Although frequently claimed in

various fields (e.g. Breiman, 2001a), the capacity of ML for revealing

the hidden aspects of complex systems in crop production remains

to be proven. Additionally, ML algorithms may require larger

amounts of data to avoid overfitting (that is the price of

their flexibility).
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In this paper, we will focus on the application of popular ML

algorithms to yield prediction, which is critical for planning farm

management and the organization of agriculture-related sectors,

like transformation industry, production of inputs, market

perspectives, etc. We use “prediction” in both the statistical sense

(estimating a dependent variable as a function of a set of

independent variables) and in the mathematical sense (forecasting

of future events from past data). This distinction is important as the

choice of the independent dataset for testing depends on whether

the predictive goal is a) to interpolate or infer something in a well-

defined system ex post facto or b) to extrapolate from past

observations on a system into the future (even when the system is

not stationary).

We will restrict our analysis to cases where input data do not

include remotely sensed variables, which is an ample class per se

(e.g. Johnson et al., 2016). In most studies, soil, aggregated weather,

management data and yield are used for training and testing ML

algorithms. These studies tackle different scales from field (Cao

et al., 2021) to country (Hoffman et al., 2018) and different

techniques (ANN becoming a common choice).

Our starting hypothesis is that the ability of ML algorithms for

yield simulation is much higher for the past (statistical prediction)

than for the future (forecasting). A corollary of this would be that

the validation of ML should be more restrictive in forecasting.

We used two biophysical crop models, Ceres-Wheat (Ritchie

et al., 1985) and OilcropSun (Villalobos et al., 1996), included in

DSSAT 4.8 (Jones et al., 2003), to generate a vast synthetic data set

with absolute control of the sources of variation. The models have

been calibrated and validated in different areas, including Southern

Spain (Villalobos et al., 1996; Iglesias, 2006). They include the

response of crops to nitrogen and water, which are the main

limiting factors in their cultivation (Villalobos and Fereres, 2016).

The objectives of this work were a) to analyse the capability of

ML methods for yield prediction in sunflower and wheat using a

synthetic dataset obtained with crop simulation models and b) to

establish guidelines for fair use of ML in crop yield prediction.
2 Materials and methods

2.1 In silico experiments

The system studied was a set of farms located in 5 regions in

Spain (Table 1). These regions corresponded to latitudes between

37.5 ° N and 40° N and were distributed from the West (Lobon) to

the East (Castellon) of Spain. They are all characterized by a

Mediterranean climate with average annual rainfall ranging from

369 mm (Baza) to 611 mm (Cordoba) with high interannual

variability (coefficient of variation, CV, between 0.26 and 0.34, see

Table 1). Reference evapotranspiration and rainfall data are

provided in Supplementary Tables S1 and S2.

Each region had a different soil type that was applied to every

farm in each region (Table 2). Soil depth within each farm vary

across three discrete values (different per region) but their

contribution to the total area was randomly assigned (Table 2).
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For example, in Lobon, we had one farm with soil depth 1.25 m in

10% of the area, 1.50 m in 60% and 1.75 m in the remainder.

In addition, each farm had a particular combination of cultivar,

sowing date, N fertilizer amount and supplementary irrigation. The

number of combinations (farms) was randomly assigned to 15

farms in Lobon, 12 in Belmez, Baza and Castellon and 11 in

Cordoba (Table S3).

Two different set of simulations were run corresponding to

monoculture of either sunflower or wheat. This would represent

that each farm would devote 50% of the area to each crop as a

monocrop. We chose this unrealistic plan in terms of agronomy to

separate completely the influence of each crop model on the results.

We simulated sunflower yields with OilcropSun (Villalobos

et al., 1996) and wheat yields with Ceres-Wheat (Ritchie et al.,

1985), both included in DSSAT 4.8 (Jones et al., 2003). The

simulations started in 2000 and ended in 2020, in sequence mode,

i.e. the N and water balance were continuous for the whole
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simulation period. All year numbers reported in the following

sections refer to the year of harvest. Minimum tillage was applied

for both experiments and all the crop residues were left in the field.

A change in cultivar occurred at a year uniformly distributed from

2008 to 2012, for the different farms. In sunflower the cultivar was

changed from AE353 (moderately short season) to SW-101 (very

short, dwarf). The change in cultivar carried a change in planting

density from 8 to 16 plants/m2 in accordance to the work of

Villalobos et al. (1994). For wheat, the initial cultivar was Yecora,

a Spring wheat type, which was changed then to a similar cycle

cultivar with a 20% higher yield potential. The genetic coefficients of

the cultivars are shown in Table 3.

Sowing dates (Table 4) were randomly assigned to farms by

choosing from 3 alternative dates that were the same in each farm

for the 20 years. In those locations where irrigation was feasible

(Lobon, Belmez, Castellon), supplementary irrigation was

implemented consisting on either zero, one or two 50 mm
TABLE 2 Soils and farm characteristics of the different regions.

