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Introduction: Verticillium wilt (VW) caused by Verticillium dahliae is a soil-borne

vascular fungal disease that severely affects cotton yield and fiber quality. Sugar

metabolism plays an important role in the growth and pathogenicity of V. dahliae.

However, limited information is known about the sugar transporter genes and their

roles in the growth and pathogenicity of V. dahliae.

Method: In this study, genome-wide identification of sugar transporter genes in V.

dahliae was conducted and the expression profiles of these genes in response to

root exudates from cotton varieties susceptible or resistant to V. dahliae were

investigated based on RNA-seq data. Tobacco Rattle Virus-based host-induced

gene silencing (TRV-based HIGS) and artificial small interfering RNAs (asiRNAs)

were applied to investigate the function of candidate genes involved in the growth

and pathogenic process of V. dahliae.

Results: A total of 65 putative sugar transporter genes were identified and

clustered into 8 Clades. Of the 65 sugar transporter genes, 9 were found to be

induced only by root exudates from the susceptible variety, including VdST3 and

VdST12 that were selected for further functional study. Silencing of VdST3 or

VdST12 in host plants by TRV-based HIGS reduced fungal biomass and enhanced

cotton resistance against V. dahliae. Additionally, silencing of VdST12 and VdST3 by

feeding asiRNAs targeting VdST12 (asiR815 or asiR1436) and VdST3 (asiR201 or

asiR1238) inhibited fungal growth, exhibiting significant reduction in hyphae and

colony diameter, with a more significant effect observed for the asiRNAs targeting

VdST12. The inhibitory effect of asiRNAs on the growth of V. dahliaewas enhanced

with the increasing concentration of asiRNAs. Silencing of VdST12 by feeding

asiR815+asiR1436 significantly decreased the pathogenicity of V. dahliae.

Discussion: The results suggest that VdST3 and VdST12 are sugar transporter

genes required for growth and pathogenicity of V. dahliae and that asiRNA is a

valuable tool for functional characterization of V. dahliae genes.
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Introduction

Cotton is one of the most important economic crops in the world,

the main source of natural fiber for the textile industry, and an

important strategic material for the national livelihood (Zhang et al.,

2015). The cotton quality and yield are often affected by various biotic

and abiotic stresses. Cotton Verticillium Wilt (VW), caused by

Verticillium dahliae Kleb., is one of the most serious cotton diseases

worldwide (Fradin and Thomma, 2006). This disease can result in

more than 50% cotton fields damaged and cause substantial economic

loss every year in China (Zhang et al., 2020). V. dahliae is particularly

difficult to control because it persists in soil as long-living dormant

microsclerotia (Fradin and Thomma, 2006; Luo et al., 2014). V.

dahliae invades cotton through the root system (Duressa et al.,

2013). After sensing cotton root exudates, the microconidia of V.

dahliae germinate towards roots and then produce hyphae, which

enter the root epidermal cells and multiply in the xylem vessels.

Mycelium, spores, or polysiccharedes produced by V. dahliae can clog

the vessels, resulting in leaf yellowing, wilt, necrosis, defoliation and

vascular brown coloration (Song et al., 2020). In recent years, with the

completion of whole genome sequencing of V. dahliae, a number of

genes involved in the growth and pathogenic process of V. dahliae

have been identified (Gui et al., 2017; Zhang et al., 2017; Qin et al.,

2018; Xu et al., 2018; Zhang et al., 2018). However, due to the

complexity of the molecular basis of pathogenicity in V. dahliae, we

expect more genes involved in the pathogenic process of V. dahliae to

be found.

During the infection process, pathogenic fungi need to use various

metabolites secreted by the host to provide nutrients and energy.

Sugar is an essential nutrient and a major component for living

organisms. Sugar metabolism plays an important role in the growth

and pathogenicity of V. dahliae. During the last decades, cell wall

degrading enzymes which degrade cell wall polysaccharides (cellulose,

hemicellulose and pectin) have been extensively studied (Fradin and

Thomma, 2006). The cell wall degrading enzyme genes, such as VdEg-

1, VdSSP1 and VdSNF1, have been proved to be related to the

pathogenicity of V. dahliae (Novo et al., 2006; Maruthachalam

et al., 2011; Tzima et al., 2011; Liu et al., 2013a). The sugar

transmembrane transportation is mainly carried out by sugar

transporters, which are responsible for taking up monosaccharides

and short oligosaccharides derived from plant cell wall

polysaccharides (Doidy et al., 2012; Peng et al., 2018). However, the

sugar transporter (ST) genes have not yet been investigated in

V. dahliae.

Sugar transporters widely exist in all kingdoms of life from

microorganisms to plants and animals. Sugar transporters belong to

the major facilitator superfamily (MFS), usually composed of 400 to

600 amino acids. They are highly similar in primary structure and

usually contain 12 transmembrane domains (Law et al., 2008). Sugar

transporters mediate the transport of monosaccharides (such as

glucose, frucotse and mannose), sucrose and polyols (such as

mannitol and sorbitol) (Mahmud and Kissinger, 2017).

Monosaccharide transporters can be clustered into hexose, pentose,

and inositol based on a phylogenetic relationship analysis (Peng et al.,

2018). Many sugar transporter genes have been identified from

different fungus (Saitoh et al., 2014; Schuler et al., 2015). ST genes
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have been found to participate in the interactions between host plants

and fungus and to perform an important function in the absorption of

host sugars (Doehlemann et al., 2005; Fang and St Leger, 2010; Doidy

et al., 2012). Knockout or silencing of sugar transporter genes

identified in some fungi affected the growth and development of the

fungi and reduced their pathogenicity (Wahl et al., 2010; Liu et al.,

2013b; Saitoh et al., 2014; Chang et al., 2020).

It has been found that the content of glucose, fructose and sucrose

in the root exudates from cotton varieties susceptible to V. dahliae is

much higher than that from resistant ones (Wu et al., 2007). Previous

transcriptome analysis found that several ST genes responded to root

exudates from susceptible cotton variety, suggesting that they were

closely related to the pathogenicity of V. dahliae (Zhang et al., 2020).

