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Introduction: Mycosphaerella leaf disease (MLD) is one of the most prevalent

foliar diseases of Eucalyptus globulus plantations around the world. Since

resistance management strategies have not been effective in commercial

plantations, breeding to develop more resistant genotypes is the most

promising strategy. Available genomic information can be used to detect

genomic regions associated with resistance to MLD, which could significantly

speed up the process of genetic improvement.

Methods: We investigated the genetic basis of MLD resistance in a breeding

population of E. globulus which was genotyped with the EUChip60K SNP array.

Resistance to MLD was evaluated through resistance of the juvenile foliage, as

defoliation and leaf spot severity, and through precocity of change to resistant

adult foliage. Genome-wide association studies (GWAS) were carried out

applying four Single-SNP models, a Genomic Best Linear Unbiased Prediction

(GBLUP-GWAS) approach, and a Single-step genome-wide association study

(ssGWAS).

Results: The Single-SNP (model K) and GBLUP-GWAS models detected 13 and 16

SNP-trait associations in chromosomes 2, 3 y 11; whereas the ssGWAS detected 66

SNP-trait associations in the same chromosomes, and additional significant SNP-

trait associations in chromosomes 5 to 9 for the precocity of phase change

(proportion of adult foliage). For this trait, the two main regions in chromosomes

3 and 11 were identified for the three approaches. The SNPs identified in these
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regions were positioned near the key miRNA genes, miR156.5 and miR157.4, which

have a main role in the regulation of the timing of vegetative change, and also in the

response to environmental stresses in plants.

Discussion: Our results demonstrated that ssGWAS was more powerful in

detecting regions that affect resistance than conventional GWAS approaches.

Additionally, the results suggest a polygenic genetic architecture for the

heteroblastic transition in E. globulus and identified useful SNP markers for the

development of marker-assisted selection strategies for resistance to MLD.
KEYWORDS

eucalyptus, genome-wide association study (GWAS), single-step genome-wide
association study (ssGWAS), leaf disease, heteroblastic transition
1 Introduction

Eucalyptus globulus Labill. is widely planted in temperate

countries mainly for the excellent quality of its wood for pulp

production, which has a high market value in the paper industry

(Tibbits et al., 1997). However, the susceptibility of this species to

several pests and diseases limits its use in commercial plantations

(Simeto et al., 2020). Mycosphaerella leaf disease (MLD), caused by

a complex of fungal species of the genus Mycosphaerella and

Teratosphaeria, is one of the most prevalent foliar diseases of E.

globulus in natural forests and plantations worldwide (Tibbits et al.,

1997). Teratosphaeria nubilosa is considered one of the most

virulent MLD species (Mohammed et al., 2003; Hunter et al.,

2009). This pathogen infects predominantly juveniles and

intermediate foliage and causes severe leaf spotting, premature

defoliation and shoot blight (Carnegie and Ades, 2003). Crown

damage from MLD in young plantations can range from <10% to

80% which reduces the tree growth and survival, leading to

concomitant loss in productivity of affected plantations (Balmelli

et al., 2013; Milgate et al., 2005).

A number of silvicultural practices and management strategies

have been proposed to minimize the effects of foliar diseases in

Eucalyptus plantations. These include avoiding planting on high-

risk endemic areas, the application of protectans and fungicides, as

well using remedial fertilizer applications. However, these strategies

have economic, environmental or operational constraints (Simeto

et al., 2020). Thus, breeding for resistance to develop more resistant

genotypes is the most promising strategy to effectively control MLD

in commercial plantations (Milgate et al., 2005; Hunter et al., 2009;

Balmelli et al., 2013). Genetic variation on E. globulus for

susceptibility to MLD has been identified between and within

families, provenances and genetics groups (Costa e Silva et al.,

2013; Balmelli et al., 2014). Considering that this species is markedly

heteroblastic, significant genetic variation in the timing of vegetative

phase change has also been reported (Balmelli et al., 2013). As

young foliage is particularly susceptible to T. nubilosa infection, at

least two mechanisms has been proposed to manage MLD disease:

increase the resistance of juvenile foliage and increase the precocity
02
change to the resistant adult foliage (Milgate et al., 2005). Several

studies suggest that both mechanisms involved in foliar resistance

are under moderate to strong genetic control in E. globulus (Smith

et al., 2017). But the underlying molecular mechanism and genetic

architecture of MLD response has been relatively little investigated

(Freeman et al., 2008; Hudson et al., 2014).

Genome-wide association studies (GWAS) are a leading

approach for complex trait dissection and identification of

genomic segments or alleles that underlie phenotypic variation

and thus can be used for breeding (Tibbs Cortes et al., 2021). A

common GWASmethod in plants is the unified mixed linear model

(MLM) proposed by Yu et al. (2006), that accounts for relatedness

at two levels: population structure and kinship. Since this method

was computationally very intensive, a reparameterization of the

MLM likelihood function was proposed (Kang et al., 2010). Despite

the statistical improvements, a typical feature of these GWAS

methods is sequentially fitting each marker one at a time as fixed

effects, resulting in a lack of power to map loci for quantitative traits

(Wang et al., 2012). This limitation has been overcome by methods

that simultaneously fit high density genome-wide molecular

markers by mixed linear models as GBLUP (Genomic Best Linear

Unbiased Prediction). Following this strategy, marker’s effects are

estimated by a linear transformation of genomic breeding values

obtained from GBLUP (Gualdrón Duarte et al., 2014). One

limitation of this method is that it only includes phenotypes of

genotyped individuals. Generally in forest breeding populations, as

in crops and livestock populations, only a fraction of individuals in

a population are genotyped. Thus, the GBLUP methods were

extended to include the information of non-genotyped individuals

in prediction analysis, which is the so-called Single-step genomic

best linear unbiased prediction (ssGBLUP) (Aguilar et al., 2010).