Region Soil type Soil depth #farms Mean farm size Range farm size

m ha ha

Lobon Sandy loam 1.25,1.50,1.75 15 20 15-25

Belmez Silt loam 0.75,1.0,1.25 12 30 25-35

Cordoba Clay loam 0.5,1,1.5 11 40 35-45

Baza Silt loam 0.5,0.75,1.0 12 25 20-30

Castellon Sandy loam 1.25,1.50,1.75 15 20 15-25
TABLE 3 Genetic coefficients of the sunflower and wheat cultivars.

Crop Cultivar P1 P2 P5 G2 G3

Sunflower AE353 245 3.74 600 1500 3.35

SW-101 210 3.74 660 520 2.69

P1V P1D P5 G1 G2 G3 PHINT

Wheat SpringW1 5 40 600 20 20 1 100

SpringW1+ 5 40 600 25 20 1 100
front
P1: Duration of juvenile phase (°C day with base temperature 4°C). P2: Photoperiod response coefficient (days/hour). P5 (for sunflower): Duration of the first anthesis-physiological maturity
stage (°C day with base temperature 4°C). G2 (sunflower): Maximum possible number of grains per head. G3 (sunflower): Potential kernel growth rate during the linear kernel filling phase (mg/
day). P1V: Vernalization requirement at optimum temperature (days). P1D: Photoperiod response (% reduction in rate/10 h drop in pp). P5 (wheat): Grain filling (excluding lag) phase duration
(°C day). G1: Kernel number per unit canopy weight at anthesis (#/g). G2 (wheat): Standard kernel size under optimum conditions (mg). G3 (wheat): Standard, non-stressed mature tiller weight
(including grain) (g dwt). PHINT: Interval between successive leaf tip appearances (°C day).
TABLE 1 Locations representing the centre of each region of the study. Statistics of rainfall refer to the period 2001-2020.

Station Latitude Longitude Altitude Mean rainfall SD rainfall

° ° m mm mm

Lobon 38.85 -6.67 185 436 145

Belmez 38.25 -5.2 503 485 167

Cordoba 37.85 -4.8 80 611 159

Baza 37.57 -2.77 310 369 122

Castellon 39.98 0.03 30 479 130
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applications (Table 4). The amounts of N were also randomly

assigned (Table 4) between 75 and 125 kg N/ha, except for Castellon

(25-75 kg/ha). The list of farms and their main characteristics are

shown in Table S3.
2.2 Feature selection

After some exploratory analysis a set of 11 input variables

(features according to ML terminology) were determined: sowing

date (SD), N applied (NA), irrigation applied (IA), anthesis date

(AD), rainfall in the preceding fallow and during the growing

season (R), mean maximum (TX) and minimum temperature

(TN), mean solar radiation (SR), average soil depth in the farm

(SD), year (Y) and cultivar (C). The variable to be predicted was the

average grain yield for each combination of farm, crop and year.

Data was standardized (i.e., subtract mean and divide by standard

deviation) using the mean and standard deviations of each variable

in the training subset.

It was assumed that the seasonal weather, rainfall and anthesis

date in the testing dataset were known exactly (though in real world

application these would have to be predicted too, reducing the

overall predictive power of the procedure). This decision was taken

to focus the analysis exclusively on predicting crop yields from

farm- and seasonal-level data, rather than the effect of different

weather and phenology forecast methods on yield prediction.
2.3 Predictive algorithms

2.3.1 Average yield
The average yield for each cultivar at either the farm or regional

level in the training dataset set was used as baselines for predictions.

It was the most sensible baseline to compare other algorithms to as

it did not make use of any features from the farm that may be

correlated with yield. If an algorithm performs worse than this

approach, it is considered to be significantly overfitting the data.

2.3.2 Linear model
The linear model included the effects of each feature plus the

interactions between cultivars and N, TX, TN, R and SD (i.e. the

slopes between these seasonal weather and soil variables and yield

were assumed to vary across cultivars). This led to 17 coefficients (2
Frontiers in Plant Science 04
for average yield per cultivar, 15 for the slopes with respect to year

and management, seasonal weather and soil properties, with 5 of

these differing between cultivars).

Firstly, the linear model was fitted to all the training data by

minimizing the residual sum of squares (RSS):

RSS =o
n

i=1
(yi −o

p

j=1
bjxij)

2

, (1)

where yi are the values of grain yield, xij are the values of the

different features (including interactions between cultivars and

other features) and bj are the coefficients in the model.