In order to explore the role of ST genes in growth and pathogenicity of

V. dahliae, here, genome-wide identification of ST genes was

conducted and their expression profiles after sensing root exudates

from cotton varieties susceptible or resistant to V. dahliae were

analyzed. A total of 65 VdST genes were identified and 9 of them

were found to be induced by root exudates from susceptible cotton

variety. Two VdST genes (VdST3 and VdST12) were selected for

functional study by using host-induced gene silencing (HIGS) and

asiRNA (artificial small interfering RNA) technologies. The results

indicated that silencing VdST3 or VdST12 resulted in a reduced

pathogenicity of V. dahliae and increased cotton resistance to VW,

demonstrating the importance of the two genes in pathogenicity of

V. dahliae.
Materials and methods

Fungi and plant materials
and growth conditions

The strongly pathogenic strain Vd991 of V. dahliae was used in

this study. The Vd991 strain was cultured in 200 mL of Czapek liquid

media and incubated for 5-7 d at 25°C with 150 rpm/min shaking.

The spores were collected by filtering the fungal solution with

sterilized gauze (8 layers) and were adjusted to 1.0×107 CFU/mL or

1.0×105 CFU/mL using a hemocytometer.

The Upland cotton variety Xinluzao 7 susceptible to V. dahliae

was used in this study. Cotton seeds were grown in pots and placed

in a controlled environmental chamber under a photoperiod of 16h

of light and 8h of darkness at 28°C. Seedlings at the second true leaf

stage were used for infection assays, in which the growth

temperature was changed to 25°C for better development of

disease symptoms.
RNA extraction and cDNA synthesis

Total RNA of V. dahliae was extracted using Fungal RNA Kit

(Omega Inc., USA) according to the manufacturer’s procedures. Total

RNA of cotton tissues was extracted using the EASYspinPlus Plant

RNA Extraction Kit (Aidlab, Beijing, China). Easyscript® One-step

gDNA Removal and cDNA Synthesis Super Mix (TransGen Biotech,

Beijing, China) kit was used to synthesize cDNA.
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Identification of the sugar transporter family
genes of V. dahliae

The gtf, genomic, CDS, and protein sequences of V. dahliae

(ASM15067v2) were downloaded from the V. dahliae data website

(https://fungi.ensembl.org/Verticillium_dahliae/Info/Index). The

Sugar_tr domain (PF00083) downloaded from Pfam database

(https://www.ebi.ac.uk/interpro/entry/pfam/#table) was used to

search the sugar transporter proteins in V. dahliae protein database

by HMMER software with a standard hmmsearch score ≥ 238 (Peng

et al., 2018). Gene ID and chromosome location of VdST genes were

obtained from the NCBI database (https://www.ncbi.nlm.nih.gov/).

The Sequence Manipulation Suite online tool (http://www.detaibio.

com/sms2/protein_iep.html) was used to estimate the basic

physicochemical properties of the VdST proteins, such as protein

length (PL), molecular weight (MW) and isoelectric point (pI).

Transmembrane structural domains (TMD) were predicted with

TMHMM program (http://genome.cbs.dtu.dk/services/tmhmm) and

the subcellular localization of VdST proteins was predicted using the

online software Prot Comp 9.0 (http://www.softberry.com/berry.

phtml?topic=protcompan&group=programs&subgroup=proloc).
Multiple sequence alignment
and phylogenetic tree analyses

The ST protein sequences from V. dahliae and other fungi (Table

S1) were initially aligned using Clustal W. The phylogenetic analysis

was accomplished using MEGA 7.0 via the neighbor-joining (NJ)

method and bootstrap tests replicated by 1000 times. Finally, the tree

was visualized by the Interactive Tree Of Life online tool (https://itol.

embl.de/).
Analyses of the conserved motifs
and structure of VdST genes

The conserved motifs of the VdST proteins were analyzed by the

MEME program (https://meme-suite.org/meme/tools/meme) using

the parameters of 10 motifs and displayed by TBtools software (Chen

et al., 2020). The prepared gtf format file and gene sequence number

were put into TBtools for gene structure visualization.
Analysis of the expression profile of VdST
genes based on RNA-seq datasets

Previous RNA-seq datasets (BioProject accession ID:

PRJNA545805) were used to explore the expression profiles

(FPKM, fragments per kilobase per million fragments mapped) of

VdST genes. The RNA-seq datasets were generated from V. dahliae

samples cultured on root exudates from an Upland cotton variety

Xinluzao 7 (X) susceptible to V. dahliae, a Sea Island cotton variety

Hai7124 (H) resistant to V. dahliae, or water (W) for 0h, 6h, 12h, 24h

and 48h (Zhang et al., 2020). The gene expression heatmap of VdST

genes was drawn using TBtools software.
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Host-induced silencing of VdST genes

The pTRV1, pTRV2 and pTRV2-GhCHLI plasmids were kindly

provided by Prof. Longfu Zhu of Huazhong Agricultural University.

Four interfering fragments VdST3-1 (337bp), VdST3-2 (346bp),

VdST12-1 (346bp) and VdST12-2 (367bp) designed to target VdST3

(Gene ID: VDAG_07563) or VdST12 (Gene ID: VDAG_04513) were

amplified from Vd991 cDNA with VdST3-F1/R1, VdST3-F2/R2,

VdST12-F1/R1 and VdST12-F2/R2 (Table S2) and inserted into

pTRV2 vector, respectively. The HIGS (host-induced gene

silencing) vectors (pTRV2-VdST3-1, pTRV2-VdST3-2, pTRV2-

VdST12-1 and pTRV2-VdST12-2) were generated and transformed

into Agrobacterium tumefaciens strain GV3101 by electroporation.