The ssGBLUP approach is widely adopted for genomic prediction

in livestock (Misztal et al., 2021) and recently applied in forest

species (Cappa et al., 2019; Quezada et al., 2022). The strength of

this approach is the ability to jointly incorporate the information of

all genotypes, observed phenotypes and pedigree information in

one simple and single step model. This procedure was extended to

estimate the marker’s effects in an approach called Single-step
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GWAS (ssGWAS) (Wang et al., 2012). Applying this method,

marker effects and the p-values associated are estimated

simultaneously for all markers while accounting for population

structure using the pedigree and genomic relationship for all

individuals in the population (Aguilar et al., 2019).

The advances in next generation sequencing technologies allows

the development of accessible high throughput genotyping systems.

Particularly for Eucalyptus species, in which marker number and

density have been the limiting factors for a long time, dense sets of

Single Nucleotide Polymorphism (SNP) genotyping platforms are

now available (Silva-Junior et al., 2015). The commercial Eucalyptus

chip has been useful to understand the genetic basis of complex

quantitative traits of interest, such as growth or wood properties in

Eucalyptus species (Du et al., 2018). For example, in E. grandis × E.

urophylla breeding populations, eight SNPs were described as main

associations for growth traits, which were related to genes involved

in cell wall biosynthesis (Müller et al., 2019). Also, it has become

possible to detect significant marker-trait associations for growth

related traits in species poorly represented in the chip. Thus, a total

of 87 SNPs were associated with growth and wood quality traits in

E. cladocalyx, revealing associations with genes related to primary

metabolism and biosynthesis of cell wall components (Valenzuela

et al., 2021). Similarly, a study of E. grandis × E. urophylla hybrids

detected 22 quantitative trait loci for growth and wood traits and

four for Puccinia psidii rust disease resistance (Resende et al., 2017).

This resistance QTLs were positioned near the major QTLs detected

in E. grandis for Myrtle rust (Ppr1 locus). Recently, for the same

fungal disease, 33 highly significant SNPs were detected in E.

obliqua, identifying candidate defense response genes, one of

them located within the Ppr1 locus (Yong et al., 2021). With the

exception of Myrtle rust, GWAS analysis to investigate the genetic

control and identify candidate defense genes for fungal diseases in

Eucalyptus have not been implemented. For MLD resistance, a

classical QTLs mapping using biparental crosses and 165 molecular

markers detected two major QTLs that explained a large proportion

of the phenotypic variance for Mycosphaerella cryptica severity

(Freeman et al., 2008).

This work aimed to examine the genetic architecture of resistance

to MLD caused by T. nubilosa in a breeding population of E. globulus.

Although the Single-step GWAS strategy has received increasing

attention in livestock species (Misztal et al., 2021), to the best of our

knowledge, it has not yet been applied in forest tree species. Therefore,

this study has two specific objectives: i) to compare the Single-SNP

associations GWAS, the GBLUP-GWAS and the Single-step GWAS

strategies in a forest tree species, ii) to elucidate the genetic base of

resistance and escape to T. nubilosa in E. globulus.
2 Material and methods

2.1 Population and phenotypic data

The population and phenotypic data used in this study have

been described in detail in Balmelli et al., (2013). Briefly, a progeny

test of E. globulus was established by Instituto Nacional de
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Investigación Agropecuaria (INIA) of Uruguay, in Lavalleja (Lat.

34° 110 S; Long. 54° 540W; Alt. 206 m). The trial contain 194 open-

pollinated families with a total of 4601 individuals. The

experimental design was a randomized complete block design,

with 3 replicates and eight-tree row plots. When the trees were ~

1 year old, there were several consecutive days of rain and high

humidity, causing a severe infection of MLD (Balmelli et al., 2016).

Phenotypic responses to the natural infection were assessed at age

14 (coinciding with outbreak of MLD), 21 and 26 months. The

response to disease was assessed using two parameters, the severity

of leaf spots (SEV) and defoliation (DEF). Both were evaluated on

the whole crown (juvenile and adult foliage) using a visual scale,

recording the percentage of leaf area affected by spots (SEV) and the

percentage of leaves prematurely abscised (DEF). The escape to

disease was assessed as the precocity of vegetative phase change

(ADFO), quantified as the proportion of the crown with adult

foliage (petiolate, alternate, shiny green and pendulous leaves). The

SEV was classified in percentages classes of 5%, whereas DEF and

ADFO in intervals of 10%.
2.2 Genotyping

A total of 1008 trees were sampled for genotyping. DNA was

extracted from leaf tissue of each tree using a standard CTAB protocol.

Genotyping was performed using the Eucalyptus Illumina

EUChip60K (Silva-Junior et al., 2015) by GeneSeek (Lincoln, NE,

USA). Of the 194 families in the trial, 179 have genotyped trees

ranging from 4 to 8 trees per family. Individual genotypes were filtered

by excluding samples with more than 10% of missing data across

SNPs. The SNP data were then filtered by call rate > 90% and a minor

allele frequency (MAF) > 0.01. The quality control of genotyping data

was performed using QCF90 software (Masuda et al., 2019).
2.3 Population structure and
linkage disequilibrium

The genetic structure of the breeding population was assessed

by the Principal Components Analysis (PCA) using PREGSF90 of

BLUPF90 family of programs (Aguilar et al., 2018). Pairwise-

estimates of linkage disequilibrium (LD) were calculated as the

squared correlation of allele counts for each pair of two SNPs (r2)

within each of the 11 chromosome. The LD decay was estimated

using the R script by Marroni et al. (2011). The pattern of LD decay

was visualized plotting the r2 against the physical distance with

ggplot (Wickham, 2016) R package (R Core Team, 2022). The

threshold of LD decay was identified at r2 = 0.02.
2.4 Statistical analyses

2.4.1 Mixed model analysis
Linear mixed models were used to estimate the variance

components of proportion of adult foliage, leaf spot severity and
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defoliation, considering the observed phenotypes and transformed

data into normal score within each block (Cappa and Varona,

2013). The linear mixed model was:

y = Xb +Wp+Za + e (1)

where y is the vector of phenotypes; b is the vector of fixed

effects including the overall mean and block, with incidence matrix

X; p ∼ N(0, Is 2
p ) is the vector of random plot effects, with design

matrix W; a ∼ N(0 ;  As 2
a ) is the vector of random effects of

individual trees (i.e., breeding values), with incidence matrix Z; and
e ∼ N( 0,  Is 2

e ) is the vector of residual errors. The matrix A is the

pedigree relationship matrix and s 2
a is the additive genetic variance.

