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Herbs have been used as natural remedies for disease treatment, prevention, and

health care. Some herbs with functional properties are also used as food or food

additives for culinary purposes. The quality and safety inspection of herbs are

influenced by various factors, which need to be assessed in each operation

across the whole process of herb production. Traditional analysis methods are

time-consuming and laborious, without quick response, which limits industry

development and digital detection. Considering the efficiency and accuracy,

faster, cheaper, and more environment-friendly techniques are highly needed to

complement or replace the conventional chemical analysis methods. Infrared

(IR) and Raman spectroscopy techniques have been applied to the quality control

and safety inspection of herbs during the last several decades. In this paper, we

generalize the current application using IR and Raman spectroscopy techniques

across the whole process, from raw materials to patent herbal products. The

challenges and remarks were proposed in the end, which serve as references for

improving herb detection based on IR and Raman spectroscopy techniques.

Meanwhile, make a path to driving intelligence and automation of herb

products factories.

KEYWORDS

Infrared and Raman spectroscopy, rapid detection, natural products, herbal
nutraceuticals, herbal medicine
1 Introduction

Herbs, referred to its raw materials, have been used as natural remedies for disease

treatment, prevention, and health care after regulated processing, with a surge in acceptance

and public interest rising. The treatment and prevention of herbs have been widely used

worldwide since ancient times (Bonifacio et al., 2014). The significant achievement that

artemisinin extracted from Artemisia annua for curing malaria was even awarded Nobel
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Prize in Physiology or Medicine (Tu, 2016). Herbal medicine, which

is made from herbs, also plays an irreplaceable role in infectious

diseases, which is confirmed in combating SARS (Xiao et al., 2003)

and COVID-19 (Huang et al., 2020; Liu et al., 2020; Yang et al., 2020),

by means of analysing and comparing clinical curative effects. The

World Health Organization stated that about 80% of the world’s

population relies on herbs for health care (Rohman et al., 2014). Some

herbs contain active ingredients with functional properties that can

be used as food or food additives, named medicine food homology

plants (Granato et al., 2017). For example, Curcuma longa and

Lycium barbarum are well-known traditional herbs serving tonic

food due to their bioactive components (Xie et al., 2016; Tsuda, 2018).

In addition, licensing systems have been established to ensure the

marketing of qualified herbs (Ekor, 2014).

There will be health issues, safety risks, and abnormal market

orders without requisite quality regulation. Therefore, the quality

and safety inspection of herbs is essential, which is beneficial to

guarantee the clinic’s effectiveness as well as decrease side effects. As

herbs are natural plants, unlike synthetic drugs with clear

ingredients, the quality and safety are influenced by various

factors, such as habitat, maturity, and processing methods

throughout the whole process of herbs, from raw materials to

patent herbal products. Each unit is needed to be detected and

controlled (Mackey and Nayyar, 2016; Li et al., 2021). The herb

management of quality control mainly includes (1) identification of

the authentication; (2) classification of the differences caused by

geographical origin, species, and processes; (3) determination of the

phytochemical constituents.

Traditional methods of quality control depend on a person’s

knowledge or experience. The morphological and histological

methods are vulnerable. Chromatography analytical methods,

such as high-performance liquid chromatography (HPLC) and

liquid or gas chromatography-mass spectrometry (LC/GC-MS),

require skilled operation and complex processes, which is time-

consuming without quick response and limits digital development

in the modern herb industry. Therefore, rapid, non-destructive, and

environment-friendly analytical strategies are current key points to

make access to data acquisition and processing automatically, then

boost intelligent and green development with immediate detection

and instant decision required.

Infrared (IR) and Raman spectroscopy, the vibrational

spectroscopy techniques can provide comprehensive chemical

profiles of multiple compounds, characterizing the composition

and content of target matter with objective, high-speed, and non-

damage, which are regarded as effective tools in the field of herbs

(Zou et al., 2005; Rohman et al., 2014; Chiachi, 2016; Kucharska-

Ambroej and Karpinska, 2019). Besides, due to their advantages of

non-damage detection, quick-response, and in-line analysis, IR and

Raman spectroscopy techniques have broad application prospects

in quality control and safety inspection of herbs, promoting the

efficiency and accuracy of digital detection in the herb industry.

This review highlighted applying IR and Raman spectroscopy

techniques in quality and safety inspection across the whole process

of herbs, from raw materials to patent products. The framework of

this review is shown in Figure 1. Firstly, a brief introduction to

vibrational spectroscopy techniques and data processing methods
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was available. Secondly, the current application of herbs using IR and

Raman spectroscopy techniques was presented from three aspects: (1)

herbal raw materials; (2) processing quality control; and (3) patent

herbal products, covering the whole process of herb production.

Finally, we discussed the benefits and limitations of vibrational

spectroscopy techniques. Several suggestions were put forward to

improve the digital detection of the quality and safety of herbs.
2 Introduction of vibrational
spectroscopy techniques

2.1 IR spectroscopy technique

IR spectroscopy studies the interaction between matter and

infrared radiation. The main principle is that IR light’s energy

could trigger the mechanical motion of specific molecular bonds

when the IR light passes the sample, which is called IR absorption. A

specific characteristic absorption presented in the IR spectra is

employed for analysis according to the absorption frequency of

chemical bonds and functional groups (Stark et al., 1986). The

mechanical motion (vibration and rotation patterns) of atoms

connected by covalent bonds includes symmetric and asymmetric

stretching and scissoring, wagging, rocking, and twisting (Johnson

andNaiker, 2020). IR spectroscopy contains richer group information

with tremendous advantages in analysing and identifying organic

substances, which has been widely used since the 1960s (Smith, 2011)

and can be used for both qualitative and quantitative analysis (Stuart,

2005). The ingredients of concern in herbs, such as saponins,

polysaccharides, flavonoids, triterpenoids, and polyphenols, consist

of various organic functional groups that contribute to characteristic

bands or peaks in IR spectra. The differences among spectra can be

conducted to analyse the quality discrepancies of herbs. In the field of

herbs, IR spectroscopy technique has been used since the early 1980s

(Zou et al., 2005). Nowadays, IR spectroscopy is the most widely used

technology in the quality detection of herbs, such as the identification

of species, origins, grades, and the prediction of compound contents

(Yin et al., 2019).

A typical IR spectrometer comprises a radiation source, a

wavelength selection device, a sample holder, a photoelectric

detector, and a computer system (Porep et al., 2015). The spectra

acquisition modes include transmission, reflection, transflection,

and interaction, which differ in how the detectors are placed with

respect to the samples (Alander et al., 2013; Monnier, 2018). The IR

region is conditionally divided into three subregions, including

near-infrared (NIR, 12,820-4,000 cm-1), mid-infrared (MIR,

4,000-400 cm-1), and far-infrared (FIR, 400-33 cm-1). The quality

analysis of herbs mainly focuses on NIR and MIR spectra caused by

molecular vibration. FIR spectra excite molecular rotation and have

strong water absorption, which is more suitable for heavy metal

analysis (Su and Sun, 2018).

Various chemical bonds related to fundamental vibrations of

molecules could be detected in MIR spectroscopy. The number of

scans, resolution, and scan regions are vital parameters that affect

signal-to-noise ratio (SNR) and spectra quality. The MIR region can

be divided into two distinct regions, 4,000-1,500 cm-1 and 1,500-400
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cm-1, which are called functional group region and fingerprint region,

respectively. In the fingerprint region, 4,000-2,500 cm-1 is X-H

(where X is C, N, O, or S) stretching vibration. 2,500-2,000 cm-1

corresponds to triple bonds, such as C≡C, C≡N). Double-bonded
functional groups, like C=C, C=O, C=N, mainly lie in 2,000-1,500

cm-1. The peak near 3340, 1739, and 1670 cm-1 were assigned to the

stretching vibration of O-H, ester carbonyl groups, and C=C,

respectively, in the IR spectrum of Dictamnus dasycarpus Turcz

(Liu et al., 2020). The peaks at 1684, 1517, and 1031 cm-1 were

observed and compared to distinguish the different Rhodiola species

(Tang et al., 2020). The region of 1200-950 cm-1 was chiefly assigned

to the vibration of C-O related to polysaccharides (Wu et al., 2019).

MIR spectra are collected mainly by Fourier transform infrared

(FTIR) spectrometers, which are equipped with a Michelson
Frontiers in Plant Science 03
interferometer instead of the traditional grating monochromator,

significantly improving the scanning speed, SNR, and the

wavelength resolution of MIR spectroscopy. The advantages of

FTIR are as follows: (i) non-destructive or only slightly damages

the sample; (ii) needed sample quantities are small for measuring;

(iii) requires minimal sample preparation at most. Meanwhile, the

shortcomings of spectrum complication, quantification, and sample

constraint are needed to be considered. Spectrum complications

and quantification are solved by digitalisation and chemometric

methods. More advanced FTIR techniques are developed to

overcome the sample constraint, by which samples do not

undergo time-consuming preparation that lets samples be

combined with KBr. ATR is a sampling technique that is used to

obtain high-quality data on liquid and solid. ATR-FTIR relies on
FIGURE 1

The framework of the review.
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the total internal reflection of infrared light in an internal reflection

element or crystal with a high reflection index in direct contact with

the measured sample, simplifying sample preparation (Feng et al.,

2013). Amazing consistent sampling and higher accuracy may be

achieved due to the presence of multi-reflective crystals, in which

light is reflected on the sample many times, thereby increasing the

absorbance (Lohumi et al., 2015). The limitation of ATR-FTIR is

that it is challenging to achieve an ideal optical fit between the

sample and the ATR crystal (Monnier, 2018). Diffuse reflectance

FTIR (DRIFT) spectrometers and FTIR photoacoustic spectroscopy

(FTIR-PAS) are developed for the direct determination of powder

samples. The diffuse reflection accessories can collect the diffuse

reflected light with absorption-attenuation characteristics caused by

an uneven or rough surface, which obtains spectral signals with a

good SNR to the maximum extent (Huang et al., 2008). DRIFT is

suitable for the surface structure analysis of opaque or irregular

solid samples. The advantage is that almost no preparation is

required for the sample, which can be in powder form or film.