Cotton leaves (Xinluzao 7) were used for injection with TRV as

previous description (Xiong et al., 2020). The pTRV2-GhCHLI

treated seedlings were applied as a positive control. When the

bleaching phenotype was observed in pTRV2-GhCHLI treated

seedlings, the pTRV2-VdST3-1, pTRV2-VdST3-2, pTRV2-VdST12-1

and pTRV2-VdST12-2 treated plants were inoculated with Vd991 by

root irrigation with 20 mL spore suspension (1×107 CFU/mL). The

fungal infection symptoms were investigated at 14 and 21 dpi (days

post inoculation). The disease index (DI) was calculated according to

a five-scale classification (0, 1, 2, 3 and 4) of VW disease on cotton

seedlings (Standard No.: GB/T28084-2011).
asiRNA design and treatment

Multiple online sites (http://biodev.extra.cea.fr/DSIR/DSIR.html,

https://www.invivogen.com/sirnawizard/design.php) were used for

siRNA design. Sequences in two different sites specific to each gene

were used as the asiRNA candidates. The specificity of the asiRNA

sequences were confirmed by BLASTn against the genomic sequences

of V. dahliae to avoid off-targeting. A 19-bp sequence specific to the

nematode genome was used as negative control (NC). Double T

nucleotides were added to the 3’-terminus of these candidate

sequences to stabilize the asiRNAs (Table S3). The double-stranded

asiRNA sequences were synthesized by Shanghai Sangon

Biotech (China).

The Vd991 strain was incubated in Czapek liquid media

containing asiRNA at different concentrations (0, 50, 100 or 200

nM) for 6 d at 25°C with 150 rpm/min shaking. The spores co-

cultured with asiRNA were collected and adjusted to 1×107 CFU/mL.

Then 10 µL of spore suspension containing asiRNA was inoculated

into the center of PDA (Potato Dextrose Agar) medium and

incubated at 25°C in the dark. The colony diameter was measured

at 3, 6, 9, 12, 15 and 18 days post incubation. To observe hyphal

morphology, 10 µL of spore suspension (1×105 CFU/mL) containing

asiRNA at different concentrations was applied to PDA medium. The

hyphal morphology was observed at 36 hours post incubation under

microscope. Wild-type Vd991 was used as control (CK), and Vd991

co-cultured with asiRNA from nematode was used as a negative

control (NC). All tests were repeated three times.

To investigate the role of VdST3 and VdST12 in carbon

utilization, 6 different monosaccharides, disaccharides or

polysaccharides, including glucose (50 g/L), galactose (50 g/L),
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xylose (50 g/L), maltose (50 g/L), sucrose (50 g/L) and cellulose (10 g/

L) were individually added to Czapek Dox medium lacking carbon

source. Then, 10 µL of spore suspension (1×107 CFU/mL) from

Vd991 co-cultured with asiRNA (200 nM) was placed in media with

different carbon sources, and then incubated at 25°C in the dark. The

colony diameter was measured at 3, 6, 9, 12, and 15 days post

incubation. All tests were repeated three times.

To investigate whether asiRNAs affect the pathogenicity of V.

dahliae, spore suspension (1×107 CFU/mL) from Vd991 co-cultured

with asiRNAs (200 nM) was prepared for infection process assay.

Wild-type Vd991 was used as control (CK), and Vd991 co-cultured

with asiRNA from nematode was used as a negative control (NC).

Xinluzao 7 seedlings at two-leaf stage were inoculated with various

Vd991 by root irrigation with 20 mL spore suspension. The fungal

infection symptoms were investigated at 14 and 21dpi. The disease

index (DI) was calculated as mentioned above.
Gene expression assay

Roots, stems and leaves from infected seedlings were sampled at

14 and 21dpi for RNA extraction. The Vd991 strain incubated in

Czapek liquid media containing asiRNA at different concentrations

for 6 d were collected for RNA extraction. The transcription levels of

VdST3 and VdST12 were analyzed by qRT-PCR with primer pair of

VdST3-qF1/R1 and VdST12-qF1/R1 (Table S2), respectively. Cotton

Tubulin gene was used as internal reference. The qRT-PCR assay was

conducted using the SYBR Green Mix (TaKaRa, Dalian, China), and

PCR cycling started with an initial step of 95°C for 10s, 40 cycles at

60°C for 15s, and 72°C for 20s. The qRT-PCR reactions were

performed on a Roche LightCycler 480 II instrument and the

results were analyzed by the 2-DDCT method (Livak and Schmittgen,

2001). The primer specificity and the formation of primer-dimers

were tested by dissociation curve analysis.
Recovery of V. dahliae
from infected seedlings

At 14 dpi, 10 infected seedlings were randomly selected for the V.

dahliae recovery experiment. Stems were harvested by cutting the

seedlings from the base and cut into 2 cm long segments. The stem

segments were sterilized with 75% alcohol for 30 s, then soaked in

0.1% HgCl2 solution for 5 min and rinsed 3-5 times in sterile water.

The sterilized stem segments were evenly placed on PDA plates and

incubated at 25°C for colony observation at 7 days post incubation.
Fungal biomass measurement

At 21 dpi, different tissues from infected seedlings were collected

separately and used for measurement of fungal biomass by qRT-PCR.