Genomic data were not included for variance components estimation.

Heritability of each trait was estimated as:

h2 =
s 2
a

s 2
a + s 2

p + s 2
e

(2)

where s 2
a is the additive genetic variance, s2

p is the plot variance,

and s 2
e is the residual variance.

2.4.2 Single-SNP models
The most common single-marker models were compared, with

different combinations of population stratrification and genetic

relatedness correction. First, a naive model, without any

correction for population structure or relatedness was fitted

independently for each SNP following the linear mixed model:

y = Xb + xibi +Wp + e (3)

where y is the vector of phenotypes; b is the vector of fixed

effects including the overall mean and block, with incidence matrix

X; p ∼ N( 0, Is 2
p ) is the vector of random plot effects, with design

matrix W; and e ∼ N(0, Is 2
e ) is the vector of residual errors. The xi

is a vector that contains the genotype for the ith SNP for each

individual and bi is the i
th SNP effect considered as fixed. A second

model was fitted to account for population structure (model P),

where the vector of fixed effects (b) of equation 3 include the first

three principal components identified.

Alternatively, to account for family structure, a linear mixed

model including a polygenic effect was tested (model K). This

association model was fitted using the same naive model by

adding a random effect utilizing a genomic relationship matrix as

follow:

y = Xb + xibi +Wp + Zu+e (4)

where Z is a design matrix and u is the vector of polygene

background effects (random), u ∼ N(0,Gs 2
u ). The rest of the

components were previously defined (equation 3). The G matrix

was estimated using the first method of VanRaden (2008):

G =
ZZ0

2opi(1 − pi)
(5)

where Z is the matrix of gene content adjusted for observed

allele frequencies and pi is the allele frequency of the ith SNP. To

account for family and population structure simultaneously, a

model K + P was fitted, where the vector of fixed effects (b) of
Frontiers in Plant Science 04
equation 4 include the first three principal components. All Single-

SNP models were fitted using the Sommer R package (Covarrubias-

Pazaran, 2016).

2.4.3 GBLUP-GWAS model
For the GBLUP-GWAS model, the follow mixed model was

used:

y = Xb +Wp + Za + e (6)

where every element is defined as before (equation 1), except for

the vector of random effects of the individual trees (a) that follow a

var(a) ∼ N(0,Gs 2
a ). The matrix G is the genomic relationship

matrix calculated using all the SNPs (equation 5).

Under this GBLUP-GWAS model, the vector of SNP effects was

obtained from a linear transformation of the vector of breeding

values in a. The vector of allele marker effects (û ) was calculated for

all SNPs simultaneously following Gualdrón Duarte et al. (2014).

û = Z0 1
2opj(1 − pj)

G−1â (7)

The variance of SNP effects and the p-values of each SNP effect

were estimated following the formulas of Gualdrón Duarte

et al. (2014).

2.4.4 Single-step GBLUP association model
The ssGWAS model is similar to the GBLUP-GWAS previously

presented, but in this model all the phenotype and pedigree

information of all assessed trees (genotyped and non-genotyped)

was considered. Thus, the G matrix is replaced with the H matrix

that combines both pedigree and genomic information.

The inverse of the relationship matrix that combines pedigree

and genomic information (H-1) was derived by Aguilar et al. (2010)

as:

H−1 = A−1 + ½
0 0

0 G−1 − A−1
22

� (8)

where A-1 and A−1
22 are the inverse of the pedigree relationship

matrices for all individuals and only for the genotyped individuals,

respectively, andG-1 is the inverse of the genomic relationshipmatrix.

The SNP effects were estimated as

û = Z0 1
2opj(1 − pj)

G−1â 22 (9)

where â 22 is a vector of genomic breeding values only for

genotyped individuals. The variance explained for each marker and

the p-values were obtained as suggested by Aguilar et al. (2019).

The GLUP-GWAS and ssGWAS models were fitted with

POSTGF90 of BLUPF90 family software (Aguilar et al., 2014).

The GWAS results were plotted with CMPLOT R package (Yin

et al., 2021).
2.4.5 Model comparison
Correction for multiple testing was applied to determine a

threshold to indicate significant associations for all the six models
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implemented. At a genome-wide level, the Bonferroni correction at

an alpha level of 0.05 was applied as a conservative criterion. In

addition, a less stringent threshold for declaring significance was

applied using the false discovery rate (FDR), with an alpha level of

0.05. Quantile-quantile (Q-Q) plots of observed and expected p-

values were used to evaluate the control of population structure and

genetic relationships in the different GWAS models. These plots

were generated with QQMAN R package (Turner, 2018).
2.5 Candidate genes and
functional annotation

The physical position of the SNPs was defined according to the

reference genome of E. grandis (Phytozome Version 1.1 available

on https://phytozome-next.jgi.doe.gov/) since the genome of this

species is thoroughly annotated. Candidate genes were searched

within 30 kb upstream and downstream of the significant SNPs.