One may use different techniques to reduce the complexity of

the model and avoid overfitting. For example, one may drop

coefficients of the model through stepwise regression. A weakness

of this approach is that the result may depend on the order in which

the model is built (e.g., whether one adds terms or removes terms)

and the criterion to determine whether a term should be added or

removed. A more general approach is to fit regularized versions of

the linear model (also known as shrinkage methods). In a

regularized model, a penalty that is a function of the L1 or L2

norm of the coefficients is added to RSS. For the L1 penalty (Lasso)

we minimized:

RSS + PL1 = RSS − lo
p

j=1
bj
�
�

�
�, (2)

where l is a hyperparameter determined by 30-fold cross-

validation using predictive mean absolute error (MAE) as metric.

After optimizing the hyperparameter, the resulting model was

trained on the entire training dataset. For the L2 norm penalty

(Ridge) we minimized:

RSS + PL2 = RSS − lo
p

j=1
b2
j : (3)

In the case of the Lasso linear model, all coefficients shrink to

exactly 0 for a sufficiently high l, but the goal is to select an optimal

l that produces a sparse linear model where only some of the

coefficients are exactly zero. For the Ridge linear model, the

shrinkage moves asymptotically towards zero as l grows (but

never reaches exactly zero).

The full linear model was fitted with the default linear

modelling function in the stats R package, whereas the Lasso and

Ridge linear models were fitted with the glmnet R package.
TABLE 4 Sowing dates, nitrogen application and irrigation assumed for the different regions where virtual farms were located.

Region Wheat sowing Sunflower sowing N applied Irrigation

DOY DOY kg/ha mm

Lobon 4/11, 21/11, 5/12 15/3, 1/4, 15/4 75, 100, 125 50, 100

Belmez 18/10, 4/11, 18/11 15/3, 1/4, 15/4 75, 100, 125 0, 50

Cordoba 14/11, 29/11, 16/12 1/3, 15/3, 1/4 75, 100, 125 0

Baza 16/10, 30/10, 15/11 1/4, 15/4, 1/5 75, 100, 125 0

Castellon 16/11, 30/11, 16/12 15/3, 1/4, 15/4 25, 50, 75 50
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2.3.3 Random forest
A random forest (Breiman, 2001b) with a thousand decision

trees was trained using the entire training dataset. Default

hyperparameters values as provided by the R package ranger were

used. Each decision tree was fitted on a random sample (with

replacement) of the original training dataset. Up to three randomly-

selected features were considered for each node split (i.e., the mtry

hyperparameter was 3) and trees were grown to have leaf nodes

with 5 data points (or less) each.

2.3.4 Neural networks
Several artificial neural networks were trained on the entire

training dataset with the Keras framework using mean square error

(MSE) as cost function. Each neural network had one hidden dense

layer with a rectified linear activation function, but varied in the

number of nodes in the layer from 2 to 12. The total number of

trainable parameters (i.e., weights and biases of the hidden and

output layer) varied from 29 (2 nodes in the hidden layer) to 169 (12

nodes). The same neural networks were trained a second time but

introducing a 50% dropout layer (Srivastava et al., 2014) after the

hidden layer, a popular technique designed to reduce overfitting

that does not require monitoring a validation set during training.

The training was performed with the Adam algorithm (Kingma

and Ba, 2014) with an initial learning rate of 10−3. The cost function

was monitored throughout the training in order to reduce the

learning rate (drop by 2/3 if the cost had not decreased by more

than 10−4 in 100 epochs) and stop the training (same criterion but

with a minimum drop of 10−6). For reference, the MSE for

standardized yield values was in the order of 0.05 to 0.25. These

stopping criteria ensured that the optimization algorithm had

converged to a minimum (though no guarantees can be provided

that it was the global minimum).

Given the stochasticity inherent to training neural networks, as

well as the possibility of multiple local minima in the cost function,

the training was repeated five times for each network (each time

initializing the weights randomly) and the result with the lowest

training cost was chosen.
2.4 Evaluation of algorithms

A qualitative test of simulated yields was performed by

comparison with observed average values from 2001 to 2020 in the

provinces of Cordoba (that includes Belmez and Cordoba) and

Granada, where Baza is located. The data were taken from the

official statistics of the regional government (Junta de Andalucia,

2022). Such a comparison was not intended as a validation of the crop

models but rather to verify that the predicted yields were reasonable.

The evaluation of the predictive power of each algorithm

included the following metrics: Root Mean Square Error (RMSE),

Mean Absolute Error (MAE), Bias Error (Bias), Maximum Error

(ME) and Coefficient of Determination (R2). The values of RMSE,

MAE, Bias and ME were divided by the average simulated yield in

the corresponding data partition (training or testing) and expressed

in percentage.
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We also computed the Akaike Information Criterion corrected

for small samples (AICc) in the training dataset as a popular

estimate of predictive performance in the absence of an

independent dataset for testing. AICc was computed as:

AICc = 2NLL + 2k + 2k2+2k
n−k−1

(4)

where NLL is the negative log-likelihood of the data under the

trained model (evaluated on the training dataset), k is the number of

non-zero parameters in the model and n is the number of data

points used for training. The log-likelihood in all cases was

calculated assuming that residuals followed a Normal distribution:

NLL = n
2 log (2ps

2) + RSS
2s 2 (5)

where s is the standard deviation of the residuals and n is the

number of data points used to train the algorithm. In the case of

linear models and ANN it is clear what the number of parameters are.