DNA was extracted from roots, stems and leaves by CTABmethod. V.

dahliae specific primers ITS1-F and ST-Ve1-R were used for fungal

biomass measurement as previously reported (Xiong et al., 2020). To
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normalize differences in DNA template amounts, the cotton GhUBQ7

gene (DQ116441.1) amplified using primer pair UBQ7-F/R was used

as the internal reference. qRT-RCR reactions were performed as

described above.
Results

Genome-wide identification
of ST genes in V. dahliae

A total of 65 putative ST genes were identified in the genome of V.

dahliae by HMMER analysis and named VdST1 to VdST65 (Table

S4). The length of these VdST protein sequences ranged from 396 to

669 amino acids (aa), with the predicted molecular weights (MW)

from 42.94 to 73.43 kDa, theoretical isoelectric points (pI) from 5.29

to 9.53, and the number of transmembrane domains (TMD) ranged

from 7 to 12. It was found that 29 out of the 65 VdST proteins

contained the entire 12 TMDs, 28 possessed 10 or 11 TMDs, while 8

carried only 7 to 9 TMDs. The 65 VdST genes were randomly

distributed on 8 chromosomes, of which chromosomes 3 and 4

harbored the most VdST genes (12 and 10, respectively), whereas

chromosomes 8 and 7 contained only 3 and 5 VdST genes,

respectively. According to the subcellular localization predictions,

overwhelming majority of VdST proteins (60) were located in the

plasma membrane, with a few localized to endoplasmic reticulum,

vacuole, mitochondrion, golgi and nucleus.
Classification and phylogenetic
analysis of VdST genes

The protein sequences of all 65VdST genes together with 30 ST genes

reported in other fungi (Table S1) were used for phylogenetic analysis

(Peng et al., 2018). As shown in Figure 1, 65 VdST genes were classified

into 8 different Clades. There were 16VdST genes in Clade IV, which was

the largest subfamily, including sucrose transporter Srt1 from Ustilago

maydis and maltose transporter MAL11 from yeast (Saccharomyces

cerevisiae). Clade II contained 13 VdST genes that were clustered with

known lactose permease and hexose transporter genes, such as lactose

transporter LacpA, LacpB/cltB and cellobiose transporter cltA from

Aspergillus nidulans. Clade V included 9 VdST genes and quinate

permease-encoding genes from other species, including D-galacturonic

acid transporters GalA (Neurospora crassa) and gatA (Aspergillus niger)

and quinic acid transporter Qa (Neurospora crassa). Clade VIII included

7 VdST genes and glucose transporter genes from other fungi, such as

hexose transporter HXT13 (Saccharomyces cerevisiae) and hxt1 (Ustilago

maydis), glucose transporter hgt2 (Neurospora crassa), SNF3

(Saccharomyces cerevisiae), mstC, mstG, mstA and mstA (Aspergillus

niger), galactose transporter GAL2 (Saccharomyces cerevisiae) and

pentose transporter XYT1 (Neurospora crassa). Clade VIII harbored 7

VdST genes and myoinositol transporter ITR1 from Saccharomyces

cerevisiae. Other subfamilies, including Clade I, VI and VII, contained

only 2 to 4 VdST genes. Four genes (VdST62, VdST63, VdST64 and

VdST65) were not classified into any Clade.
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Conserved motifs and structure
of VdST genes

A total of 10 conserved motifs were identified in VdST proteins,

and the location of these motifs in each protein was showed in

Figure 2A. The motif numbers varied from 7 (VdST22 and VdST23)

to 11 (VdST17, VdST36, VdST52 and VdST58), and most proteins

(44) harbored 10 motifs. Compared with the VdST proteins in other

Clade, the VdST proteins in Clade III contained less motifs, ranging

from 7 to 9. Motif 3 was identified in all 65 VdST proteins, suggesting

that it may be critical for the role of VdST proteins. Most proteins

(more than 61) contained motifs 1, 2, 4, 5, 6, 8 and 9 (Figure 2A and

Table S5), suggesting their importance for the function of VdST

proteins. Motif 7 was absent in all proteins of Clade III, and motif 10

was absent in several Clade III VdST proteins. Interestingly, where

there is a deficiency in motif 5 it is usually replaced by motif 10, and

vice versa, lack of motif 10 is usually replaced by motif 5, such as in

VdST3 and VdST13, suggesting that these two motifs may be

structurally and functionally similar, complementing each other.

The length of the 10 conserved motifs ranged from 13 to 21 amino

acids, and the putative Sugar_tr structural domain was predicted in

the conserved motifs 1-7 and 9 (Table S5). The amino acid frequency

of the 10 motifs was not consistent in different VdST proteins

(Figure S1).
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To better understand the structure of VdST genes, their exons and

introns were analyzed (Figure 2B). There was no obvious similarity in

the arrangement and number of exons and introns in each Clade. The

number of exons (1 to 11) and introns (0 to 10) in 65 VdST genes were

found to be variable. Most VdST genes (51) contained 2 to 5 exons, 12

genes contained more than 6 exons, and 2 genes contained only 1

exon. Additionally, the length of exons was also found to be variable,

whereas the length of introns was shorter and more conserved.
Responses of VdST genes to root exudates
from cotton varieties susceptible or resistant
to V. dahliae

To find the VdST genes involved in pathogenic process of V.

dahliae, the expression profiles of the 65 VdST genes in response to

root exudates from two varieties (a susceptible Upland cotton variety

Xinluzao 7 and a resistant Sea Island cotton variety Hai7124) were

investigated by using the RNA-seq datasets available from our

previous research (Zhang et al., 2020). Finally, a heatmap was

generated based on FPKM value of the 65 VdST genes, exhibiting

the expression profiles of these genes after sensing root exudates from

different varieties. As shown in Figure 3, the VdST genes could be

divided into 5 groups based on their expression profiles. It was
FIGURE 1

Phylogenetic classification of sugar transporters in V. dahliae. The phylogenetic tree contained 65 VdST proteins and 30 ST proteins from other fungi
(Table S1). The tree was generated by MEGA 7.0 with 1000 bootstrap replications. Eight Clades were distinguished by different colors. The abbreviation of
fungal species name is attached to each transporter protein (anid = Aspergillus nidulans, anig = Aspergillus niger, amon = Ambrosiozyma monospora,
bcin = Botrytis cinerea, kmar = Kluyveromyces marxianus, ncra = Neurospora crassa, scer = Saccharomyces cerevisiae, spas = Saccharomyces
pastorianus, stip = Scheffersomyces stipitis, umay = Ustilago maydis).
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notable that group I contained 9 VdST genes (VdST3, VdST41,