FTIR-PAS collects spectral data from the pressure fluctuations

generated by thermal expansion, which is detected by a sensitive

microphone. Photoacoustic techniques mainly include modulated

excitation and generation of sound waves in gaseous samples,

modulated excitation of liquid and solid samples with an indirect

generation of sound waves in the adjacent gas phase, and pulsed

excitation and generation of pressure pulses in liquid and solid

samples (Schmid, 2006). Rather than focusing on what is

transmitted or reflected, FTIR-PAS measurement relies on the

energy absorbed by samples, making it suitable for high-scattered,

opaque, weak-absorbed, and low-concentration samples (Du and

Zhou, 2011).

Unlike almost all modern MIR spectrometers based on Fourier

transform, monochromator/detector principles in scanning NIR

spectroscopy are variable. NIR spectroscopy lies between visible and

infrared light, comprising broad bands associated with molecular

overtones and combinations of vibrations. According to different

combinations, simple molecules with few basic vibration modes can

present many overtones in the NIR spectroscopy. NIR is sensitive to

hydrogen groups such as O–H, N–H, and C–H (Wang et al., 2016).

Therefore, the moisture of samples is needed to be considered

(Buening-Pfaue, 2003). Infrared signals are easier to detect, but the

overlapping of NIR spectra will affect the interpretation. As a result,

NIR spectral data is analysed with a combination of chemometric

methods to extract valuable information.
2.2 Raman spectroscopy technique

The change in the frequency of light scattered by molecules as it

travels through a medium is called Raman scattering, discovered by

C.V. Raman in 1928, relying on the inelastic scattering of photons

known as Raman scattering (Raman and Krishnan, 1928). Raman

scattering is a combined light scattering phenomenon produced by

the interaction of light and matter molecules. The principle of Raman

spectroscopy is analysing the scattering spectra with different

frequencies from the incident light, which is applied to the study of

the molecular structure of matter in specific wavenumber (Qin et al.,
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2019). Raman spectra cover a range of 4,000-50 cm-1. The advantages

of Raman include sensitivity to chemical structure within the

fingerprint regions and easy analysis without pre-treatment.

Besides, due to the weak Raman scattering of water, Raman can be

applied in an aqueous environment. The vibrations of various

functional groups in herbs produce peaks at different positions due

to unique spectroscopic fingerprints. The information of a class of

chemical compounds with similar molecular structures can be

deduced. For example, the peak at 1626 cm-1 is assigned to the

stretching vibration of C=C bonds (Wong et al., 2015). Adulterations

can also be recognized by comparing the peaks in Raman spectra.

Therefore, the detection of species, adulteration, and ingredients, as

well as processing monitoring using Raman spectra, is a feasible

application in the field of herbs.

A typical Raman spectrometer consists offive components: laser

light source, filter, sample cell, monochromator, and detector

(Eliasson et al., 2008). There are many types of lasers, ultraviolet

laser, visible laser, and NIR laser, available to be applied. The

selection of laser depends on samples and detection purposes,

which can be considered in three aspects. (i) The intensity of the

Raman signal. According to the acknowledged relationship,

IRaman∝1/l4, the shorter wavelength of the laser, the stronger the

Raman signal. (ii) Avoid fluorescent interference to prevent the

annihilation of the Raman signal by fluorescent signal. Choosing an

excitation laser outside the fluorescent region, like an ultraviolet

laser or NIR laser, can avoid the fluorescence effect. (iii) The need to

analyse samples at different depths. The longer the wavelength of

the laser, the deeper the penetration (Lee et al., 2013). Basic Raman

measurement techniques contain backscattering, transmission, and

spatially offset Raman spectroscopy (SORS) (Qin et al., 2019). The

backscattering collection mode is mainly used for sample surface

inspection. The transmission collection mode is more suitable for

the bulk composition of samples that are non- or weak-absorbing

inside (Eliasson et al., 2008). SORS has the capability to obtain

layered information on samples by setting a series of lateral offsets

(Nicolson et al., 2021). Generally, the selection of lasers and

measurement modes is based on the characteristics of the

samples. Shorter excitation wavelengths could excite stronger

Raman signals, but higher energy damages the sample more.

Meantime, the cost and volume of the instrument increase.

The main disadvantages of Raman spectroscopy are the thermal

effects of the sample, fluorescence interference, and weak Raman

signals (Wang et al., 2018). Such obstacles could be overcome by the

advancements in devices and materials (Chen et al., 2017), which

lead to a greater variety of analytical techniques (Gala and Chauhan,

2015). Fourier transform Raman spectroscopy (Liao et al., 2004),

resonance Raman spectroscopy (RRS) (Robert, 2009), confocal

Raman spectroscopy (Barbillat et al., 1994), and surface-enhanced

Raman spectroscopy (SERS) (Sharma et al., 2012; Pérezjiménez

et al., 2020), is feasible to enhance Raman signals by 103-106 times,

which evolves the instruments and samples processing. FT-Raman

adopts Fourier transform technique and is equipped with a NIR

laser (1064 nm) as an excitation light source that avoids

fluorescence interference. But its baseline drift and poor

reproducibility affect its Raman signal. RRS depends on the

resonance effect that the frequency of the laser matches an
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electronic transition of the irradiated molecule. Its instrument

requires an adjusted light source. Confocal Raman spectroscopy

which is the coupling of Raman to microspectroscopic instruments,

can provide a high-resolution image rich in information. The

development of techniques and instruments creates more

practical applications in Raman spectroscopy.

In the field of herbs, SERS has become a hotspot for analysis.

Fleischmann et al. (1974) discovered SERS during measurements of

Raman scattering of pyridine on rough silver electrodes. SERS

ampl ifies convent ional Raman signals by combining

nanostructures of noble metals with the sample, whose theoretical

mechanisms involve electromagnetic enhancement and chemical

enhancement. Nanomaterials improvements and chemical

modifications offer more possibilities for SERS applications,

advancing towards selectivity, in situ, and non-destructive

sampling detection (Lin and He, 2019; Langer et al., 2020), which

has achieved feasible applications in adulteration detection (Dao

et al., 2019), compound identification (Gu et al., 2018), and on-site

qualitative screening (Zhu et al., 2014). The complex matrix effect

and limited multi-analyte capability are needed to be considered.

Nevertheless, the great compatibility with other techniques, such as

separation techniques and other innovations and variants of Raman

spectroscopy, makes SERS promising.
2.3 Comprehensive comparison of IR and
Raman spectroscopy in herbs

In the field of herbs, clinical efficacy is due to multiple

compositions working in concert. IR and Raman spectra that

reflect the comprehensive chemical profi les related to
Frontiers in Plant Science 05
composition are feasible to be applied in the qualitative analysis

of herbs, including identifying the species, grades, origins, and

quantitative prediction. In Figure 2, Panax notoginseng is selected

as a typical case, and IR and Raman spectroscopy techniques are

adopted for quality and safety inspection throughout the process.

The comparison of IR and Raman spectroscopy is summarized in

Table 1. Each technique has its own advantages and disadvantages.

The detection method selection should be based on sample

characteristics and detection purpose. Herb materials’ compounds

are complex, and IR and Raman spectroscopy techniques

complement each other. IR spectroscopy detects the molecule

with IR absorption when its dipole moment changes. The

molecular bond without dipole moment but with polarizability

change can be detected in Raman spectroscopy. The characteristic

peak information of MIR spectroscopy is pointed to specific

databases that are relatively complete. Meanwhile, as mentioned

in section 2.2, the poor spectral reproducibility and SNR in Raman

spectra were caused by the fluorescence and sample matrix effect,

which leads to the status that Raman spectroscopy is less widely

used than IR spectroscopy in herbs (Woo et al., 1999c).

IR and Raman spectroscopy techniques are available to detect

samples that are in the original state without sample pre-processing.

However, simple sample preparation is employed before collecting

spectral data to gain high-quality spectra and better analysis results.

Dried samples after grinding and tableting, or extracts, are two

commonly used herbal raw materials for analysis, which decreases

the matrix effect. Digital technology offers a data processing method

to remove irrelated variables, which makes sample pre-processing

unnecessary. SPA-LDA algorithm extracted seven effective variables

to achieve the three origins discrimination of Ginseng in piece form

using NIRS (Chen et al., 2020b).
FIGURE 2

The quality and safety inspection of herbs across the whole process (set Panax notoginseng as a typical case).
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Spectral analysis can realize the quality identification and

evaluation of herbs with different qualities. Currently, the

accuracy and precision of herb detection using IR and Raman

spectroscopy techniques are not up to the standard analysis

methods. The outstanding advantages of rapid, accurate, and

online analysis endow the application prospect of the digital

detection and automation industry.
3 Introduction of data processing in
digital detection

Vibrational spectroscopy techniques are easily accessible to

acquire data. The robust models are established in the way that

spectral data as input and class labels or predicted value as output,

which aims at achieving digital detection with the real-time

response by digital technology (Li et al., 2021). Figure 3 presents

the workflow of spectral data processing. For the purpose of

improving accuracy and sensitivity, the attempts, data pre-

treatment, and feature selection usually are carried out.
3.1 Pre-treatment

Influenced by samples’ physical factors (compactness,

smoothness, particle size, etc.), instrument error, and the

experimental environment, IR and Raman spectroscopy inevitably

present some irrelevant information to the target samples, which

results in baseline drift, spectral overlap, and background noise.