However, RF is a non-parametric method and therefore there are no

parameters being fitted to the data. As an estimate of k we have used

the average number of node splits per decision tree inside the random

forest, though the real number of degrees of freedom for a random

forest is a more complex measure (Mentch and Zhou, 2020).

The process of training and testing was performed for data

partitions of 15/5, 10/5 and 5/5 years, where the testing was always

performed in the latter years of the simulations (2016-2020). In

addition, we performed a random partition over the whole dataset

by using 10 repetitions of random data splits (75/25 for training/

testing, comparable in amount of training to the 15/5 split). This

last data partition exemplifies the testing of algorithms that are

meant for interpolation, whereas the former data partitions address

the scenario of future yield forecasting with different lengths of past

time series.
3 Results

3.1 Wheat yield

The total number of simulated years was 1240, with an average

yield of 2945 kg/ha (Table S4). Per region, average wheat yields

varied from 2215 kg/ha in Castellon to 3488 kg/ha in Lobon.

Extreme values occurred in Cordoba in 2012 with only 130 kg/ha

and Lobon in 2017 with 4959 kg/ha (Figure 1). The interannual

coefficient of variation was maximum in Baza (54%) and minimum

in Castellon and Lobon (31%) (Table 5).

The official statistics for the period 2001-2020 in the Cordoba

province indicated an average yield of rain fed wheat of 2546 kg/ha

(standard deviation SD 1077 kg/ha), The corresponding values in

Granada were 1163 kg/ha (SD 398 kg/ha).
3.2 Sunflower yield

The total number of simulated years was 1240, with an average

yield of 1484 kg/ha (Table S5). Average regional sunflower yields

were lowest in Baza (264 kg/ha) and highest in Lobon (2441 kg/ha).
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Extreme values occurred in Baza in 2005 with 51 kg/ha and Lobon in

2011 with 4382 kg/ha (Figure 2). The coefficient of variation was

maximum in Baza (76%) and minimum in Castellon (27%) (Table 5).

Mean yield of sunflower according to the statistics was 1497 kg/

ha (SD 674 kg/ha) in the Cordoba province and only 432 kg/ha (SD

259 kg/ha) in that of Granada (Table 5).
3.3 Wheat yield prediction (5 years training)

When the algorithms were trained on 5 years of wheat data (2010 –

2015), the best performing algorithm on the training dataset was ANN-

12 (RMSE 4%) followed closely by ANN-9 and RF (RMSE 5% for

both). The ranking for the test data was quite different as ANN-12 was

the second worst algorithm (RMSE 141%) while RF was the best

(RMSE 35%) followed by ANN-2, ANN-3, farm average and region

average (RMSE 42%). The ranking was similar when other criteria were

used with RF being the best in terms of MAE and second in maximum

error, though it had a worse performance in terms of AICc (Table 6).
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All ANN’s without dropout were better than RF in terms of

AICc and the difference exceeded the threshold of 2 in all cases. The

ranking of neural networks did not show any clear advantage from

using larger networks or a dropout layer. Using the average yield of

each farm to make predictions was a better approach than most of

the ANN’s except when considering AICc as metric in the training

data set (Table 6). Linear models showed a poorer performance

than all other algorithms in training (RMSE 23% for Linear, Ridge

and Lasso) and only some ANN’s in testing (RMSE 69%). The raw

data for all simulations and algorithms can be found in Table S6.
3.4 Algorithms to predict sunflower yield
(5 years training)

When the algorithms were trained on 5 years of sunflower data

(2010 – 2015), the best performing algorithm on the training dataset was

ANN-9 (RMSE 10%) followed by ANN-7 and RF (RMSE 12%). On the

testing dataset the lowest MAE and RMSE was achieved by RF followed

by average farm, while ANN-9 ranked 17th out of 20 algorithms and

linear models had an intermediate performance (Table 7). The best

AICc was that of ANN-7, followed by ANN-9. The raw data and the

predictions for all algorithms for this scenario are presented in Table S7.

Qualitatively, the patterns observed for predictions of sunflower and

wheat yield were similar. Maximum errors were within 159% (region

average) and 356% (ANN-3). The ranking of algorithms was similar for

RMSE, MAE and R2 but quite different for maximum error and AICc

(Table 7). Furthermore, the ranking differed between train and test data.
3.5 Effect of length of the training period

As the length of the period reserved for training increased

from 5 years to 15 years, the RMSE on the testing dataset

decreased for most algorithms (Figure 3). RF was the algorithm

with the lowest RMSE for sunflower across all training duration
TABLE 5 Statistics of yield (kg/ha) for wheat and sunflower in the period 2001-2020.