VdST20, VdST12, VdST36, VdST17, VdST8, VdST15 and VdST37),

which exhibited high expression at 6 hours after sensing root exudates

from susceptible cotton variety (VdX6) but had no response to root

exudates from resistant cotton variety (VdH), suggesting that these

VdST genes may play important roles in the pathogenicity of V.

dahliae. To verify this speculation, two VdST genes, VdST3

(VDAG_07563) and VdST12 (VDAG_04513), were selected for

further characterization.
Host-induced silencing of VdST3 or VdST12
alleviates disease symptoms caused by V.
dahliae infection

TRV-based host-induced gene silencing (HIGS) was adopted to

silence VdST3 or VdST12 genes in V. dahliae. Two interfering

fragments were designed for each gene to silence VdST3 (VdST3-1

and VdST3-2) or VdST12 (VdST12-1 and VdST12-2). Ten days after
Frontiers in Plant Science 06
injection with the HIGS vectors, the seedlings (Xinluzao 7) injected

with pTRV2-GhCHLI showed the leaf-bleaching phenotype in the

newly emerging leaves (Figure S2), indicating that the TRV-based

technique worked well.

When cotton seedlings injected with pTRV2-GhCHL1 displayed

leaf-bleaching phenotype, the seedlings injected with HIGS vector

were inoculated with Vd991 by the root irrigation method. Fungal

infection symptoms were investigated at 14 and 21 dpi (days post

inoculation). At 14 dpi, pTRV2-00 seedlings (control) showed

obvious leaf yellowing and wilting phenotype, however, the HIGS

treated seedlings displayed only mild leaf yellowing phenotype

(Figure 4A). The disease index (DI) of pTRV2-VdST3-1 (DI=55.3),

pTRV2-VdST3-2 (DI=61.6), pTRV2-VdST12-1 (DI=51.5) and

pTRV2-VdST12-2 (DI=52.2) seedlings was significantly lower than

that of pTRV2-00 seedlings (DI=68.2) (Figure 4D). At 21 dpi,

pTRV2-00 seedlings showed severe defoliation symptom, while the

HIGS treated seedlings displayed only obvious leaf yellowing and

wilting but few defoliation symptoms (Figure 4A). The disease index

of pTRV2-VdST3-1 (DI=70.5), pTRV2-VdST3-2 (DI=72.3), pTRV2-
A B

FIGURE 2

Conserved motifs and exon-intron structure of ST genes in V. dahliae. (A) Conserved motifs of the VdST proteins were identified by MEME program.
Protein sequences and conserved motifs were represented by black lines and differently colored boxes, respectively. (B) Exon-intron structure of the 65
ST genes identified in V. dahliae. Untranslated regions, exons and introns were indicated by orange boxes, green boxes and black lines, respectively.
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VdST12-1 (DI=66.4) and pTRV2-VdST12-2 (DI=68.9) seedlings was

significantly lower than that of control plants (DI=88.1) (Figure 4D).

Stem dissection revealed that the HIGS treated seedlings had

significantly lighter browning than pTRV2-00 seedlings (Figure 4A).

To test the silencing efficiency of TRV-based HIGS, qRT-PCR was

used to determine the relative expression level of VdST3 and VdST12

at 21 dpi. Compared with pTRV2-00 seedlings, the expression level of

VdST3 in pTRV2-VdST3-1 and pTRV2-VdST3-2 seedlings, and that

of VdST12 in pTRV2-VdST12-1 and pTRV2-VdST12-2 seedlings

were reduced significantly in all tissues (root, stem and leaf)
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(Figure 4C), indicating that TRV-based HIGS worked well to

silence V. dahliae genes in infected cotton seedlings.

V. dahliae was isolated from pTRV2-VdST3-1, pTRV2-VdST3-2,

pTRV2-VdST12-1 and pTRV2-VdST12-2 seedlings at 14 dpi, and

colony growth was observed at 7 days after incubation on PDA

medium. The average spread size of colony grown from stems of all

seedlings injected with HIGS vector was reduced compared to that

from stems of pTRV2-00 seedlings (Figure 4B). At 21 dpi, total DNA

were extracted from roots, stems and leaves of the HIGS treated

seedlings for measurement of fungal biomass using qRT-PCR. Fungal
FIGURE 3

Expression profile analysis of the 65 VdST genes after sensing root exudates from different cotton varieties. VdX6, 12, 24, and 48 represented V. dahliae
samples cultured by root exudates from the susceptible cotton variety (Xinluzao 7) for 6, 12, 24 and 48h, respectively. VdH6, 12, 24, and 48 represented
V. dahliae samples cultured by root exudates from the resistant cotton variety (Hai7124) for 6, 12, 24 and 48h, respectively. VdW6, 12, 24, and 48
represented V. dahliae samples cultured in water for 6, 12, 24 and 48h, respectively. The color of the scale bar, ranging from blue to red, represented
low to high expression. The two genes (VdST3 and VdST12) selected for further study were highlighted in red.
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biomass quantifications revealed that less fungal biomass

accumulated in pTRV2-VdST3-1, pTRV2-VdST3-2, pTRV2-

VdST12-1 and pTRV2-VdST12-2 seedlings than in the pTRV2-00

seedlings (Figure 4E). Taken together, down-regulation of VdST3 and
Frontiers in Plant Science 08
VdST12 by TRV-based HIGS significantly inhibited accumulation of