The size of this interval was chosen based on the typical LD

present in the Eucalyptus populations and the SNPs density in our

study (1 SNP per 28kb). The sequence of the candidate genes were

extracted from the annotation file of E. grandis v1.1. Particular

miRNA related to heteroblasty, and their targets, were searched

based on the annotation of Hudson et al. (2014) using blastn-short

(BLASTN program optimized for sequences shorter than 50

bases). Functional annotation of genes associated with

significant SNPs was done by protein homology search against

the NCBI non-redundant protein sequences (NR) database

(Sayers et al., 2022) using BLAST (Altschul et al., 1990). When

possible, the best hit with functional annotation was used.
3 Results

3.1 Phenotypic variation

In this trial, the epidemic of T. nubilosa affected all the trees,

which showed high variability for all the diseased-related traits. The

mean and standard deviation for all the traits increased along with

the increasing age of measurement, indicating a high prevalence of

infection (Table 1). Though a wide range of variability was observed

for the proportion of adult foliage, a high proportion of trees had

only juvenile foliage, resulting in a distribution with an inflated
Frontiers in Plant Science 05
proportion of zero counts in the three measurement ages. The

disease damage traits (SEV and DEF) presented low but significant

variability, following a normal distribution (Figure 1). Phenotypic

correlations between measurement ages were positive and high for

the proportion of adult foliage, and positive and moderate for

defoliation. The disease damage traits, presented moderately

positive correlation. The vegetative change to adult foliage

(ADFO) was negatively correlated with response to diseased

traits, confirming the mechanism of disease escape through early

change to resistant adult foliage (Figure 1). The estimated pedigree-

based heritabilities were moderate to high, varying from 0.33 for

DEF_21 to 0.77 for ADFO_26 (Table 1).
3.2 Population structure and
linkage disequilibrium

A total of 19,992 markers and 961 trees were retained after

quality filtering. The SNP markers were distributed throughout the

11 chromosomes according to the E. grandis reference genome, with

a range from 1,268 in chromosome 4 to 2,516 in chromosome 8

(Figure 2). The trend of linkage disequilibrium (LD) in the E.

globulus population was analyzed across each chromosome. The

average genowide r2 in this population was 0.032, with a LD decay

at 19.1 kb using the significant threshold (r2 = 0.2) (Figure 3A). The

LD decay varied across different chromosomes, with the most rapid

LD decay observed for chromosome 5 (12.4 kb) compared with the

slower rate on chromosome 9 (50.1 kb)(data not shown). The

principal component analysis (PCA) showed the diversity and

population structure present in the breeding population. The first

two principal components explained 6.22% and 1.53% of the total

variation, respectively. Based on these components, the majority of

trees cluster into a major group, and different sub clusters can be

identified (Figure 3B). Only the three first components that

accounted for genetic variances greater than 1% were included in

the association analysis to correct for population stratification.
3.3 Association analysis

3.3.1 Single-SNP models
The Single-SNP model without taking into account the

population structure (naive model) resulted in the detection of a
TABLE 1 Summary of assessed traits.

Trait Age of
measurementa

Abbreviation No. Obs Mean (sd) Range h2

Proportion of adult foliage 14 ADFO_14 3,853 9.76 (15.78) 0-90 0.68

21 ADFO_21 3,580 16.99 (19.18) 0-90 0.66

26 ADFO_26 3,447 29.14 (20.38) 0-90 0.77

Severity of leaf spots 14 SEV_14 3,711 10.53 (3.79) 0-40 0.71

Defoliation 14 DEF_14 3,711 31.62 (9.44) 0-70 0.49

21 DEF_21 3,581 52.73 (10.86) 10-90 0.33
a in months.
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large number of associations for all traits (Table 2). Most of these

were apparent false positives or spurious associations, by ignoring the

multiple levels of relatedness between individuals. To control the

population structure, the three first principal components were

included in the model (model P). Although the number of

associations slightly decreased, a high number of spurious signals

were detected, due to family relatedness not being accounted for. The

quantile-quantile plot (QQ-plot) obtained for the naive and model P,

showed a great deviation for the observed and expected p-values,

reflecting the inadequacy of these models (Supplementary Figure 1).

When the random effects captured for the G matrix were

included in the association models (models K and K+P), more p-

values follow the uniform diagonal line in the QQ-plots

(Supplementary Figure 1). Compared with the naive and model

P, these models properly control false positive associations resulting

from the within population family structure. As a result, including

the G matrix resulted in a drastic reduction in the number of

significant SNP associations. No significant associations were

detected for SEV and DEF after correcting for multiple testing

(Bonferroni and FDR at 5%) (Table 2). All the significant

associations were detected for ADFO at the three measurement

age. We found a total of 13 SNP-trait associations (8 unique SNPs)

for the K model and 11 associations (6 unique SNPs) for the K + P

model considering a FDR threshold of 5%, and 6 were also

significant after the more stringent Bonferroni correction (5%), in

both models. Moreover, both models did not show any difference,

because all the SNPs detected in the K + P model were also

significant in the K model. Thus, for this breeding population, the
Frontiers in Plant Science 06
genetic matrix can account for genetic structure, with an negligible

effect of the adjustment of principal components.

For ADFO, the significant SNPs were distributed in

chromosomes 2, 3 and 11 (Supplementary Figure 2). The higher

number of significant SNPs associated was detected at the first age

of measurement (14 months). It is not unexpected that the four and

unique SNPs detected as significantly associated at the 21 and 26

months respectively, were also significant associated in the previous

age measurement. Similar results were obtained using the observed
FIGURE 2

Distribution of filtered SNPs in a 1Mb windows across the Eucalyptus
grandis genome. The x-axis represents the distance in Mb.
FIGURE 1

Phenotypic distribution and correlation of six disease-related traits for Eucalyptus globulus. Histograms in the diagonal show the distribution of each trait.
Scatter plots (lower off-diagonal) and Pearson’s correlation coefficient (upper off-diagonal) illustrate the underlying relationship between traits.
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variable and the transformed variable to normal scores for all

Single-SNP models tested, as well as for GBLUP-GWAS and

ssGWAS models (results not shown).

3.3.2 GBLUP-GWAS model
The GBLUP-GWAS model was performed for each variable to

evaluate the equivalence with the Single-SNP model that accounts for

genetic relationships in the G matrix (model K). For disease damage

traits (SEV and DEF), no significant associations were declared using

the multiple test correction (Bonferroni and FDR at 5%) (Table 2).

Conversely, for ADFO the GBLUP-GWAS model identified 16 SNP-

trait associations (8 unique SNPs) at the three measurement ages at

the most permissive level of FDR at 5%. Half of these associations were

considered significant after Bonferroni correction (5%).