Wheat

Observed Simulated

Cordoba Granada Lobon Belmez Cordoba Baza Castellon

Average 2546 1163 3488 3357 2957 2571 2215

SD 1077 398 1092 1078 1116 1384 691

CV 0.42 0.34 0.31 0.32 0.38 0.54 0.31

Sunflower

Observed Simulated

Cordoba Granada Lobon Belmez Cordoba Baza Castellon

Average 1497 432 2441 817 1299 264 2345

SD 674 259 951 504 777 201 637

CV 0.45 0.60 0.39 0.62 0.60 0.76 0.27
fr
Observed: Statistics for the provinces of Cordoba and Granada. Simulated: values obtained with crop models. Belmez and Cordoba are in the province of Cordoba while Baza is in the province of
Granada (Lobon and Castellon are in neither).
FIGURE 1

Average simulated wheat yields per region from 2001 to 2020. The
cultivar change from SpringW1 to SpringW1+ occurred around 2010
but differed in each farm.
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and for wheat with 5 years of training. In the case of wheat with 10

and 15 years, ANN3 and ANN2 outperformed other algorithms,

respectively. The full comparison of all predictive metrics for

longer training periods (10 and 15 years) and both crops are

provided in Tables S8 and S9.
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The reduction in RMSE for the best algorithm with the increase

in training data was relatively small, considering the number of data

points increased threefold. For wheat, it decreased from 35% (using

RF) to 32% (using ANN-2) and for sunflower it decreased from 38%

(using RF) to 33% (also RF). For other algorithms, the improvement
TABLE 6 Evaluation of alternative algorithms to predict wheat yield trained with 5 years of data (2011-2015) and tested on 5 years of data (2016-
2020).

Train Test

Algorithm RMSE R2 k DAICc Bias MAE RMSE ME R2

BASE
Avg (farm) 37 23 124 1191 -12 35 42 111 7

Avg (region) 38 18 10 901 -13 35 42 96 8

Lasso 23 71 14 585 -56 61 69 137 -156

Ridge 23 71 16 589 -56 61 69 137 -155

Linear 23 71 16 588 -56 61 69 137 -156

Random forest 5 99 184 308 -9 29 35 92 34

ANN

ANN - 2 13 90 29 298 -7 30 37 91 28

ANN - 3 12 92 43 252 9 33 42 111 6

ANN - 4 10 94 57 206 -32 43 50 120 -34

ANN - 5 8 96 71 122 -108 110 134 279 -852

ANN - 7 7 97 99 138 -215 220 256 497 -3389

ANN - 9 5 99 127 0 -2 34 44 118 -2

ANN - 12 4 99 169 300 -118 121 141 286 -958

ANN with 50% dropout

ANN - 2+ 26 62 29 706 -26 38 45 98 -8

ANN - 3+ 22 72 43 650 -25 37 44 98 -3

ANN - 4+ 22 73 57 675 -31 41 48 97 -22

ANN - 5+ 20 78 71 654 -32 41 48 99 -23

ANN - 7+ 20 78 99 768 -35 43 50 104 -31

ANN - 9+ 17 83 127 816 -28 36 43 94 3

ANN - 12+ 16 85 169 1091 -34 42 48 118 -21
frontier
The base algorithms are the averages at the farm or region scale. RMSE: Root mean Square Error (%). R2: Coefficient of determination (%). Bias: Mean Bias Error (%). MAE: Mean Absolute Error
(%). ME: Maximum Error in the data set (%). k: Number of non-zero coefficients. DAICc: Difference in AICc (with respect to lowest value). RMSE, MAE, Bias and ME have been standardized by
dividing by the average yield in the corresponding dataset (training or testing). Numbers accompanying the Artificial Neural Networks (ANN’s) indicate the number of nodes in the hidden layer.
FIGURE 2

Average simulated sunflower yields for each region from 2001 to 2020. The cultivar change from AE353 to SW-101 occurred s around 2010 but
differed in each farm.
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in RMSE with training duration was more significant, as in the case

of linear models where the decrease in RMSE allowed them to rank

better among other algorithms (Figure 3). Within ANN’s, the

results show that, as expected, 50% dropout reduced RMSE on

the testing dataset, on average, by 20%, though ANN-2 and ANN-3

still performed better without dropout and the reduction in RMSE

tended to be larger with larger neural networks. Unexpectedly, for

most ANN’s, there was no clear pattern of variation between RMSE

and the size of the neural network or the length of the training

period, which may be a consequence of overfitting by the larger

networks or the inability to converge to a global minimum

during training.
3.6 Random partition of data for training
and testing

When the training and testing dataset were sampled randomly

from the original data regardless of the year (reserving 75% of the

data for training, the remaining for testing), the best algorithm

according to all criteria was RF for both wheat (RMSE 12%) and
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sunflower (RMSE 21%) (Table 8). Unlike in the previous section,