fungal biomass in cotton seedlings and enhanced cotton resistance

against V. dahliae, suggesting that VdST3 and VdST12 are involved in

pathogenic process of V. dahliae.
A

B

D E

C

FIGURE 4

Functional assessment of VdST3 and VdST12 in the pathogenicity of V. dahliae by TRV-based HIGS. (A) Fungal infection symptoms of HIGS treated
seedlings (pTRV2-VdST3-1, pTRV2-VdST3-2, pTRV2-VdST12-1 and pTRV2-VdST12-2) at 14 and 21 dpi. (B) Fungal recovery from the stem segments of
HIGS treated seedlings. Stem segments were harvested at 14 dpi, plated on PDA medium and incubated at 25°C. Photos were taken at 7 days post
incubation. (C) The expression level of VdST3 and VdST12 in HIGS treated seedlings at 21 dpi by qRT-PCR analysis. Total RNA was isolated from roots (R),
stems (S) and leaves (L) of HIGS treated seedlings at 21 dpi. The cotton tubulin gene was used as the internal reference. (D) Disease index of HIGS treated
seedlings at 14 and 21 dpi. (E) qRT-PCR measurement of fungal biomass in HIGS treated seedlings at 21 dpi. The data were statistically analyzed by the
IBM SPSS statistics 26.0. Statistical significance was determined using Student’s t-test. Asterisks (**) above the error bars indicated significant difference at
p < 0.01 between HIGS treated seedlings and control (pTRV2-00 treated seedlings).
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Growth of V. dahliae is inhibited by
application of asiRNAs targeting
VdST3 or VdST12

In order to test whether the growth of V. dahliae could be

inhibited by in vitro treatment with asiRNAs that target VdST3 and

VdST12, the hyphae and colony morphology of Vd991 co-cultured

with different concentrations of asiRNAs were observed. Compared

with Vd991 without asiRNA (CK) or co-cultured with nematode

asiRNA (NC), the Vd991 co-cultured with asiRNA (asiR815 or

asiR1436) targeting VdST12 (Figure 5A) showed an obvious

reduction of fungal hyphae and a significantly slow growth of

colonies (Figure 5B). At 18 days post incubation, compared with

the CK, the colony diameter of Vd991 co-cultured with asiR815 at the

concentration of 50, 100 and 200 nM reduced by 24.6%, 26.1% and

31%, respectively. For asiR1436, the corresponding reduction rate was

19.5%, 22.0% and 28.8%, respectively (Figure 5C, D). These results

suggest that the asiRNAs targeting VdST12 effectively inhibited the

growth of V. dahliae. The asiRNAs (asiR201 or asiR1238) targeting

VdST3 (Figure 5A) could inhibit fungal hyphae and colony growth

but with a less inhibitory effect compared to the asiRNAs targeting

VdST12 (Figures 5B, C). At 18 days post incubation, compared with

the CK, the colony diameter of the asiR201 treatment reduced by

10.0%, 13.4% and 17.0%, and the asiR1238 treatment by 11.4%, 12.9%

and 15.8% at the concentration of 50, 100 and 200 nM, respectively

(Figure 5C, D). But in both cases, the inhibitory effect of asiRNAs on

V. dahliae was positively correlated with the concentration of

asiRNAs. The qRT-PCR results showed that the expression level of

VdST3 and VdST12 in Vd991 co-cultured with different

concentrations of asiRNAs was significantly lower than that of CK

and NC (Figure 5E), suggesting that asiRNAs could effectively inhibit

gene expression in V. dahliae.
Carbon utilization of VdST3 and VdST12

To investigate the role of VdST3 and VdST12 in carbon

utilization, Vd991 co-cultured with asiRNAs (200 nM) was

incubated separately in Czapek Dox medium containing different

carbon sources. As shown in Figures 6A, B, Vd991 co-cultured with

asiRNAs targeting VdST12 (asiR815 or asiR1436) showed a reduced

colony growth on medium containing xylose, galactose, maltose and

cellulose, but was not affected on medium containing glucose and

sucrose, suggesting that VdST12 was involved in the utilization of

xylose, galactose, maltose and cellulose. The growth of V. dahliae co-

cultured with asiRNAs targeting VdST3 (asiR201 or asiR1238) was

reduced on medium containing galactose, maltose and cellulose, but

was not affected on other carbon sources, suggesting that VdST3 was

involved in the utilization of galactose, maltose and cellulose.
Down-regulation of VdST12 by asiRNAs
decreases the pathogenicity of V. dahliae

The asiRNAs (asiR815 or asiR1436) targeting VdST12 could

effectively inhibit the growth of V. dahliae, Vd991 co-cultured with

asiR815 and asiR1436 were therefore used for the following infection
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process assay. Cotton seedlings (Xinluzao 7) at two-leaf stage were

inoculated with wild-type Vd991 (CK), Vd991 co-cultured with

nematode asiRNA (NC), or Vd991 co-cultured with asiR815

+asiR1436. At 14 and 21 dpi, seedlings inoculated with Vd991
A

B

D E
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FIGURE 5

Effect of asiRNAs targeting VdST3 and VdST12 on fungal hyphae and
colony morphology. (A) The target sites of asiRNAs in VdST3 and
VdST12. Black boxes indicated exons, and red and blue lines represented
the target sits. (B) Effect of asiRNAs targeting VdST3 or VdST12 on
hyphal growth. The Vd991 strain was incubated in Czapek liquid
medium containing asiRNA at different concentrations (0, 50, 100 or
200 nM) before inoculating on PDA medium. Wild-type Vd991 was used
as control (CK), and Vd991 co-cultured with nematode asiRNA was used
as negative control (NC). The images were taken after 36 hours of spore
incubation on PDA medium. Bares=50mm. (C) Effect of asiRNAs
targeting VdST12 and VdST3 on colony morphology. The images were
taken at 18 days post incubation on PDA medium. (D) Effect of asiRNAs
targeting VdST3 or VdST12 on growth rate of fungal colony. (E) The
expression level of VdST3 and VdST12 in Vd991 co-cultured with
different concentrations of asiRNAs by qRT-PCR analysis. The Vd991
strain incubated in Czapek liquid medium containing asiRNA at different
concentrations for 6 d were collected for RNA extraction. Values were
means ± SD from three replicates. The above results were obtained in at
least three independent experiments. The data were statistically analyzed
by the IBM SPSS statistics 26.0. Significant difference in different
treatments was analyzed using Duncan’s multiple range tests (different
letters above the error bars indicated statistically different at p<0.05) for
one way ANOVA. An asterisk (**) above the error bars indicates that
there is a significant difference in gene expression between the strains
treated with different concentrations of asiRNA and CK and NC (p<0.01).
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(asiR815+asiR1436) showed milder symptoms compared with the

seedlings inoculated with CK and NC (Figure 7A).