Of these 16 SNP-trait associations, 12 were previously identified

by the Single-SNP model K and four were novel SNPs. The seven

SNPs associated with the proportion of adult foliage at 14 months

were also identified in the Single-SNP approach (model K) at the

same measurement age (Figure 4). Similarly, all the SNPs associated

at 21 and 26 months for the Single-SNP model K were detected in

the GBLUP-GWAS model.

Associations for the proportion of adult foliage at 14 months

were detected on chromosomes 2 (1 SNP), 3 (3 SNPs) and 11 (3

SNPs) (Supplementary Figure 3). The same regions in

chromosomes 2, 3 and 11 were detected at 21 months, with six

SNPs detected in both measurement ages. Two SNPs, one in
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chromosome 3 and the other in chromosome 11, were found

associated with ADFO at 26 months. These SNPs were associated

with this escape to disease trait in the three measurement ages.

3.3.3 ssGWAS model
The number of significant SNP markers detected in the Single-

step GBLUP association approach for response and escape to disease

traits was larger than in the Single-SNP (model K and K + P) or

GBLUP methods, which indicate a better performance of ssGWAS

model (Table 2). Considering the FDR multiple test correction at 5%,

we detected 66 SNP-trait associations and 38 unique SNPs for ADFO

by the three measurement age. This approach identified 12 significant

SNP associations for DEF at 21 months (Supplementary Table 1;

Supplementary Figure 4). After the more conservative Bonferroni

correction at 5%, 19 and one associations continue to be significant

with ADFO and DEF traits, respectively. Once again, we found no

significant association for SEV trait.

For ADFO, significant SNPs were associated across all

chromosomes, except for chromosomes 1, 4 and 10. However, the

most significant SNPs were identified in chromosomes 3 and 11 in

the three measurement ages, indicating the presence of few genomic

regions controlling the precocity of adult foliage change (Figure 5).

The first peak identified on chromosome 3 spans a region of ~ 2

Mb, defined in accordance with SNPs overlapping at the three

measurements ages. The high number of significant SNPs was

associated with the first age of measurement (14 months), namely
TABLE 2 Number of significant Single Nucleotide Polymorphism (SNP) associations for disease traits for all GWAS models evaluated.

Trait Single-SNP models GBLUP-GWAS ssGWAS

naive model P model K model K + P

ADFO_14 3,372 (260) 3,282 (244) 8 (3) 6 (3) 7 (5) 26 (8)

ADFO_21 3,139 (193) 3,081 (190) 4 (2) 4 (2) 7 (2) 25 (9)

ADFO_26 2,837 (165) 2,797 (158) 1 (1) 1 (1) 2 (1) 15 (2)

SEV_14 104 (6) 97 (4) 0 (0) 0 (0) 0 (0) 0 (0)

DEF_14 227 (2) 222 (2) 0 (0) 0 (0) 0 (0) 0 (0)

DEF_21 372 (25) 390 (29) 0 (0) 0 (0) 0 (0) 12 (1)
Significant associations using FDR (alpha= 0.05) correction. In parentheses number of significant associations using Bonferroni correction (alpha= 0.05).
A B

FIGURE 3

Population structure and linkage disequilibrium (LD) decay for the Eucalyptus globulus breeding population. (A) Linkage disequilibrium (LD) decay
estimated by r2 (y-axis) plotted against physical distance in Kb (x-axis). Dashed line at r2 = 0.2 indicates the frequently used threshold of usable LD.
(B) Principal Component Analysis (PCA) of 961 individual of the breeding population. PCA plot defined by first and second eigenvectors.
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nine SNPs located in this region, the most significant with a -log10

(p-value) of 9.86 (position 47 949 673). Inside this area, the six SNPs

significantly associated at 21 months, were also detected at the

measurement age of 14 months. Additionally, the five SNPs found

at the 26 months, were also detected in the two previous

measurement ages. The SNPs detected in this region explained

the 1.14, 1.64 and 0.44 of the total genetic variance for each age at

measurement of 14, 21 and 26 months, respectively.

A small region of ~ 200 kb was also identified in chromosome

11 significantly associated with this trait. This region encompasses

7, 5 and 3 SNPs for measurement at 14, 21 and 26 months,

respectively. Once again, the higher number of SNPs was

identified at the first measurement age (14 months), and all the

markers identified at 21 and 26 months were also detected in the

previous measurement age. In this region, the SNP in the position

29 564 447 was the most significant, with -log10(p-values) values of

9.69, 11.07 and 9.36 for 14, 21 and 26 months, respectively. The

SNPs inside this region represented 1.14, 0.94 and 0.73 of the

genetic total variance at the three measurement ages, respectively.

Additionally, other significant signals were identified in

chromosome 2, with one SNP (position 54 236 535) detected at the

conservative threshold of Bonferroni correction at 14 and 21 months,

and with the FDR threshold at 26 months. For chromosome 6, two

SNPs located 100 kb apart were identified with the less stringent FDR

correction for the three measurement ages (Figure 5).
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The ssGWAS model was able to detect 12 SNPs in

chromosomes 3, 6, 8 and 11 associated with the defoliation

measured at 21 months. However, no significant associations

were detected for the previous measurement age (14 months). As

expected by the correlation between defoliation and the proportion

of adult foliage traits, six common SNPs between these traits at the

same age (21 months) were observed. Thus, two SNPs identified in

chromosome 3 and four in chromosome 11, correspond to the

significant regions detected for ADFO.
3.4 Candidate genes for precocity of
vegetative phase change

Of the 38 unique significant SNPs identified for heteroblasty,

two of them did not have any associated genes. A total of 133 genes

were associated with the rest of the significant SNPs, of which 131

were protein coding. Two key miRNA genes, miR156.5 and

miR157.4, were found in chromosome 3 and 11, respectively

(Table 3). The significant SNPs associated with these genes were

at 21 kb and 25 kb formiR156.5 andmiR157.4, respectively. None of

the miR156 and miR157 target proteins were found.