the RMSE for random partitioning was almost the same for train (6-

41%) and test (12-51%) and the ranking of algorithms was the same

regardless of whether the error metrics were calculated on training

or testing data. Furthermore, the lowest RMSE (6% for RF in wheat)

was five times lower than the lowest RMSE using 15 contiguous

years of training, (37%, Table S9) (despite using the same amount of

data in both cases). Also, ANN-2, which was the best for 15 years of

training on wheat (Figure 3; Table S9), performed significantly

worse (RMSE 37%) than RF when using random partitioning

(RMSE 25%).
4 Discussion

We generated a dataset of simulated yields for wheat and

sunflower using DSSAT which is a widespread crop simulation

package. The crop models used respond to all the main

environmental factors affecting crop growth and yield, including

temperature, radiation, water and nitrogen availability, but cannot

deal with other abiotic (micronutrients, salinity) or biotic (weeds,
TABLE 7 Evaluation of alternative algorithms to predict sunflower yield trained with 5 years of data (2011-2015) and tested on 5 years of data
(2016-2020).

Train Test

Algorithm RMSE R2 k DAICc Bias MAE RMSE ME R2

BASE
Avg (farm) 47 61 124 896 2 30 42 179 69

Avg (region) 52 53 10 651 1 32 42 159 68

Lasso 40 73 14 482 53 55 64 170 26

Ridge 40 73 16 492 53 55 65 171 25

Linear 40 73 16 492 53 55 65 171 25

Random forest 12 97 184 440 12 26 38 184 75

ANN

ANN - 2 22 91 29 168 7 33 45 199 64

ANN - 3 18 95 43 56 -100 118 140 356 -254

ANN - 4 18 94 57 111 121 122 141 284 -256

ANN - 5 16 96 71 60 89 91 111 255 -121

ANN - 7 12 98 99 0 10 56 75 305 0

ANN - 9 10 98 127 35 -17 66 91 297 -47

ANN - 12 25 90 169 911 39 44 60 185 36

ANN with 50% dropout

ANN - 2+ 49 59 29 647 21 52 63 167 30

ANN - 3+ 45 65 43 641 26 60 73 187 5

ANN - 4+ 37 77 57 547 29 51 65 184 25

ANN - 5+ 35 78 71 572 31 51 65 182 24

ANN - 7+ 34 80 99 654 46 52 73 196 6

ANN - 9+ 28 86 127 678 26 40 56 180 44

ANN - 12+ 25 90 169 911 39 44 60 185 36
frontiers
The base algorithms are the averages at the farm or region scale. RMSE: Root mean Square Error (%). R2: Coefficient of determination (%). Bias: Mean Bias Error (%). MAE: Mean Absolute Error
(%). ME: Maximum Error in the data set (%). k: Number of non-zero coefficients. DAICc: Difference in AICc (with respect to lowest value). RMSE, MAE, Bias and ME have been standardized by
dividing by the average yield in the corresponding dataset (training or testing). Numbers accompanying the Artificial Neural Networks (ANN’s) indicate the number of nodes in the hidden layer
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pests, diseases) limitations (Jones et al., 2003). Although

randomness was used to generate the specific conditions at each

farm or the exact year when the cultivar was changed, the

simulation runs were deterministic. Furthermore, the simulations

were performed independently for wheat and sunflower as two

monocultures running in parallel. This is not realistic in agronomic

practice but ensures that we can separate the effect of the crop

simulation model (Ceres-Wheat or OilcropSun) on the analysis.

The simulated yields showed mean values and coefficients of

variation close to the statistics for the provinces of Cordoba and

Granada (Table 5). The simulated low values of sunflower in Baza

(average 264 kg/ha) are fairly close to the provincial average (432

kg/ha) and are associated to the very low rainfall in the region

(Table 1). This poor performance would probably lead actual

farmers to stop growing sunflower, but this region was kept in

the study to ensure a wide range of environmental conditions. On

the other hand, Castellon was included as the inter-annual variation

in rainfall differed significantly from the other regions, but

sunflower and wheat are not actually grown in that area. Indeed,

Figures 1 and 2 show that average simulated yields from Castellon

did not follow the same temporal pattern as the other four regions.

The algorithms were compared first using the last five years of

the simulation (2016 – 2020) while different subsets of the earlier
Frontiers in Plant Science 09
years were used for training. This emulates the situation where past

data is used to extrapolate into the future, i.e., to forecast yields.

Alternatively, there are situations when one wants to estimate yields

(or any other variable) in the past by interpolating among known

data points. This may be useful for filling gaps in time series, check

self-declared yields by farmers or spatial interpolation when

computing yields on a grid. In that case, a random partitioning of

data for training and testing is adequate as long as no information

leaks from the training to the testing dataset.