Therefore, spectral pre-treatment is used to remove defects

observed in the spectra and amplify the differences in the raw

spectra of samples (Baker et al., 2014).
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After many attempts, baseline and noise correction (Liu and Yu,

2016), derivation techniques (Rinnan, 2014), and light scattering

correction (Buddenbaum and Steffens, 2014) are considered

effective pre-treatment methods, which are common strategies in

the spectral detection of herbs. Baseline correction (BC) is widely

applied to correct the spectra by particle size variation and

instrumental factors (Cadet and Offmann, 1996). It needs to be

noted that variable baseline signals and cosmic rays in Raman

spectra contribute to spectral contamination causing less sensitivity.

Baseline correction and cosmic ray removal are the primary

purposes of Raman spectra pre-treatment (Li et al., 2015). Noise

correction helps to improve the signal-to-noise ratio (Liu et al.,

2019). Smoothing and filtering (SF), wavelet transform (WT), and

normalization (Norm) are applied to correct the baseline or reduce

noise. Common derivative pre-treatments include the first

derivative (FD), second derivative (SD), and third derivative

(TD), which are used to amplify spectral differences.

Multiplicative scatter correction (MSC) and standard normalized

variate (SNV) are applied to correct the spectral errors caused

by scattering.

Additionally, multiple pre-processing methods were combined

to attain the best performance in studies (Rinnan et al., 2009). The

effective and efficient improvements in models were compared to

obtain the most optimal one for further analysis (Xu et al., 2019).
3.2 Feature selection and extraction

The data collected by vibrational spectroscopy techniques is

generally too much and may result in redundant information

interfering with the correlation, which is unfavourable to the

establishment of the model. Extracting feature wavelengths is a
TABLE 1 Comparison of IR and Raman spectroscopy.

Techniques NIR MIR Raman

Wavenumber 12,820-4,000 cm-1 4,000-400 cm-1 4,000-50 cm-1

Principle Infrared absorption Infrared absorption Light scattering

Produce conditions
Molecular dipole
moment changes

Molecular dipole
moment changes

Molecular polarizability changes

Spectra shape Broad bands Sharp absorption peaks Sharp spectral peaks

Sample types solid, liquid, gas

Sample preparation Non or minimal

Applications qualitative and quantitative analysis

Light source
(Dispersed) Polychromatic radiation;
globar tungsten

Monochromatic radiation;
laser

Group preference Polar bond vibrations of different atoms Non-polar bond vibrations of the same atom

Container Cannot be measured in glass containers
Can directly be measured in glass bottles
and capillaries

Structure analysis NO YES YES

Moisture interference YES YES NO

Limitation Bands overlapping Sample constraint Fluorescence interference; thermal effect
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practical approach to improve the robustness of the model. Though

not an indispensable step when processing the data, variable

selection is usually employed to remove or eliminate useless

variables with noise and irrelevance, even interference. By using

these methods, the bias caused by chemical, physical, and

instruments decreases, which results in better predictions and

simpler models (Zou et al., 2010). Simple identification tasks can

even be realized directly by comparing the change rules of

characteristic peaks.

3.2.1 Characteristic peak selection based
on knowledge

Regarding MIR and Raman, bands’ number, position, shape,

and intensity vary with compounds and their aggregation states,

and these characteristic peaks were adopted for determination,

which makes for structure analysis and detailed interpretation

(Wang et al., 2018). In the early days of IR spectroscopy

technique for herbs, characteristic peak analysis was the typical

method, which could be used for small-category identification. The

distinct groups or chemical substances to be measured appear in

specific wavelengths of related functional groups (Magwaza et al.,

2012; Hadjiivanov et al., 2021), or the position where the peaks

differ greatly after observing and comparing among various

qualities of herbs. The fingerprint peaks can be as feature lines
Frontiers in Plant Science 07
used for qualitative identification and quantitative analysis of

substances directly.

3.2.2 Variable selection based on
chemometric methods

Feature selection and extraction help establish more reliable and

practical models. Fewer variables also reduce the computer

calculation time. Wavelength point selection methods and

wavelength interval selection methods are effective in retrieving

and selecting features in the spectra (Yun et al., 2019). Competitive

adaptive reweighted sampling (CARS), successive projections

algorithm (SPA), genetic algorithm (GA), variable influence on

projection (VIP), and interval PLS (iPLS) are employed as different

categories of variable selection methods (Song et al., 2017; Junaedi

et al., 2021). The selected spectral variables that contributed to

detection were related to crucial index compounds, providing

scientific support to the relationship between chemical

components and medicinal efficacy. It can be seen from the

existing review literature that the complexity of variable selection

methods is gradually increased since the evaluation indexes are

more diverse. The improved variable selection strategy is a valuable

guideline for establishing a real-time platform since we can set

dozens of spectra as targeted regions. Scholars prefer to combine

multiple methods for better performance (Pasquini, 2018).
FIGURE 3

The rough schematic diagram of spectral data processing.
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3.2.3 IR spectroscopic tri-step
identification approach

The IR spectroscopic tri-step identification approach is a new

model-free method (Noda, 1993) that focuses on feature bands for

analysis. It consists of three steps: (1) raw infrared spectra; (2) the

second derivative infrared (SD-IR) spectra; and (3) two-dimensional

correlation infrared (2D-IR) spectra. The IR spectroscopic tri-step

identification approach is utilized to resolve the overlapped signals

and amplify spectral differences to obtain higher-resolution spectra.

SD-IR spectra can improve the apparent resolution, reduce the

overlap of absorption peaks, and enhance the spectral

characteristics of the low-energy components. The spectral

fluctuations of 2D-IR spectra can be treated as an arbitrary

function of almost any physical variable, such as temperature,

time, concentration, and pressure, employed to expand to IR

spectroscopy in a two-dimension, whereas these spectral features

cannot be observed in conventional one-dimensional spectra. 2D-

IR spectra include the synchronous spectrum (Guo et al., 2016) and

the asynchronous spectrum (Miao et al., 2017).

The IR spectroscopic tri-step identification approach has

gradually developed as a systematic analysis method in the herb
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detection of different forms, whose applications in identification

and optimization with comprehensive and objective assessment are

summarized in Table 2. This method provides a simple economic

insight, which can be used as anterior guidance in detecting multi-

level (from entirety to fraction to single ingredient) and multi-plex

(from major to minor to trace components), especially in rare or

expensive samples whore the number is too limited to build a

pattern recognition model. Besides, the tri-step identification gives a

holistic view of the herbs, which supplements conventional

methods that focus on several selected marker substances and

neglect the synergistic effect. An analysis-through-separation

approach was proposed to provide a pyramid of chemical

fingerprints in Salviae miltiorrhizae (Xu et al., 2013).
3.3 Digitized modeling

Chemometrics combined with vibrational spectroscopy

techniques is an effective tool that can be understood as applying

mathematics and statistics to chemical data processing (Rohman,

2019). Conventional statistics focus on a particular situation based
TABLE 2 Summary of feature analysis of herbs based on IR spectroscopic tri-step identification approach.

Herbal plants Technique Application Data processing Ref.

Astragalus membranaceus FTIR Geographical origins discrimination SD/2D-IR Huang et al. (2015)

Carthamus tinctorius FT-IR/NIR Adulteration identification BC+PCA/SD/2D-IR Chen et al. (2015)

Cordyceps sinensis FTIR Geographical origins discrimination SD/TOPSIS Sun et al. (2019)

Dendrobium officinale FTIR Desiccation methods optimization SD/2D-IR Wu et al. (2019)

Dictamnus dasycarpus FTIR Cultivation ages discrimination SD Liu et al. (2020)

Eurycoma longifolia FTIR Extraction process optimization SD/2D-IR Adib and Abdullah (2018)

Fritillaria thunbergii FTIR Adulteration identification SNV+2D-IR+SIMCA Chen et al. (2018)

Ganoderma FTIR Index compounds analysis SD/2D-IR Choong et al. (2011)

Gardenia jasminoides FTIR Thermal process optimization SD-IR/2D-IR/PCA Chen et al. (2016)

Ligusticum FTIR Processing discrimination Smoothing+SD+2D-IR Guo et al. (2016)

Lonicera japonica FTIR Species discrimination SD/2D-IR Yan et al. (2016)

Lycium barbarum FT-NIR Geographical origins discrimination 2D-IR Lu et al. (2008)

Panax ginseng FTIR Cultivation ages discrimination SD/WT+2D-IR Zhan et al. (2007)

FTIR Species discrimination SD-IR+2D-IR Lu et al. (2008)

FTIR Cultivation types and ages discrimination BC/SD+SIMCA/2D-IR Zhang et al. (2010)

Prunus FTIR Processing discrimination 2D-IR/HCA Cheng et al. (2017)

Rheum ATR-FTIR Stir-baking process optimization SNV+2D-IR/PCA Yang et al. (2020)

Rhodiola crenulata FTIR Species discrimination BC/Norm+SD/2D-IR/PCA/PLS-DA Tang et al. (2020)

Salvia miltiorrhiza FTIR Chemical characterization demonstration SD Xu et al. (2013)

Scutellaria baicalensis FTIR Optimal harvesting season determination SD Xu et al. (2013)

Patent herbal medicines FTIR Adulteration identification SD/2D-IR Miao et al. (2017)

Patent herbal preparations FTIR Quality control standard analysis SD/2D-IR Chen et al. (2007)
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on predefined distributions and model assumptions, not properly

applied to every kind of data (Breiman, 2001). Digitized modeling

can be improved and perfected continuously to expand the scope of

application, building more robust models with higher accuracy.