Out of the 131 protein coding genes, 20 could not be assigned a

specific functional annotation. In total 95 different functions were

found (Supplementary Table 2). A total of 11 proteins related to
D

A B

C

FIGURE 4

Manhattan plots for proportion of adult foliage measured at 14 months (ADFO_14) using four genome-wide association models. (A) Single-SNP
model adjusted for kinship matrix (model K). (B) Single-SNP model adjusted for kinship matrix and population structure (model K + P). (C) GBLUP-
GWAS model. (D) Single-step GBLUP association model. The x-axis represents SNP positions on the 11 Eucalyptus grandis chromosomes and the y-
axis -log10 (p-values) from genotypic associations. The red horizontal line indicates the Bonferroni threshold (alpha = 0.05) and the blue horizontal
line indicates a false discovery rate (FDR) at 5% threshold.
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resistance to biotic stress encoded by 22 different genes were the

most interesting ones: 26S proteasome non-ATPase regulatory

subunit 9 (Eucgr.C02542), dirigent protein 22 (Eucgr.C02472),

disease res is tance prote in RPV1-l ike (Eucgr .C02626,

Eucgr.C02627, Eucgr.F04311, Eucgr.K02295), endochitinase EP3-

like (Eucgr.K02166), F-box/LRR-repeat protein 3 (Eucgr.K02937),

(-)-germacrene D synthase (Eucgr.C02474), glutathione transferase

GST 23 (Eucgr.K01652, Eucgr.K02248), LRR receptor-like serine/

threonine-protein kinase GSO1 (Eucgr.K02824), MAP kinase 4

substrate 1 - MKS1 (Eucgr.C02621), TMV resistance protein N-

like (Eucgr.C02111, Eucgr.C02112, Eucgr.C02623, Eucgr.C02624,

Eucgr.C02638, Eucgr.C02618, Eucgr.F04310), WRKY transcription

factor WRKY76 (Eucgr.C02659, Eucgr.F04317) (Table 3).
4 Discussion

In a GWA study, for any population of a given genetic

background, the ability to detect associations is a function of

several parameters that include the phenotypic variance, the

heritability and the complexity of the trait. In the current study,

we show significant phenotypic variance for resistance to MLD for

all the traits assessed in a breeding population of E. globulus. The

heritabilities were high (h2> 0.65) for ADFO and SEV, whereas

moderate values were observed for DEF. These estimates were

similar or higher to those reported in previous studies carried out

for equivalent resistance or damage traits of Teratosphaeria fungal

diseases in E. globulus. For example, heritabilities for severity to T.

nubilosa and T. cryptica ranging from 0.12 to 0.60 (Dungey et al.,

1997; Carnegie and Ades, 2005; Milgate et al., 2005; Costa e Silva
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et al., 2013; Hamilton et al., 2013) whereas values between 0.43 to

0.74 have been reported for proportion of adult foliage (Balmelli

et al., 2013). Regarding the genetic complexity of the MLD resistant

traits in E. globulus, two major genomic regions which explained a

large proportion of the phenotypic variance have been previously

identified, and an oligogenic or major gene control proposed for

these traits (Freeman et al., 2008). However, recent studies show

that resistance mechanisms for other diseases in Eucalyptus involve

multiple interacting loci of variable effect, according to a quasi-

infinitesimal model (Butler et al., 2016; Resende et al., 2017).

Specifically for heteroblastic transition, although major genes have

been identified in various species, we still have a rather limited

understanding of the number of loci involved in the regulatory

pathway of this process (Hudson et al., 2014). Thus, for the disease-

related traits analyzed here a quantitative nature is expected, which

means that the phenotypic variation observed can be dependent on

more than one major QTLs and many significant marker-trait

associations would be identified.

In a first approximation to the genetic architecture to MLD

resistance, we applied the widespread mixed model approach

proposed by Yu et al. (2006). We used the PCA scores to control

for population stratification and the genomic relationship matrix (G)
to control for close family relatedness. As expected, when the

background genetic structure is not properly accounted for in the

model, a high rate of false positive marker-trait associations are

observed (Supplementary Figure 1). Our results, in line with

previous association studies in Eucalyptus, demonstrated that the

inclusion of family relatedness correction in association models

drastically reduces the number of false-positive associations

(Thavamanikumar et al., 2014; Müller et al., 2019). Thus, for
FIGURE 5

Circular Manhattan plots for proportion of adult foliage (ADFO) using Single-step GBLUP association model (ssGWAS). Inner, middle and outer layers
represent the measurement ages at 14, 21 and 26 months, respectively. The Bonferroni (alpha = 0.05) and false discovery rate (FDR) threshold at 5%
are represented by the red and blue circle in each layer, respectively. Vertical dashed lines highlight common SNPs identified among the three
measurement ages. Significant SNPs identified after multiple test corrections are in black.
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breeding populations consisting of families with cryptic relatedness,

such as open-pollinated populations, the family structure (G matrix)

efficiently captures the variations caused by genetic structure. The

adjustment by using the PCA scores may be not adequate, and would

be only necessary in populations with high levels of subrace

differentiation or with different geographic origins (Cappa et al., 2013).

In the standard GWAS approach, each marker is tested

independently for an association to the trait, included as a fixed

effect in the model. For this method, two main drawbacks have been

identified. First, the magnitude of the effects by the marker-trait
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associations identified are largely overestimated, caused mainly by

the limited sample sizes and/or the use of the same data set for

discovery and parameter estimation (Beavis, 1998). Second, the

effect of one marker is estimated ignoring the rest of the genome,

causing confusion about the number and location and also

contributing to the upward bias of estimated effects of loci

identified (Kemper et al., 2012). The alternative approach that fits

all markers simultaneously as a random effect, GBLUP-GWAS, is

becoming popular due to having much in common with genomic

selection (VanRaden, 2008). In our study, the GBLUP-GWAS and
TABLE 3 Details of genes related with biotic stress resistance linked to the most significant Single Nucleotide Polymorphism (SNP) associated with
precocity of vegetative change (proportion of adult foliage - ADFO) in Eucalyptus globulus identified with the ssGWAS model.