The disease indexes of cotton seedlings infected with Vd991

(asiR815+asiR1436) at 14 dpi and 21 dpi (DI=33.3 and 48.9,

respectively) were significantly lower than that of CK (DI=60.5 and

78) and NC (DI=58.9 and 75.9) at the corresponding time point

(Figure 7B). The stem dissection experiments showed that the

browning of seedlings inoculated with Vd991 (asiR815+asiR1436)

was significantly lighter than that of CK and NC (Figure 7A). qRT-

PCR was used to determine the relative expression level of VdST12 in

Vd991 (asiR815+asiR1436) and seedlings inoculated with Vd991

(asiR815+asiR1436). It was found that the expression level of
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VdST12 in Vd991 (asiR815+asiR1436) was reduced significantly

compared to CK and NC. In different tissues (root, stem and leaf)

of cotton seedlings infected with Vd991 (asiR815+asiR1436), a

significant reduction of VdST12 was also observed compared to the

same tissue of the CK and NC cotton seedlings. These results suggest

that asiRNAs (asiR815+asiR1436) successfully suppressed the

expression of VdST12 in Vd991 and such suppression could be

maintained in the subsequent fungal growth in cotton plants,

including roots, stems and leaves (Figure 7C). Quantification of

fungal biomass showed that seedlings infected with Vd991 (asiR815

+asiR1436) accumulated less fungal biomass compared to the CK and

NC seedlings(Figure 7D). Taken together, asiRNAs targeting VdST12
A

B

FIGURE 6

Morphology and diameter of colony from asiRNAs-treated strain on Czapek Dox medium with different carbon sources. (A) Colony morphology on
Czapek Dox medium with different carbon sources. The Vd991 was co-cultured with asiRNA (200 nM) before inoculating on Czapek Dox medium. Wild-
type Vd991 was used as control (CK), and Vd991 co-cultured with nematode asiRNA was used as negative control (NC). The images were taken at 15
days post incubation on PDA medium. (B) Colony diameter on Czapek Dox medium with different carbon sources. Values were means ± SD from three
replicates. The above results were obtained in at least three independent experiments. The data were statistically analyzed by the IBM SPSS statistics
26.0. Statistical significance was determined using Student’s t-test. Asterisks (* and **) above the error bars indicated significant difference at p < 0.05
and p < 0.01 between asiRNA-treated strain and CK and NC.
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could decrease the pathogenicity of V. dahliae, suggesting the

involvement of VdST12 in the pathogenic process of V. dahliae.
Discussion

In this study, we identified a total of 65 sugar transporter genes in

V. dahliae, and analyzed their gene structure and protein motifs. It

was found that most of VdST proteins possessed 10-12 TMDs, and 8

proteins harbored only 7-9 TMDs, likely due to sequence deletion

during gene evolution. Consistent with this, similar ST protein

structures have been observed in many plants and other fungi
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(Afoufa-Bastien et al., 2010; Reuscher et al., 2014; Lv et al., 2020). A

phylogenetic analysis found that the 65 VdST genes were grouped into

8 Clades with specificity to different groups of sugar molecules, which

was similar to research in other fungi (Peng et al., 2018; Lv et al.,

2020). Compared with Clade I, VI and VII, Clade IV, II, V, VIII and

III harbored more members, mainly including hexose transporters,

disaccharide (lactose and maltose) permeases, myoinositol

transporters and quinate permeases. Most of the VdST proteins

were predicted to be plasma membrane-localized transporters and

are capable of acquisition of monosaccharide and disaccharide

substrates , including glucose, galactose (VDAG_01215,

VDAG_08381 and VDAG_05443), xylose (VDAG_03925), alpha-
A
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FIGURE 7

Effect of asiRNAs (asiRNA815+asiRNA1436) targeting VdST12 on the pathogenicity of V. dahliae. (A) Fungal infection symptoms of cotton seedlings
infected by Vd991 (asiRNA815+asiRNA1436). Wild-type Vd991 was used as control (CK), and Vd991 co-cultured with nematode asiRNA was used as
negative control (NC). (B) Disease index of seedlings infected by Vd991 (asiRNA815+asiRNA1436) at 14 dpi and 21 dpi. (C) The expression level of VdST12
in Vd991 (asiRNA815+asiRNA1436) was detected at 6 days after co-culture and seedlings infected by Vd991 (asiRNA815+asiRNA1436) was detected at 14
dpi by qRT-PCR analysis. (D). qRT-PCR measurement of fungal biomass in seedlings infected by Vd991 (asiRNA815+asiRNA1436) at 21 dpi. The data were
statistically analyzed by the IBM SPSS statistics 26.0. Statistical significance was determined using Student’s t-test. Asterisks (**) above the error bars
indicated significant differences at p < 0.01 between seedlings infected by asiRNA-treated Vd991 and wild-type Vd991 (CK) and NC.
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glucoside, lactose and maltose. It was notable that several genes

encoding inositol transporters and quinine permeases were

identified from V. dahliae. The function of these genes in fungus

has hardly been reported, and further studies on their roles in growth

and pathogenicity of V. dahliae are needed.