3.3.1 Univariate analysis
Univariate analysis is a conventional method that is built from

characteristic peaks. Peaks are observed to analyse differences or

establish calibration curves, which achieve qualitative or

quantitative goals. The selection of one or more fingerprint

characteristic peaks or the transformation of band intensity

(intensity ratios, etc.) from MIR or Raman spectroscopy will help

form a spectral input matrix for comparison and analysis (Li and

Church, 2014; Peng et al., 2015; Byrne et al., 2016).

3.3.2 Multivariate analysis
Multivariate analysis with more information, which helps to dig

out the relation between spectra and substance, has achieved

acceptable results in classification and detection (Jan et al., 2015;

Nturambirwe and Opara, 2020). There are two main categories of

machine learning (ML), unsupervised and supervised learning

(Kavakiotis et al., 2017). In the quality and safety inspection of

herbs using vibrational spectroscopy techniques, principal

component analysis (PCA), linear discriminant analysis (LDA),

soft independent modeling of class analogy (SIMCA), partial least

squares (PLS), support vector machine (SVM), and random forest

(RF) are often used (Jimenez-Carvelo et al., 2019; Kucharska-

Ambroej and Karpinska, 2019; Zhang et al., 2020). Validation and

prediction are required to verify models’ performance and general

applicability (Ralbovsky and Lednev, 2020).

Undoubtedly, distinguishing and extracting useful information

from a large amount of spectral data is the key to building an ideal

model. With the development of computational systems, a new

paradigm named deep learning (DL) provides more general models

for detection than shallow approaches. DL network performance is

better in feature mining, which is more suitable for complicated

data with unclear features. DL is a representation-learning method

that autonomously learns relevant and deep features of input

information, showing a great preponderance of extracting the

features among complex data (Zhou et al., 2019; Lussier et al.,

2020). Artificial neural network (ANN) (Liu et al., 2019),

convolutional neural network (CNN) (Dong et al., 2019), back

propagation neural network (BPNN) (Yang et al., 2018), and

probabilistic neural network (PNN) (Du et al., 2017) have been

applied in the field of herbs with satisfactory performance.

In addition, new ideas, like the conversion of spectra and data

fusion, are proposed as processing strategies for data mining, which

contributes to improving the results. Spectroscopy-image

conversion is a popular idea to promote smart identification. An

innovative chemometric modeling-free near-infrared barcode

strategy was proposed by comparing the percentage of nonzero

overlap between standard samples’ barcodes and samples needed to

test (Dong et al., 2020). The spectral matrix was transformed into an

image, and data augmentation techniques expanded the sample

scale (Dong et al., 2019). The similarities in images lead to
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misjudgements. More representative samples are needed to

acquire more feature information in further research.

Data fusion is divided into low-, mid-, and high-level (Wu et al.,

2018). The low-level fusion contains a lot of useless or even

interfering information, which hinders the synergistic effect of the

multi-sensor information fusion strategy. Usually, we at least

employed the mid-level fusion method to obtain satisfactory

results. Data from different spectrometers, such as NIR and MIR

(Fu et al., 2019; Pei et al., 2019; Zhou et al., 2020), FTIR and UV-vis

(Wang et al., 2020), MIR and Raman (Wong et al., 2015; Wang

et al., 2020), or various experiment materials collected from the

same plants, such as with and without tunic (Biancolillo et al., 2020)

and different botanical parts with its classifiers processing model

(Liu et al., 2020) were merged to prove the feasibility of data fusion.

Meanwhile, Both IR and Raman spectroscopy can be combined

with imaging technology to obtain pixel-level image features. Data

analysis can be done by combining spectra and image information

to characterize samples more comprehensively (Flach and Moore,

2013; Araujo et al., 2018).
4 Quality and safety inspection of
herbal raw materials

4.1 Species discrimination

Authenticity is the primary importance, which is the first step in

the whole process of herb production. Herbs that belong to the same

genus, even the same family, have a similar appearance. However,

the value of herbs from various species is definitely different. The

species ’ characteristics make it impossible to be used

interchangeably. The difficulty of species discrimination causes

the phenomenon of counterfeit products and the misuse of raw

materials. IR and Raman techniques, the feature bands presented in

the spectra can be analysed to identify species.

Species discrimination using NIR reflectance spectroscopy was

dated back to 1999 in Ginseng radix et rhizome (Woo et al., 1999b).

The identification of F. thunbergia Miq from the genus Fritillaria

(Meng et al., 2015), peach and apricot kernels (Kajino et al., 2021),

the extracts of Ganoderma lucidum and Vesicolor (Shao et al., 2015),

and Eleutherococcus senticosus from other eight herbs (Lucio-

Gutiérrez et al., 2011) using NIR spectra was achieved. High

discrimination accuracy in Ginseng (Yap et al., 2007) and Lingzhi

species (Wang et al., 2019) was obtained based on FTIR combined

with ML. SVM correctly discriminated against two species by the

MIR and NIR model (Chen et al., 2020a). Gao et al. (2005)

illustrated the feasibility of identifying different species of

Fritillariae bulbus by convolution transform visualization

fingerprint. Detection techniques, applications, and specific data

processing methods of different herb species are concluded and

listed in Table 3.

The preliminary conclusion is drawn that the classification

accuracy decreases with increasing categories, and the close

geographical relationship makes it more challenging to

discriminate. There are two main concerns to expanding the
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acceptance of IR and Raman spectroscopy techniques. One is model

transferring capability (Li et al., 2013), and another is the

miniaturization of devices (Lin et al., 2020). Chen et al. (2017)

compared the benchtop and hand-held FT-IR equipment, pointing

out that hand-held spectrometers had a promising prospect.
4.2 Geographical origins discrimination

Geographical origins are the second factor needed to be

considered after species. Herbs are directly influenced by growing

conditions like climate, soil, and altitude. The quality disparity of

herbal raw materials from different origins exists. Where herbs are

widely recognized with the highest value is called a geo-authentic

area, and consumers appreciate herbs from the geo-authentic area.

In this sense, geo-herbalism becomes the comprehensive evaluation

criterion of excellent-quality herbs. Identifying the original source is

beneficial to ensure quality consistency and avoid counterfeiting. IR

and Raman spectroscopy techniques present the complete chemical

profiles of herbs, paying more attention to the overall

internal components.

Woo et al. (1999b) determined the geographical origins of

Astragali radix, Ganoderma, and Smilacis rhizome with NIR

reflectance spectroscopy in 1999. In the same year, Woo et al.,

(1999c) classified the cultivation areas of Ginseng radix et rhizoma

using NIR and Raman techniques. From then on, scholars tried to

achieve origins discrimination based on IR and Raman. Studies about

the origin discrimination of herbs, like Salviae miltiorrhizae radix et

rhizoma, Paridis rhizoma, and Notoginseng, have been carried out

combined with various pattern recognitionmethods, including classic

algorithms and innovative algorithms (Woo et al., 2005; Li and Qu,

2014; Liu et al., 2015; Han et al., 2016; Hui et al., 2018; Lai et al., 2018;

Yang et al., 2018; Zhu et al., 2018; Fu et al., 2019; Yang et al., 2019).

Detailed information containing techniques and data processing is

listed in Table 3, and the qualitative analyses of herbal raw materials

are summarized. Spectral correlation coefficient and technique for

order preference by similarity to ideal solution (TOPSIS) method

were used to evaluate the quality from different producing areas of

Cordyceps to find the most suitable growing region (Sun et al., 2019).

Non-medicinal parts can also be used for origin identification.

Different botanical parts of Gentianae radix et rhizoma were

compared, and researchers found that leaves were the optimal

material for geographical characterization (Wang et al., 2018; Liu

et al., 2020). The findings illustrate the differences between medicinal

and non-medicinal parts at the spectrum level.

The evolution of equipment produces more possibilities in

classification. From the articles we searched, the prediction

accuracy of IR or Raman spectroscopy techniques reached an

acceptable level compared with chromatography methods (Chen

et al., 2008; Wang et al., 2020). With unique advantages in

heterogeneous sample detection due to the depth-profiling

function, FTIR-PAS was first employed in Cordyceps sinensis,

coupled with PNN (Du et al., 2017). Portable spectrometers are

developing. FT-NIR and MicroNIR spectrometer succeeded in

identifying four origins of Salvia miltiorrhiza. MicroNIR
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spectrometers had worse performance due to limited spectral

information (Sun et al., 2020).
4.3 Grade discrimination

The grade of herbs is further subdivided according to their

quality discrepancies, which depend on their growing conditions

(wild-grown or cultivated, cultivation age, etc.) or parts. The

difficulty of grade classification lies in the current form of herbs.