Annotation SNP Name Chr. Position Putative candidate
genes

Agea

miR156 precursor EuBR03s50801384 3 50801384 EgrMIR156.5b 21, 26

miR157 precursor EuBR11s29630035 11 29630035 EgrMIR157.4b 14

TMV resistance protein N-like EuBR03s38174146 3 38174146 Eucgr.C02111 21

EuBR03s38174146 3 38174146 Eucgr.C02112 21

EuBR03s49848389 3 49848389 Eucgr.C02618 14

EuBR03s49848389/
EuBR03s49849249

3 49848389/
49849249

Eucgr.C02623 14/14, 21,
26

EuBR03s49848389/
EuBR03s49849249

3 49848389/
49849249

Eucgr.C02624 14/14, 21,
26

EuBR03s50231590 3 50231590 Eucgr.C02638 14, 21, 26

EuBR06s51721432 6 51721432 Eucgr.F04310 21, 26

Disease resistance protein RPV1-like EuBR03s49848389/
EuBR03s49849249

3 49848389/
49849249

Eucgr.C02626 14/14, 21,
26

EuBR03s49848389/
EuBR03s49849249

3 49848389/
49849249

Eucgr.C02627 14/14, 21,
26

EuBR06s51721432 6 51721432 Eucgr.F04311 21, 26

EuBR11s30114988 11 30114988 Eucgr.K02295 14, 21

(-)-germacrene D synthase EuBR03s47296521 3 47296521 Eucgr.C02474 14, 21

26S proteasome non-ATPase regulatory subunit 9 EuBR03s48526965/
EuBR03s48528495

3 48526965/
48528495

Eucgr.C02542 14, 21/14

EuBR09s22726692 9 22726692 Eucgr.I01173 14, 21

Dirigent protein 22 DIR22 EuBR03s47296521 3 47296521 Eucgr.C02472 14, 21

Endochitinase EP3-like EuBR11s28810660 11 28810660 Eucgr.K02166 14

F-box/LRR-repeat protein 3 EuBR11s37401760 11 37401760 Eucgr.K02937 14

Glutathione transferase GST 23 EuBR11s20065344 11 20065344 Eucgr.K01652 26

EuBR11s29646703 11 29646703 Eucgr.K02248 14, 21, 26

LRR receptor-like serine/threonine-protein kinase
GSO1

EuBR11s36275775/
EuBR11s36290348

11 36275775/
36290348

Eucgr.K02824 14/14, 21

Protein MKS1 EuBR03s49848389/
EuBR03s49849249

3 49848389/
49849249

Eucgr.C02621 14/14, 21,
26

WRKY transcription factor WRKY76 EuBR03s50778072 3 50778072 Eucgr.C02659 21

EuBR06s51841342 6 51841342 Eucgr.F04317 14
fr
aAge of measurement (in months) at which the SNP was identified.
bidentified by Hudson et al., 2014.
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the Single-SNP approach (model K) show similar results in the

marker-trait associations identified, where 75% of the markers

identified in the GBLUP model were previously identified in the

Single-SNP model. When the SNP effects for this common SNPs

were compared, our results agree with previous results that show an

upwardly biased estimation under a fixed single-marker model

(Kemper et al., 2012).

For GWA studies, the use of more phenotypic and genotypic data

improves power and resolution (Tibbs Cortes et al., 2021). Thus, those

ssGWAS methods that include the phenotypes of all genotyped and

non-genotyped individuals as well as the pedigree information, have

been shown to provide more consistent solutions and increased

accuracy than the standard GWAS approach (Wang et al., 2012).

Although this approach was successfully applied in GWA studies in

domestic animals (Misztal et al., 2021), to our knowledge, this is the

first report of ssGWAS applied to forest tree species. In this study, the

ssGWAS approach identified 66 and 12 significant SNP-trait

associations for the ADFO and DEF traits, respectively. The

significant SNPs identified here are robust since the ssGWAS

approach has shown, through simulations by Mancin et al. (2021),

to control for false positives successfully. Additionally, our results

show a general agreement between the Single-SNP and GBLUP

strategies, with the same genomic regions identified with all models.

However, the ssGWAS demonstrated superior performance by

detecting new significant SNPs in chromosomes that had not been

identified in the other models tested and resulted in clear peaks with

higher -log10(p-values). Therefore, the ssGWAS is a promising

method to the dissection of complex traits in populations when

only a fraction of the population is genotyped, taking advantage of

the available phenotypic information of individuals non-genotyped.

Most studies addressing disease resistance in forest trees have

mainly assessed the disease’s severity as the presence of leaf spots

and/or the necrotic lesions present on the leaves. The high

heritability found for severity of leaf spots (SEV) in agreement

with previous reports, broadens the probability of detecting a gene

of large effect. However, large heritability does not imply a direct

relationship with the number, effect or proportion of the genetic

variance of the genomic regions identified (Visscher et al., 2008).

Our outcome can be explained by the low phenotypic variability of

this trait in this population. Freeman et al. (2008) showed that the

number of resistance QTLs detected in three breeding populations

of E. globulus was strongly correlated with the variability within

each population. In this study we also evaluated the degree of

defoliation (DEF) as a descriptor of the impact of the MLD

infection. For this trait, assessed at 21 months of age, we found

12 significant associations, although only one was significant after

Bonferroni correction (Table 1). The low number of significant

associations can be partially explained by the moderately-low

heritability of this trait, reflecting the superior performance of

the ssGWAS approach relative to the standard GWAS approaches.

The vegetative phase change in plants involves many

morphological changes, well differentiated in many tree species as

E. globulus. The mechanism to the juvenile to adult transition is

under a strong genetic control with the same regulatory

mechanisms in both annual herbaceous plants and perennial trees

(Wang et al., 2011). Although the understanding of the genetic
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environmental and endogenous signals (Poethig, 2010). In E.

globulus, precocious vegetative change was evidenced in response

to abiotic stress (drought, salt and high winds) in a natural coastal

population (Jordan et al., 2000). Also, it is proposed as a mechanism

involved in disease resistance, anticipating the timing of vegetative

change to the resistant adult foliage. For precocity of vegetative

change, measured as the proportion of adult foliage in this study,

the ssGWAS model was able to identify the highest number of

significant trait-SNP associations in this breeding population. For

the three measurement ages, the same SNPs were identified as the

markers that explained the highest genetic variation, which allowed

identify two main significant regions in chromosome 3 and 11.