V. dahliae invades cotton through the root system, therefore, the

biological effect of the root exudates is expected to be crucial for

successful infection of V. dahliae. It was found that the content of

carbohydrate and the amount of amino acids in the root exudates of

susceptible variety were distinctly more than those of resistant ones

(Yuan et al., 2002). Root exudates from the susceptible cotton varieties

but not from the resistant cotton varieties promoted the growth of V.

dahliae (Yuan et al., 2002; Wu et al., 2007). V. dahliae responded to all

kinds of root exudates but more strongly to those from susceptible

variety than to those from tolerant and resistant varieties (Zhang

et al., 2020). The genes whose expression level was significantly up-

regulated after induction in root exudates from susceptible varieties

were considered to be related to pathogenicity of V. dahliae (Xu et al.,

2018; Zhang et al., 2020). To find the ST genes important for

pathogenicity of V. dahliae, the expression profiles of all 65 VdST

genes in response to root exudates from susceptible and resistant

varieties were investigated based on the RNA-seq datasets we

generated previously (Zhang et al., 2020), and 9 of them were

found to be induced by root exudates from susceptible cotton

variety. Sugar can act not only as an energy storage material, but

also as a signal molecule. Sugar can regulate the expression of sugar

transporter gene for sugar metabolism (Ozcan and Johnston, 1999;

Horák, 2013; Kim et al., 2013). Therefore, the high sugar content in

root exudates from susceptible cotton variety may be responsible for

the high expression level of the 9 sugar transporter genes, which can

be used as candidate genes for further functional study.

With the completion of genome sequencing of V. dahliae and

application of genomics, transcriptomics and proteomics

information, a number of genes important for growth, infection

and pathogenicity of V. dahliae have been identified (Gao et al.,

2010; Tzima et al., 2012; Liu et al., 2013a; Tian et al., 2014; Fan et al.,

2017; Zhang et al., 2017; Luo et al., 2019). At present, a powerful mean

to elucidate the function of V. dahliae genes is to obtain knock-out

mutants via homologous recombination, which is a mature

technology and has been used in many studies (Rauyaree et al.,

2005; Tzima et al., 2011; Liu et al., 2013b; Saitoh et al., 2014).

However, it often increases the actual workload due to its low

efficiency and sometimes gets undesirable results (Takahashi et al.,

2006; Krappmann, 2007). In this study, artificial small interfering

RNAs (asiRNA) were used to verify the function of V. dahliae genes

for the first time. It was found that feeding asiRNAs targeting VdST3

and VdST12 could decrease their expression level in V. dahliae,

resulting in reduction of the fungal hyphae and colony diameter

and decrease of pathogenicity. The results obtained by asiRNA assay

have been found to be consistent with that achieved by loss-of

function experiments in corresponding fungal genes (Guo et al.,

2011; Guo et al., 2019). Therefore, asiRNA assay could serve as a

quick prescreening to identify genes important for growth and

pathogenicity of V. dahliae.

In addition, asiRNAs targeting important genes can be used as

exogenous reagents to enhance plant disease resistance, providing

ideas for further using asiRNA technology to control the occurrence
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of Verticillium wilt. The growth of fungus was severely inhibited by

foliar spray of asiRNAs or dsRNAs targeting genes related to

pathogenicity of pathogens (Koch et al., 2016; Wang et al., 2016;

Guo et al., 2019; Qiao et al., 2021). V. dahliae is a root pathogen. RNA

is unstable in soil so direct application of dsRNA or asiRNA to the soil

cannot protect the plant from V. dahliae infection. Although it has

been reported that pretreatment of roots with dsRNAs targeting genes

related to V. dahliae virulence inhibited the infection of V. dahliae

(Qiao et al., 2021), this is not a practical solution for commercial

cotton production, therefore, studies are required to find strategies for

stabilizing RNA in soil. Compared with dsRNAs, the asiRNAs used in

this study are easier to be synthesized with a lower cost.

Sugar transporter genes of fungi participate in the interaction

between host plants and fungi and play an important role in the

absorption of host sugars (Doidy et al., 2012). The hexose transporter

protein UfHXT1 in Bacillus subtilis is specifically expressed in the

haustorium and directly located on the haustorium membrane.

UfHXT1 can transport glucose and fructose, which are hydrolysates

derived from host sucrose (Voegele and Mendgen, 2003; Voegele and

Mendgen, 2011). UmSRT1 of Ustilago maydis has a high affinity for

sucrose, it competes with the host ZmSUT1 for sucrose (Carpaneto

et al., 2005; Wahl et al., 2010). The preference of sugar uptake and

utilization by sugar transporters of V.dahliae has not been reported

yet. Sugar transporters of V. dahliae were found to be associated with

different sugars in this study. VdST12 was found to be involved in the

utilization of xylose, galactose, maltose and cellulose, and VdST3 to be

involved in the utilization of galactose, maltose and cellulose.

Among many plant disease control methods, breeding disease

resistant varieties is an important control measure that is harmless to

people and animals and friendly to the environment. Growing

evidence has indicated that RNAi technology can be used in crop

protection (Zotti et al., 2018). HIGS, an RNAi-based technology, has

been a favorable tool for obtaining disease resistant plants and

identifying important gene functions (Zhang et al., 2016; Qi et al.,

2018; Guo et al., 2019; Sang and Kim, 2020). HIGS strategy has been

successfully used to suppress V. dahliae infection and improve disease

resistance of plants (Wang et al., 2016; Zhang et al., 2016; Song and

Thomma, 2018; Xu et al., 2018). HIGS can be performed by either

generating stable transgenic plants or using transient expression

systems mainly based on recombinant viral vector systems. In this

study, transient HIGS in cotton plants silenced VdST3 and VdST12

transcripts of V. dahliae in host plants and enhanced cotton resistance

to Verticillium wilt, indicating that these genes are potential target

candidates for generation of stable disease resistant varieties viaHIGS

in the future.
Conclusions

VdST3 and VdST12 are two sugar transporter genes required for

growth and pathogenicity of V. dahliae. The findings of this study

demonstrated that TRV-based HIGS in cotton plants silenced VdST3

or VdST12 transcripts of V. dahliae in the hosts, leading to inhibition

of fungal biomass and enhancement of cotton’s resistance against V.

dahliae. The asiRNAs targeting VdST12 and VdST3 could transiently

silence VdST12 and VdST3, leading to suppression of growth and

pathogenicity of V. dahliae, with a more significant suppression
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observed for asiRNAs targeting VdST12. Our results provided

candidate target genes and alternative solutions for enhancing

cotton disease resistance.
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