The herbal raw materials are processed into powder before they

enter the markets. Gad and Bouzabata (2017) failed to discriminate

Turmeric powder bought from different commercial stores with

various grades using FTIR. The possible reason is FTIR spectra

aren’t sensitive to the same species whose phytochemical

constituents are the same but in different concentrations.

Parts discrimination against Ginseng is meaningful from both

academic and commercial points of view. The determination of

powdered products is still a problem needed more improvements.

DR-NIR spectra were employed to classify different parts of Ginseng

powder, considering the granularity of the powder. ATR-FTIR

spectra were analysed to reveal the difference from molecular

functional groups, whose score plots of PCA disclosed a regular

and gradual difference in each part (Wu et al., 2011). After suitable

normalization methods, ATR-FTIR spectra showed potential in this

aspect (Lee et al., 2017). To distinguish wild-grown and cultivated

herbs, penalized discriminant methods (Zhu and Tan, 2016) and

Adaboost M1 algorithm (Chen et al., 2021) were proposed, both of

which had higher computational efficiency and classification

accuracy after data pre-processing and variables selection.
4.4 Adulteration detection

Low-quality herbs can be pretended to be high-quality when the

limited supply cannot meet the increasing demand. Driven by

benefit, illegal traders disobey laws to make counterfeits. The

adulteration of herbs involves intentionally adding other low-cost

or non-pharmaceutical raw materials with a similar appearance to

replace or remove certain ingredients without the buyers’

knowledge. The abuse of adulteration leads to severe problems,

such as unfair trade competition, public health risks, and social

issues. Promising analytic methods are needed to identify the

counterfeits, which avoids commercial fraud and guarantees

medicine safety.

The application of vibrational spectroscopy techniques in

adulteration detection is summarized in Table 3. The functional

group regions (4000-1300 cm-1) have better capability to detect

authentic Astragali radix (Zhang and Nie, 2010). The inferiority of

unsupervised methods as indicated in either MIR or NIR

spectroscopy (Liu et al., 2019; Yang et al., 2020) due to poor

capability to extract effective information. Data pre-processing,

variables selection, IR spectroscopic tri-step identification

approach (Chen et al., 2015; Chen et al., 2018), and more

supervised algorithms (Shao et al., 2016; Chen et al., 2019; Zhao
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TABLE 3 Summary of qualitative analyses of herbal raw materials based on IR and Raman spectroscopy.

Herbal plants Technique Application Data processing Ref.

Ganoderma DR-FT-NIR Geographical origins discrimination RF Lai et al. (2018)

NIR Geographical origins discrimination SD+PCA/MD/PLS-DA Woo et al. (1999b)

DR-NIR Geographical origins discrimination MSC/SNV/FD/SD+PCA/PLS-DA/MD Chen et al. (2008)

FTIR Wild-grown and cultivated
discrimination

SNV+PLDA/Elnet/PCA/PLS-DA Zhu and Tan (2016)

DR-FT-NIR Species discrimination PCA/PLS-DA Shao et al. (2015)

ATR-FTIR Species discrimination SD+RF/SVM/PLS-DA Wang et al. (2019)

Astragalus
membranaceus

FTIR Adulteration identification MC/Norm/MSC/FD+PCA/LDA/KNN/PLS-DA Yang et al. (2020)

FTIR Adulteration/Geographical origins
discrimination

BC/Norm+MDPLS-DA Zhang and Nie
(2010)

SERS Authentic and counterfeit medicine
identification

PCA-LDA Lin et al. (2018)

FTIR Geographical origins discrimination SF/BC/DN/MSC+OPLS-DA/BP-ANN Li et al. (2016)

Panax ginseng NIR Geographical origins discrimination SNV/FD+PLS-DA/SIMCA/SPA-LDA Chen et al. (2020b)

FT-NIR Geographical origins discrimination MSC+SD+NIR barcode method Dong et al. (2020)

NIR/
FT-Raman

Geographical origins discrimination SD+PCA/PLS-DA Woo et al. (1999c)

DR-NIR/
ATR-FTIR

Parts discrimination FD+PCA Wu et al. (2011)

FTIR Cultivation ages and parts
discrimination

Norm+VIP+PLS-DA Lee et al. (2017)

FTIR Cultivation ages and species
discrimination

BC/Norm+PLS-DA Kwon et al. (2014)

NIR Species discrimination SD+WD/RV/MD/SIMCA Woo et al. (1999a)

FTIR Species discrimination BC/SD+PCA Yap et al. (2007)

Panax notoginseng NIR Adulteration identification SNV+Relief-based feature selection+
data-driven SIMCA

Chen et al. (2020a)

NIR Adulteration identification SNV/FD/SD+PCA Chen et al. (2019)

NIR Adulteration identification Smoothing/SNV/MSC/FD/SD/CWT+HCA/PCA/PLS-DA/
ANN/SVM/ELM

Liu et al. (2019)

NIR Geographical origins discrimination Norm+SD+ CNN Dong et al. (2019)

FT-IR/NIR Geographical origins discrimination SD/SNV/SG+data fusion+RF Zhou et al. (2020)

NIR Geographical origins discrimination SNV/MSC/FD/SD+PLS-DA/SIMCA Hui et al. (2018)

FTIR Geographical origins discrimination BC/SF/Norm+SDA Liu et al. (2015)

Salvia miltiorrhiza FT-NIR Geographical origins discrimination SNV/MSC/SG/FD+PLS-DA Sun et al. (2020)

NIR Geographical origins discrimination MSC/SNV/FD/SD/ND/SG+PLS-DA Wang et al. (2020)

NIR Geographical origins discrimination SG/SD+local variable selection+PCA/SIMCA/PLS-DA Zhu et al. (2018)

NIR Geographical origins discrimination WD-IMA/KNN/LDA/QDA Li and Qu (2014)

Lonicera japonica FT-IR Species discrimination BC/SD/SG+PCA/LDA Chen et al. (2017)

NIR Species discrimination SNV/SD/ND+PCA/SIMCA Li et al. (2013)

Fritillaria
thunbergia

NIR Species discrimination Factorization method Meng et al. (2015)

DR-NIR Species discrimination Norm+CA+
convolution transform visualization similarity

Gao et al. (2005)

(Continued)
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et al., 2019), which aimed at reducing uncorrelated spectral

information, were studied to reach satisfactory results, from

adulterated binary samples to adulterated quaternary samples

(Nie et al., 2013; Liu et al., 2019). We notice that it is difficult to

transfer the models based on small samples directly to other

samples because of the limitations of the representativeness of

small samples and analytical techniques, as well as the various

presence of adulterated chemical components (Li et al., 2020).
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A silver nanoparticle wiper as a SERS substrate based on filter

paper was made to distinguish nine kinds of dyes adulterated in

herbs (Dan et al., 2015). The gold nanorods SERS-based approach

functionalized with mono-6-thio-cyclodextrin (HS-b-CD)

enhanced the detection capability by strengthening the chemistry

interactions (Wu et al., 2018). The fabricated substrate and

chemometrics methods (Lin et al., 2018) can improve detection

sensitivity. Furthermore, Applying the portable substrate and
TABLE 3 Continued

Herbal plants Technique Application Data processing Ref.

Gastrodia elata NIR Wild-grown and cultivated
discrimination

SNV+Relief +PCA/PLS-DA/ELM/Adaboost.M1 Chen et al. (2021)

FT-NIR Adulteration and geographical origins
identification

SD/SNV+OCPLS/PLS-DA Li et al. (2017)

Gentiana FTIR Geographical origins discrimination MSC/SNV/FD/SD/ND/SG+data fusion+PCA/PLS-DA Liu et al. (2020)

FTIR Geographical origins discrimination BC/SD/SG/Norm+SVM/PLS-DA Wang et al. (2018)

Poria cocos NIR Geographical origins discrimination SDD+PCA+CARS/MC-UVE/SPA/LPG+
PLS-DA/FDA

Yuan et al. (2018)

Paris polyphylla FTIR Species and geographical origins
discrimination

MSC/SNV/SG/WT+VIP+PCA/PLS-DA Yang et al. (2019)

FT-IR/NIR Geographical origins discrimination SNV/FD/SD+PCA/RFE/Bo+PLS-DA/RF+data fusion Pei et al. (2019)

Chaenomeles
speciosa

NIR Geographical origins discrimination FD/SD/SNV/MSC+PLS-DA/HCA Han et al. (2016)

Acanthopanax
senticosus

NIR Species and adulteration discrimination SNV/SD+PCA/SIMCA/PLS-DA Lucio-Gutiérrez et al.
(2011)

Angelica sinensis NIR Geographical origins discrimination SD+SIMCA Woo et al. (2005)

FT-NIR/MIR Geographical origins discrimination PCA/LDA/PLS-DA/MWPLS-DA Fu et al. (2019)

Corydalis FT-NIR/MIR Adulteration identification PCA/LDA/PLS-DA/MWPLS-DA+data fusion

Curcuma FTIR Comprehensive quality control SNV+PCA/HCA Gad and Bouzabata
(2017)

Notopterygium
incisum

NIR/MIR/
E-nose

Species discrimination Norm+PCA/SVM Chen et al. (2020a)

Allium sativum ATR-FTIR Geographical origins discrimination PLS-DA+data fusion (SO-PLS-LDA/SO-CovSel-LDA) Biancolillo et al.
(2020)

Epimedium NIR Geographical origins discrimination FD/SG+DA/BPNN/KNN/SVM Yang et al. (2018)

Prunus NIR Species discrimination SD/SG/SNV+PCA/PLS-DA Kajino et al. (2021)

Eucommia ulmoides ATR-FTIR/
UV-vis

Geographical origins discrimination FD/SD/TD/MSC/SNV/SG+PLS-DA/
GA-SVM/HCA+data fusion

Wang et al. (2020)

NIR Species discrimination SNV+PCA/FDA Lin et al. (2020)

Lilium NIR Species discrimination MSC/SNV/SG/FD/SD+RF Huang et al. (2020)

Cordyceps sinensis FTIR-PAS Geographical origins discrimination SG+PCA+PNN Du et al. (2017)

Ganoderma,
Lycium barbarum,
Lonicera japonica,
and Zanthoxylum

SERS Dye adulteration identification Peaks analysis Dan et al. (2015)

Daemonorops draco SERS Dye adulteration identification Peaks analysis Wu et al. (2018)

Lonicera japonica,
Chrysanthemum,
and Rosa rugosa

SERS Dye adulteration identification Peaks analysis Liu et al. (2018)
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Raman spectrometer is anticipated to achieve in situ detection (Liu

et al., 2018).