Within those regions, we identified the miR156.5 and miR157.4

respectively, both of which target DNA-binding transcription

factors that regulates the SQUAMOSA PROMOTER BINDING

PROTEIN-LIKE (SPL) gene family. The miR156 has been

recognized as a master regulator of vegetative change in plants,

promoting juvenility due to high expression in seedlings that

decrease during development (Poethig, 2010; Manuela and Xu,

2020). Our results support similar reports from bi-parental QTLs

mapping studies that identified miR156.5 as the candidate gene

causing difference in the timing of phase change between precocious

and normal natural populations of E. globulus (Hudson et al., 2014).

Furthermore, emerging studies suggest that miR156 is probably an

integral component of the miRNA response to all environmental

stresses in plants (Zhao et al., 2012; Jeyakumar et al., 2020).

Specifically for fungal pathogen defense response, miR156 targets

the plant disease resistance proteins (NBS-LRR proteins) in Populus

trichocarpa infected with stem canker pathogen (Zhao et al., 2012).

Additionally, precursors of miR156 have also been reported located

near the main QTL identified for Puccinia rust resistance (Ppr1),

suggesting a main role in the genetic control of plant resistance

(Butler et al., 2016).

We also identified various genes proposed to be involved in

fungal pathogen resistance through different mechanisms. For

example, the 26S proteasome non-ATPase regulatory subunit 9 is

part of the ubiquitin/26S proteasome system, known to be involved

in almost every step of the defense mechanisms in plants, regardless

of the type of pathogen, regulating key cellular processes through

protein degradation (Dielen et al., 2010). The dirigent protein 22

(DIR22) is part of a gene family involved in plant defense by their

role in the dynamic reorganization of the cell wall through the

formation of lignans and production of defense-related compounds

(Yadav et al., 2021). Numerous studies have shown that the

expression levels of DIRs genes are enhanced during the late

stages of fungal infection (e.g., Colletotrichum gleosporioides,

Botrytis cinerea, Fusarium oxysporum) in various plant species,

increasing antifungal responses (Arasan et al., 2013; Borges et al.,

2013; Reboledo et al., 2015). Glutathione transferase GST23 belong

to a super-family of multifunctional proteins in plants, being one of

their most important roles the detoxification of fungal toxins in the

response against biotic stresses (Gardiner et al., 2010). The

expression of GSTs is markedly induced during fungal infection,

leading to enhanced resistance to the pathogen (Ahn et al., 2016).

The (-)-germacrene D synthase is an enzyme involved in the volatile
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terpenoid biosynthesis. It has been reported that the

downregulation of these genes alters monoterpene levels leading

to resistance against biotic stresses at a global level, including

defense responses to fungus infection (Rodrıǵuez et al., 2014).

Lastly, the endochitinase EP3-like genes encode a protein

involved in catalyzing the hydrolytic cleavage in chitin, the

prominent wall component of fungus, and are induced by

pathogen attack and other biotic stresses (Nagpure et al., 2014).

Finally, we identified genes involved in pathogen defenses’

regulation and signaling mechanisms. MAP kinase 4 substrate 1

(MKS1) has been reported to be pivotal in signaling basal defense

responses (Andreasson et al., 2005), whereas the WRKY

transcription factor WRKY76 is involved in the regulation of the

plant defense signaling pathway (Rushton et al., 2010). In addition,

many plant disease resistance proteins (NBS-LRR proteins), which

trigger signal transduction leading to the induction of defense

responses (Andersen et al., 2018), were found. For instance, the

disease resistance protein RPV1 is known to confer resistance to

oomycete and fungal pathogens in cultivated grapevines (Vitis

vinifera) (Gessler et al., 2011). LRR receptor-like serine/threonine-

protein kinase GSO1 was reported to be related to the resistance of

Nicotiana tabacum to the oomycete Phytophthora parasitica (Dang

et al., 2019). TMV resistance protein N-like was reported to be

involved in the resistance in potato to the fungus Synchytrium

endobioticum (Hehl et al., 1999), and in peanut to two serious

fungal foliar diseases (Dang et al., 2021). F-Box/LRR repeat protein

was reported to be activated by fungal pathogens (Cladosporium

fulvum, Puccinia striiformis) in different plant species in order to

regulate defense responses (Yin et al., 2018).
5 Conclusions

In the present study, we carried out GWAS for traits related to

response and escape to MLD in a breeding population of E. globulus

only partially genotyped, and assessed the advantage of including

phenotypes from relatives without genotypes in a single-step

procedure. We compare several GWAS models that differ in the

correction for population structure, the statistical approach to fit the

markers and the impact of including combined pedigree, genomic and

phenotypic information. Several SNP-trait associations were detected

for the precocity of vegetative phase change (proportion of adult

foliage). The same SNPs were identified at different measurement ages

for the different strategies, providing validation of the results for these

specific loci. Additionally, our results suggest that ssGWAS is a

powerful model in detecting regions associated to the escape to

MLD, showing a greater number of significant SNP associations

than Single-SNP and GBLUP-GWAS models. Associations were

detected near the miRNAs that regulate the timing of vegetative

phase change, consistent with results from other studies about

heteroblastic transition in trees and annual species. Thus, our

research supports the hypothesis that this is a complex trait

determined by a large number of genes with diverse biological

functions, that can also include a mechanism of response to biotic

stress, such as fungal resistance. Although the identified putative

candidate genes will require future validations, they provide a better
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understanding of the genetic architecture of vegetative change in

Eucalyptus. Overall, our results represent a foundational step in

marker-assisted selection for a tree breeding program. For example,

significant markers or validated genes identified by GWAS can be

incorporated into prediction models, to accelerate breeding progress.

However, since this is an association discovery study, validation in

independent populations is necessary.
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