The results indicate that the type of data partitioning for testing

will affect the overall predictive performance as well as the relative

ranking of algorithms. For example, when 75% of the data was used

for training, the resulting RMSE decreased by up to a factor of 5

depending on whether the training data was sampled randomly

(Table 8, smaller RMSE, higher R2 on testing) or the training was

done on the first 15 years of the time series (Figure 3;

Supplementary Table S9, higher RMSE, lower R2 on testing).

Only linear models (with or without regularization) performed

similarly in both cases but they were never among the best

algorithms. These large differences in performance illustrate the

distinction between interpolation and extrapolation: using random

partitioning to test an algorithm that is intended to forecast yields

can overestimate significantly the actual performance of the
FIGURE 3

Root Mean Square Error (RMSE) on testing data of the different algorithms with training periods of 5, 10 and 15 years. RMSE has been standardized
by dividing by the average yield in testing dataset. Numbers accompanying the Artificial Neural Networks (ANN’s) indicate the number of nodes in
the hidden layer while the + sign indicates 50% dropout.
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algorithm during application. Indeed, the apparent success of ML in

predicting yield in many studies (e.g. Khaki et al., 2020) may be the

result of using random partitioning which should be restricted to

applications where we need interpolation under past, well-

known conditions.

By looking at the different scenarios, we conclude that RF

appears to be most reliable and successful algorithm only beaten

by the simplest ANN in two occasions though by a small margin

(Figure 3). This is remarkable considering that none of the settings

of the RF were tuned (the default settings were used), that it was

very simple to set up (just one line of code in R using the package

ranger) and fast to train (at the scale of seconds on a laptop). The

only statistic where RF performed worse than was AICc, but it is

important to understand that the degrees or freedom were

estimated as the number of node splits (since there are no actual

parameters in a RF), but this may be an overestimation, which

would inflate AICc values. Despite all of these advantages, and

extensive use in some fields of research (e.g., classification tasks in

remote sensing, Belgiu and Drăgut,̧ 2016), RF is not often used for

yield prediction (Jeong et al., 2016) but our results suggest that it

would the best off-the-shelf algorithm for yield prediction.

One of the reasons why RF may perform better than ANN in

this study is that the signal-to-noise ratio is low, especially when

forecasting future yields, given that the best RMSE were still
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relatively high and the best R2 in the testing dataset did not

exceed 0.8 (Figure 3, Table S7). It is known that a low signal-to-

noise ratio and relatively small dataset would favor RF due to strong

built-in regularization (Mentch and Zhou, 2020). Also, in machine

learning competitions, algorithms based on decision trees often

outcompete ANN when dealing with tabular data with relatively

small sizes (e.g. reports from Kaggle competitions). In cropping

systems, we have to cope with changes in management or the

environment so it is not common to have yield series longer than 5

years for the same system. For instance, in the case of wheat the

average duration of cultivars is around 7, with values lower than 5 in

more developed agricultural systems (Brennan and Byerlee, 1991).

The poor performance of linear models did not change much

with regularization. On the other hand, the dropout layer had a

positive though insufficient effect on reducing predictive RMSE of

ANN’s for wheat but not for sunflower. With 5 years of training,

ANN-2 in wheat had lower RMSE than predictions using average

farm yields from past data. This suggests that regularization

methods may not fully compensate for excessive complexity

leading to a trained model that slightly overfits the data. A

further complication is that regularization based on penalties

(Lasso, Ridge) or imposed sparsity (dropout layer) are dependent

on specific settings (known as hyperparameters) which would have

to be tuned for optimal performance. That tuning is generally
TABLE 8 Evaluation of alternative algorithms of wheat and sunflower yield with random partition of training (75%) and test (25%) of data.

Wheat

Train Test

Algorithm RMSE R2 k DAICc Bias MAE RMSE ME R2

BASE
Avg (farm) 37 24 124 2862 -1 35 42 119 4

Avg (region) 38 19 10 2658 -1 32 39 104 19

Lasso 32 41 15 2369 -1 27 33 92 41

Ridge 32 41 16 2370 -1 27 33 92 41

Linear 32 41 16 2370 -1 27 33 92 41

Random forest 6 98 281 0 0 8 12 48 93

ANN ANN - 2 24 68 29 1837 -1 20 25 84 66

Sunflower

Train Test

Algorithm RMSE R2 k DAICc Bias MAE RMSE ME R2

BASE
Avg (farm) 46 65 124 2202 -1 38 53 206 56

Avg (region) 51 58 10 2127 -1 37 51 200 59

Lasso 41 73 16 1725 -1 32 42 170 72

Ridge 41 73 16 1727 -1 32 42 170 72

Linear 41 73 16 1724 -1 32 42 169 72

Random forest 11 98 285 0 0 14 21 98 93

ANN ANN - 2 36 79 29 1514 0 29 38 155 77
frontiersin
The baselines are the averages at the farm or region scale. RMSE: Root mean Square Error (%). R2: Coefficient of determination (%). Bias: Mean Bias Error (%). MAE: Mean Absolute Error (%).
ME: Maximum Error in the data set (%). k: Number of non-zero coefficients. DAICc: Difference in AICc (with respect to lowest value). RMSE, MAE, Bias and ME have been standardized by
dividing by the average yield in the corresponding dataset (training or testing). Numbers accompanying the Artificial Neural Networks (ANN’s) indicate the number of nodes in the hidden layer.
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performed via random partitioning of data, which would not

necessarily improve predictions on extrapolation in the above.