As we refer to above, adaptive models’ establishment faces

challenges in the complex composition of adulteration. In

practical application, we need to judge whether the herbal

medicine is adulterated and what the impure substance is the

next step. Hence, we recommend developing untargeted

identification that is advantageous for solving authentication

problems (Li et al., 2017; Chen et al., 2020a). Expansion of the

samples’ scales and optimization parameters of models are effective

means to learn more features from the target class.
4.5 Critical quality attribute detection

The influence of the factors mentioned above on the quality of

herbs can be basically reflected in critical quality attributes. Critical

quality attribute detection, linked to efficacies, has been subjected to

more application prospects. The significance of detection is to

ensure that the quality of herbs meets the standards for entering

the market or has a uniform content consistent in the

manufacturing process. We divide critical quality attributes into

three categories, active medicinal ingredients, bioactive

components, and other regulated indices (moisture, ash, etc.).

The ingredients in herbs, as one of the qualitative evaluation

indexes, are listed in the pharmacopeia. Conventional analysis

methods require strict extraction and purification. Other

regulated indices that illustrate quality, as well as purity, need

complicated and laborious operations. In many cases, IR and

Raman spectroscopy techniques have been applied successfully,

regarded as green and rapid technologies without reagent

contamination, which is practical for achieving digital detection.

More than 80% of the studies adopted NIRS, demonstrating the

advantages of NIRS in multi-component quantitative detection. PLS

is the most popular in multi-component quantitative detection

because it can reveal information for the dependent variable as

well as reduce the dimensions of the spectral matrix. NIRS-PLS

model was applied successfully in the prediction of the total ash and
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acid-insoluble ash of Prunellae spica (Rao and Xiang, 2009),

glycyrrhizic acid of Puerariae lobatae radix (Mohri et al., 2009),

active medicinal ingredients of Astragali radix (Zhan et al., 2017),

Paeoniae radix alba (Luo et al., 2008), Amomum villosum (Guo

et al., 2021), Morindae officinalis radix (Hao et al., 2020), Dipsaci

radix (Du et al., 2017), and Notoginseng (Chen and Sørensen, 2000).

These studies also further explain the factors that affect the content

of the detection indexes. But sometimes NIRS-PLS caused over-

fitting and low precision using full-wavelength spectra (Yang et al.,

2003; Yan et al., 2020). The possible reasons could be (1) a limited

number of samples. The range of component content distribution is

narrow, which results in those differences among various quality are

not significant enough to train the robust linear models. (2) low

concentration of target components. NIRS proved unsuitable for

content lower than 0.1%. Mid-infrared spectroscopy (MIRS) was

regarded as a better predictor for analysing low concentration and

NIRS utilized the complementarity (Liu et al., 2020).

Due to the fingerprint regions of MIRS and Raman spectroscopy,

detection can also be achieved by analysing characteristic peaks. Pei

et al. (2008) used the correlation analysis in Epimedii folium based on

the peak at 1259 ± 1 cm-1. The curcumin weight ratio formula was put

forward based on band intensity ratios of Raman spectroscopy,

analysing different layers of turmeric roots (Peng et al., 2015). The

peak intensity at 727 cm-1 of berberine was observed in Coptis chinensis

and Phellodendron amurence using SERS (Zhao et al., 2014). TLC-

SERS captured the detectable signals, Raman intensity (I708/I728), which

served as the evaluation index in Coptidis rhizoma to discriminate and

determine berberine and coptisine (Gu et al., 2018).

Table 4 displays a series of studies regarding quantitative

detection that has been carried out by the IR and Raman

spectroscopy techniques. The information about techniques,

target ingredients, and data processing of concrete herbal plants is

available in Table 4. Bioactive components, like polysaccharides

(Chen et al., 2012; Bu et al., 2013; Ma et al., 2018), flavonoids (Lau

et al., 2009; Arslan et al., 2018), alkaloids (Chan et al., 2007; Qi et al.,

2018), and antioxidant activity (Wong et al., 2015; Yi et al., 2020),

extracted from herbs contribute to sensory quality and efficacy,

evaluated by IR and Raman spectroscopy techniques. Pre-
TABLE 4 Summary of quantitative analyses of herbal raw materials based on IR and Raman spectroscopy.

Herbal plants Technique Target ingredients Data processing Ref.

Ganoderma MIR/NIR Polysaccharide VN/BC+ iPLSR/mwPLSR Ma et al. (2018)

NIR Polysaccharides, triterpenoids MSC/SNV/FD/SD+PLSR/
RBF

Chen et al.
(2012)

Astragalus
membranaceus

MIR/NIR Astragaloside IV, total astragalosides SG/FD/SD/MSC/SNV
+PLSR+data fusion

Liu et al. (2020)

FT-NIR Calycosin-7-glucoside, astragaloside SG/FD/SD/MSC/SNV/ND
+PLSR

Zhan et al.
(2017)

Panax ginseng NIR Panaxadiol saponins, panaxatriol saponins,
ginseng polysaccharide

MSC/SG/ND+PLSR Bu et al. (2013)

FT-NIR Total main ginsenosides OSC/FD+PLSR Huang et al.
(2011)

(Continued)
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TABLE 4 Continued

Herbal plants Technique Target ingredients Data processing Ref.

Panax notoginseng NIR Ginsenosides Rg1, Re, Rb1, Rd, total ginsenosides MSC/SNVD+PCA/PLSR Chen and
Sørensen (2000)

NIR Panax notoginseng saponins R1, ginsenosides Rg1, Rb1, Rd, total Panax
notoginseng saponins

FD/SD/VN/SLS/MMN/
MSC/COE+PLSR

Yang et al.
(2003)

Glycyrrhiza NIR Glycyrrhizin MSC/SNVD+PCA/PLSR Chen and
Sørensen (2000)

NIR Lliquirtin, glycyrrhizic acid FD+VIP/CARS/MC-UVE/
PSO/GA+PLSR

Zhu et al. (2018)

Pueraria lobata NIR Glycyrrhizic acid FD/SD+PLSR Mohri et al.
(2009)

NIR Puerarin, daidzin, total isoflavonoid SD/TD/DT/SNV/MSC/SG
+PLSR

Lau et al. (2009)

FT-Raman Total phenolic content, antioxidant capacities Norm+PLSR Wong et al.
(2015)

Epimedium NIR Epimedin A, epimedin B, epimedin C, icariin,
moisture contents

FD/SG+GA+PLSR/SVM Yang et al.
(2017a)

FTIR Total flavonoids, total content of epimedin A, epimedin B, epimedin C and
icariin

Correlation analysis Pei et al. (2008)

Paeonia lactiflora NIR Paeoniflorin, albiflorin, benzoylalbiflorin MSC/SG/FD/SD/TD
+MPLS/PLSR/PCR

Luo et al. (2008)

Poria cocos NIR Polysaccharides, antioxidant activity (DPPH, FRAP, ABTS) MSC/SNV/Smoothing/FD/
SD+
PSO/GA/CARS+PLSR

Yi et al. (2020)

ATR-FTIR Poricoic acid A, dehydrotrametenolic acid,
dehydropachymic acid, pachymic acid,
dehydrotrametenolic acid

SG+PLSR Wang et al.
(2020)

Lonicera japonica NIR Chlorogenic acid, isochlorogenic acid A, isochlorogenic acid C FD/SD/MSC/SLS/MMN/
VN/COE/SG+
PLSR/ANN

Jintao et al.
(2021)

Salvia miltiorrhiza NIR Tanshinone II A, cryptotanshinone, tanshinone I, salvianolic acid B,
antioxidant activity

SNV/MSC/SG/FD+ iPLS/
Bi-PLS/CARS+PLSR

Sun et al. (2020)

Prunella vulgaris NIR Total ash, acid-insoluble ash COE/SLS/VN/MMN/MSC/
FD/SD+PLSR

Rao and Xiang
(2009)

Coptis FT-IR/NIR Eight alkaloids Smoothing/MSC/SNV/FD/
SD+PLSR+
data fusion

Qi et al. (2018)

TLC-SERS Four protoberberine alkaloids Peaks analysis Gu et al. (2018)

Phellodendron
chinense

NIR Berberine, total alkaloid MSC/SNV/SG+PLSR Chan et al.
(2007)

Gentiana FTIR Gentiopicroside, total of four iridoids FD/SD/SNV/MSC+PLSR Qi et al. (2016)

Verbena officinalis NIR Verbenalin, verbascoside FD/SD+PLSR Pezzei et al.
(2017)

Typha NIR Typhaneoside, isorhamnetin-3-O-glucoside MSC/SNV/WDS/SG
+CARS+PLSR

Sun et al. (2019)

Rheum NIR Chrysophanol, aloe-emodin, rhein, emodin,
physcion

SG/VN/MMN/MSC/SLS/
COE/FD/SD+
PLSR/ANN

Xue et al. (2018)

Chrysanthemum
morfolium

NIR Absolute contents of six Q-markers with anti-inflammation activity SNV/MSC/DT/oneDC/
Smoothing+
PLSR/RF/nu-SVR/BPANN

Ding et al.
(2016)

(Continued)
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treatment, feature selection, non-linear regression methods, and

data fusion were tried to improve prediction results. The SVM

model presented good generalization performance for Epimedii

folium, with its R2 of more than 0.9 after extracting the feature

wavelengths by GA (Yang et al., 2017a). The models built by PLSR

and ANN were compared to predict the medicinal ingredients in

rhubarb samples (Xue et al., 2018) and Lonicerae japonicae flos

(Jintao et al., 2021), concluding that models preferred for different

components were not the same. There is no doubt that the use of

portable spectrometers promotes the application of IR (Wang et al.,

2017) and Raman spectroscopy (Wong et al., 2015).

In short, different strategies should be selected according to

purposes and requirements in production practice (Yan et al.,

2021). Spectroscopic techniques have the outstanding advantage of

simultaneous multi-component analysis. The rapid determination of

herbal raw materials using IR and Raman spectroscopy techniques

has high practical value in the pharmaceutical industry. Meantime,

these techniques provide reliable technical support for the evaluation
Frontiers in Plant Science 15
of the critical quality attributes and on-line measurements during the

production process.
5 Processing quality control

Processing is an indispensable procedure before herbs enter the

market, aiming at enhancing efficacy and reducing side effects. The

internal compounds of herbs are usually diverse and ambiguous.

The process analytical technology (PAT) guidance was issued by the

American Food and Drug Administration in 2004 for processing

quality control. PAT uses a series of tools and means to realize real-

time analysis and feedback control during industrial production to

ensure a controllable production process and optimal product

quality. Figure 4 shows the typical production processes of herbs.

The whole process involves multiple unit operations. There are four

methods to monitor critical process parameters (CPPs): off-line, at-

line, on-line, and in-line (Cortés et al., 2019).
TABLE 4 Continued

Herbal plants Technique Target ingredients Data processing Ref.

Lycium barbarum FT-NIR Total flavonoid content, total anthocyanin content,
total carotenoid content, total sugar, and total acid

SNV/MSC+Si-PLS/Bi-PLS/
GA+PLSR

Arslan et al.
(2018)

Andrographis
paniculata

NIR Andrographolide, deoxyandrographolide,
dehydroandrographolide, neoandrographolide,
moisture, ash content, and alcohol-soluble extract

SNV/MSC/FD/SD/SG
+PLSR

Lai et al. (2018)

Codonopsis NIR Polysaccharide SNV/MSC/FD/SG+CARS/
SPA/iPLS+PLSR

Wang et al.
(2017)

Dipsacus asper FT-NIR Loganic acid, chlorogenic acid, caffeic acid,
loganin, isochlorogenic acid B, isochlorogenic acid A, isochlorogenic acid C,
asperosaponin VI

SNV/MSC/FD/SG+PLSR Du et al. (2017)

Amomum villosum FT-NIR Camphor, borneol and bornyl acetate SNV/MSC/FD/SD/SG
+PLSR

Guo et al.
(2021)

Prunus mume FT-NIR Neochlorogenic acid, chlorogenic acid, rutin, hyperoside and isoquercitrin,
quercitrin, quercetin and kaempferol

MSC/SNV/FD/SD/SG
+PLSR

Yan et al. (2020)

Morinda officinalis FT-NIR Fructose, glucose, sucrose, fructooligosaccharides
and iridoid glycosides

MSC/SNV/FD/SD/SG
+PLSR

Hao et al.
(2020)

Paeonia lactiflora DR-NIR Moisture content, albiflorin, paeoniflorin MSC/SNV/Norm+HCA-
RC/SSC+PLSR

Ma et al. (2020)

Zingiber officinale FT-NIR Zingerone, 6-gingerol, 8-gingerol, 6-shogaol, 10-gingerol SNV/MSC/FD/SD/SG
+PLSR/GA-CP-ANN

Yan et al. (2021)

Curcuma Raman Curcuminoids BC+linear fitting Peng et al.
(2015)

Coptis and
Phellodendron

SERS Berberine Peaks analysis and linear
fitting

Zhao et al.
(2014)
FIGURE 4

Typical production processes of herbs.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1128300
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2023.1128300
Traditionally, the endpoint of these processes relies extensively

on empirical experience, conventional off-line analysis methods, or

fixing the process parameters like temperature, time, and solvent

concentration. Moreover, herbs as natural products have batch-to-

batch variability. It cannot ensure product quality and batch-to-

batch consistency with identical process settings. Vibrational

spectroscopy techniques can realize on-line, real-time, and rapid

detection of the internal quality of herbs during the processing,

making the operation more controllable and understanding.

To comprehensively understand and optimize the procedures,

2D-IR is applied to explore the chemical mechanism by analysing

the characteristic peaks of compounds (Chen et al., 2007; Guo et al.,

2016; Adib and Abdullah, 2018). For example, the temperature-

perturbation 2D-IR spectra can be applied to determine and

optimize parameters during thermal processing, knowing the

change rules of compounds in different stages (Chen et al., 2016;

Wu et al., 2019; Yang et al., 2020).

NIRS has become a hot research topic in the field of process

analysis because of its characteristics of fast, non-destructive, and

pollution-free analysis. The NIR light has good transmission

characteristics in optical fiber, through which the collected signals

can be transmitted to spectrometers far away from the production site

in real-time. Experiments were conducted on a laboratory scale,

verifying the NIR for detecting CPPs. The extraction (Wang et al.,

2015; Hu et al., 2017; Li et al., 2018; Lyu et al., 2018; Zhong et al.,

2018; Hua et al., 2021) and purification processes (Luo et al., 2017;

Huang and Qu, 2018) based on the NIRS-PLS model, which showed

the application potential of NIR in PAT analysis. The relationship

between NIRS and CPPs content was more complicated, and non-

linear prediction models, such as SVM, ANN, and CNN, may be

more suitable (Qu et al., 2004; Liu et al., 2017). Usually, the strong

absorption peak of water is usually removed to eliminate the negative

impact. Gao et al. (2021) established a reconstructed spectrum based

on PCA to monitor the salvianolic acid B in the water precipitation

process of Salvia miltziorrhiza bge. They regarded water as a probe to

understand better and visualize the extraction process. The

unreliability graph methodology was innovatively proposed as a

release strategy in tanshinone extract powders after the

establishment of NIRS-PLS model (Shi et al., 2019).

So far, most PAT research has been conducted on lab-scale

equipment where some experimental conditions are easy to control.

Due to the complexity of the actual production processes, further

research is needed to transfer models from the laboratory to the

factory and to set up experimental field facilities. Recently, some

scholars collected samples from the production line, which is more

consistent with the actual production (Zhao et al., 2020). Two

hundred samples were collected in the product line of Tanreqing

injection to determine the CPPs. Gaussian process model achieved

better performance than PLS and LS-SVM and showed the best

interpretability (Li et al., 2019). Yang et al. (2017b) designed an

external loop to make extracts of Flos Lonicerae Japonicae flow into

NIRS on-line measurements. A new algorithm of synergy interval

PLS with genetic algorithm (Si-GA-PLS) was proposed for

modeling, the R2 of 0.9561 for total acid reached. The NIR

sensors installed in the production line automatically and

continuously measured the CPPs (Huang and Qu, 2011; Zhang
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et al., 2019). The five main saponins in the elution process for purity

were monitored using CNN based on in-line NIR. CNN model

obtained better results than PLS models with the ‘automatic pre-

processing’ functions of the convolutional layer (Yan et al., 2020).

As for Raman spectroscopy technique, Jin et al. (2020) first trained

the RS-CARS-PLS model to monitor the simulated extraction

process for Wenxin granule manufacture. However, this method

had a relatively high LOD, which could not detect saccharides with

low concentration.