The tuning of hyperparameters also leads to a significant increase

in computational requirements.

We have included the average yield at the farm or region level as

a best-guess estimate in the absence of additional information from

the farms. These estimates serve as the baseline for all the other

algorithms. Unfortunately, very few published studies (Alvarez,

2009) report such a baseline. Furthermore, in some cases (e.g. Cai

et al., 2019) only the coefficient of determination was used to select

the best algorithm rather than looking at a wide range of error

metrics. Even if some measure of predictive error is reported,

without a proper baseline it will not be clear what is the gain in

predictive power by using a machine learning algorithm (and

collecting all the necessary additional data to train the algorithm).

For example, for 5 years of training in wheat, the best algorithm

(RF) had an RMSE of 0.35 compared to 0.42 when using the average

yield of the farm during those years. For the same scenario, in

sunflower, RF had an RMSE of 0.38 and predictions from farm

average yield had an RMSE of 0.42.

Potential users should decide whether the cost of collecting

additional input data and setting up the predictive framework is

justified by the decrease in predictive error brought about by using a

(regularized) linear model, RF or ANN. An analysis based on crop

models, as illustrated in this study, could be used to justify such

decisions, assuming that such models are available and reasonably

well calibrated for the crop, cultivar and region of interest. Of

course, such an analysis will always overestimate performance of

predictive algorithms as long as weather variables are important for

predictions (since in the real application the future weather would

have to be predicted, introducing additional errors).

The need for faster empirical algorithms, able to consider many

factors without explicit knowledge of the mechanisms behind, has

led to the widespread adoption of ANN’s for yield prediction. In our

virtual experiments, we have eliminated any additional source of

error and selected directly the factors that are known to affect crop

yield in both models. Furthermore, the number of datapoints

available for training has been at least twice the number of

parameters (except for ANN-12 and 5 years of training data,

where the ratio was 1.8). Although there are cases where this

ratio exceeds 1 (e.g. 6.2, Chapman et al., 2018) we can often find

much lower values for the data/parameters ratio when ANN’s are

being used (e.g. 0.12, Abrougui et al., 2019; see Table S10 for a wider

list of cases).

Despite our favorable setting, most ANN’s have performed

worse than using average farm yields from past data. A possible

explanation for the low performance of ANN’s may reside in the

fact that crop yields may show discontinuous responses when data

is aggregated at the seasonal level, which are hard to approximate by

an ANN without large amounts of data. For instance, the level of

stress at anthesis has a disproportionate effect on seed number in

sunflower and wheat. This may be due to heat, frost or water stress

occurring in just a few days (Pagani et al., 2017). If the data to train

the algorithms is aggregated at the seasonal level, these critical

responses will be missed. The same goes even for monthly (Khaki

andWang, 2019) or weekly (Khaki et al., 2020) data. Amplifying the
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number of inputs would not be the solution, as the number of

parameters would become unmanageable because of the large data

requirement (especially with ANN’s where the number of

parameters scale rapidly with the number of features). Similar

reasons may explain the poor performance of linear models and

their regularized versions (Ridge, Lasso). On the other hand, RF may

handle better the discontinuities by splitting the data recursively

rather than approximating the underlying model with

smooth functions.

The lack of predictive accuracy by mechanistic crop models is

partly responsible for the use of empirical algorithms for prediction

of future yields (Basso and Liu, 2019). A mixed approach, where

mechanistic and empirical models are combined by expert analysts,

as in the MARS unit of the Joint Research Centre (van der Velde

et al., 2019), could lead to better results than either approach

separately. In any case, we will always need biophysical crop

models to explore uncharted conditions including not only global

warming but also drastic changes in infrastructure or management

(new irrigated areas, new cultivars) where experiments (and derived

empirical models) are not possible (Flénet et al., 2008).
5 Conclusions

Machine learning algorithms showed a limited power (relative

to a trivial average-yield baseline) for predicting yields of sunflower

and wheat in different areas of Spain. Random partitioning of data

for training and testing leads to underestimating model errors, as

compared to time-dependent partition. Apart from being easier and

faster to run, RF will always be at least as good as the best guess

estimate (average of the farm yield on past data), a fact that is not

guaranteed by ANN or linear models unless there is sufficient data.
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