PAT improves the understanding of the production process and

products and the control during the production process, ensuring

the quality of products. On-line or in-line monitoring with

vibrational spectroscopy techniques is more practical for the

quality control of the process. NIRS technique is considered a

promising method in PAT analysis because it significantly saves

workforce and time, owing to its good multi-component prediction

performance and fiber transmission characteristics. NIRS-PLS

model meets the basic requirements in assays. Non-linear models

can achieve higher accuracy while increasing the computational

cost. Therefore, PLSR is more practical when we care more about

detecting speed than high accuracy.
6 Quality and safety inspection of
patent herbal products

Patent herbal products (PHPs) refer to patent herbal medicines for

treatment and herbal nutraceuticals for health care. Herbs are usually

used as decoctions by boiling them with water. Decoctions are easier to

be absorbed while not convenient to carry and store. The PHPs are

developed instead of decoctions. PHPs with easy-to-use characteristics

contain pills, granules, and preparations used as clinical medicines or

dietary supplements, which breaks through the traditional treatment

way of herbs and expands the application scope. PHPs are made up of

multiple herbal extracts and excipients. The quality and safety of PHPs

constitute a significant concern to ensure their efficacy.
6.1 Index components detection

Knowing the index components of PHPs can evaluate the

quality and provide a reference for dosage. Spectroscopic

techniques are applied as rapid, non-invasive methods, requiring

minimal sample pre-treatment. The successful distinguishing of

thirty-six commercial brands of Ganoderma lucidum (Sun et al.,

2001) and consistent characteristic peaks in PHPs compared with

individual herbs (Bansal and Reddy, 2018) based on FTIR

illustrated the evaluation can be done. Chen et al. (2016) adopted

FTIR microspectroscopic imaging to collect pixel spectra. The

direct and simultaneous recognition of multiple organic and

inorganic ingredients in PHPs was achieved by comparing the

reference spectrum and calibration set.

NIRS-PLS model was employed to determine two different

sample presentations originating from a turmeric capsule and

powder, obtaining ideal results in powder samples (Kasemsumran

et al., 2014). The concentration of Coptis chinensis in suppositories
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was also predicted (Teraoka et al., 2012). Three presentations, capsule

shells, contents, and intact capsules, of Yaobitong capsule, were

analysed using NIRS-LSSVM model (Si et al., 2021). MIRS-PLS

model was used to predict feeding levels of PHPs by detecting the

excipient content (Guo et al., 2016) as well as the antioxidant activity

of mixed herbal infusions (Venetsanou et al., 2017). Laser-induced

breakdown spectroscopy (LIBS) with element information and MIRS

with molecular information was fused to classify the compound

Salvia miltiorrhiza by RF discrimination models (Liang et al., 2020).

Because the predictive performance of the model will be affected by

samples (formula, batch, manufacturer, etc.) and algorithms (pre-

treatment, feature extraction, modeling), the scope of the calibration

set should cover the test set. Therefore, the robustness of models

requires sufficient representative samples, still long-term research work.
6.2 Counterfeiting and
adulteration detection

PHPs have milder effects than western medicine in a slow

curative effect with fewer side effects. Demand is increasing due

to the growing popularity of herbal dietary supplements and clinical

medicines. Synthetic drugs and regulated or toxic substances are

added undeclared to PHPs for illegal profits, which results in

consumers being vulnerable to counterfeiting and adulteration.

NIRS coupled with PLS-DA distinguished PHPs adulterated

with sibutramine with a correct classification of 100%. Four

variables selected by MLR-SPA were executed to build a

quantitative model (Da Silva et al., 2015). Feng et al. (2014)

improved the reverse correlation coefficient (RCCM) for

threshold settings to test antidiabetic PHM illegally added with

synthetic drugs. MIRS presents a ‘fingerprint’ with high sensitivity

and selectivity in terms of sample peaks and peak intensities. MIRS

showed the best performance among MIRS, NIRS, and Raman

spectroscopy techniques in detecting PHM adulterated with

sibutramine and phenolphthalein (Rooney et al., 2015). The

performance of fused data using MIRS and NIRS was poorer than

MIRS data alone (Deconinck et al., 2017). NIRS data failed to add

valuable information according to the loading analysis.

Observing and comparing characteristic peaks in MIRS and

Raman spectroscopy is also effective means of identification due to

the significant differences between PHPs and adulterated products

(Mateescu et al., 2017). Slimming herbal products, adulterated with

illegal additives, were discriminated against by constructing

synchronous and asynchronous maps (Miao et al., 2017).

Univariate calibration (De La Asunción-Nadal et al., 2017) and

mathematically fortified spectra (Walkowiak et al., 2018) based on

ATR-FTIR offer a fast, eco-friendly, and cheap alternative for

adulterations identification with good analytical features. The local

straight-line screening (LSLS) algorithm, newly proposed in 2007 and

modified in 2009, has proved the feasibility of detecting the illegal

incorporation of synthetic drugs in PHPs after careful observation of

the shape of the spectral line (Lu et al., 2007; Zhu et al., 2009). TLC-

SERS was established and used to detect adulterated PHPs for curing

diabetes (Zhu et al., 2014), cholesterol (Zhu et al., 2017), and sexual

performance (Dao et al., 2019).
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Current microscopic and chemical identification above showed the

feasibility and application prospect of IR and Raman spectroscopy

techniques in the quality and safety of PHPs. Various PHPs can be

detected without complex procedure extraction of marker compounds.

Vibrational spectroscopy techniques can be applied as a preliminary

evaluation of suspicious PHPs, even though their current LODs are

inferior to traditional chromatographic methods. The identified PHPs

are confirmed using specific chromatographic methods afterward.

Spectroscopy analysis methods are expected to be widely applied if

the entire experimental procedure can be optimized, standardized, and

automated. The development trend of small-type and portable

spectrometers makes mobile laboratories feasible, conducted in the

open market and throughout the herb distribution channel.
7 Challenges and future remarks

The above review summarized the application of IR and Raman

spectroscopy in the quality and safety inspection of herbs across the

whole process. Spectral differences are captured and enlarged by

various data processing. Evaluating and controlling the quality of

herbs based on spectral techniques can save workforce and time,

and effectively evaluate the efficacy of herbs. Vibrational

spectroscopy techniques combined with chemometrics provide

new monitoring concepts with data acquisition and processing

automatic, which promote the digital detection of herbs.

The challenges we face are establishing more steady and robust

models and achieving online monitoring in real production

practice. Research trends focus on signal enhancement and

effective information extraction for ideal prediction accuracy. In

the future, the application of IR and Raman spectroscopy

techniques in herbs has the potential to drive the development of

the industry, which contributes to digital detection for quality and

safety inspection of herbs across the whole process. Table 5

summarizes the challenges and future remarks.
• IR and Raman spectroscopy techniques are complementary, so

the combined techniques can characterize the sample with a

more comprehensive description. Multi-source spectral

techniques or spectral coupling with chromatography are both

investigated. Images are also used to supplement spectral

information, which presents distribution characteristics of

herbal components and improves the performance of models

in identification or detection. Image information can be

obtained by converting spectral matrixes into an image matrix

or selecting imaging equipment, such as microscopic infrared

imaging and confocal Raman imaging systems. We could see

that multiple hyphenated techniques facilitate data fusion, which

has been applied to detect the chemically active components in

herbs and characterize them more comprehensively and

systematically.

• The widespread pattern recognition or quantitative prediction

models are mainly based on machine learning, the more

traditional but classic models like PCA, LDA, PLSR, and

SVM. With the boost of artificial intelligence, DL algorithms

for data processing to enlarge the amount of data would be
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Fron
considered, excavating deeper into the validity of spectral data.

DL with self-learning and migration has advantages in feature

mining of herbs, which makes it feasible to characterize herbs

with similar characteristics (same medicinal parts, same

genera, etc.). Indeed, maintenance of the model, including

updates and expansions, is also indispensable.

• So far, the achievements were obtained chiefly in the

laboratory with specific operating conditions and

application restrictions. To realize the final aims that use

them in the actual production environment, the

improvement of sample preparation methods and the

development of portable instruments need to be

concentrated on and gradually progress, giving full play to

the advantages of spectral technology. As a fingerprint

technique, building spectra databases of herbs can broaden

their application scenarios. The spectroscopic database can

be gradually completed through the continuous

accumulation of experiments. Breaking the independence

of spectral detection of herbs further quickly and effectively

improves herbs identification accuracy.
8 Conclusion

The efficacies of herbs have been expanded frommedicine to food,

health care products, daily necessities, and other fields. The quality and

safety of herbs have been widely concerned. The application of IR and

Raman spectroscopy in the quality and safety inspection of herbs has

feasibility, which could be employed across the whole process of herbs

with excellent application prospects. IR and Raman spectroscopy

techniques are sufficient to meet the requirements due to their

advantages of fast speed, micro- or non-damage, no environmental

pollution, and outstanding ability of online detection.

Detection tasks may benefit from increased model sensitivity.

How a model is integrated into the practical workflow is another
tiers in Plant Science 18
crucial consideration for promoting digital detection, as algorithms

can be deployed in various ways. It is a promising way to integrate the

trained models into software to guide decision-making. With the

development of spectroscopic instruments and advanced algorithms,

the accuracy and efficiency of the IR and Raman spectroscopy

techniques have been improved little by little. Vibrational

spectroscopy techniques have shown great application advantages,

which serve as solid support for promoting digital detection, then

building intelligence and automation of herb products factories,

boosting the digital transformation of the herb industry.
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TABLE 5 Brief summary of challenges and future remarks of herbs.

Challenge Current situation Solution

Limited number of samples Data from single spectrometer or form

Multi-source spectral data fusion

Images and spectra data fusion

The use of non-medicinal parts

Poor performance in model stability and
transfer

Simple line fitting & traditional but classic models based on
ML

Mining for effective information among big data

Make use of deep learning for self-learning and
migration

Good model management: expand and update

Less application in actual production Carried out in the laboratory scales in defined conditions

Develop stable portable instruments

Analyze samples in the production line for
applicability

Build spectra databases for better interpretation
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