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Background: Ratoon rice cropping has been shown to provide new insights into

overcoming the current challenges of rice production in southern China. However,

the potential mechanisms impacting yield and grain quality under rice ratooning

remain unclear.

Methods: In this study, changes in yield performance and distinct improvements in

grain chalkiness in ratoon rice were thoroughly investigated, using physiological,

molecular and transcriptomic analysis.

Results: Rice ratooning induced an extensive carbon reserve remobilization in

combination with an impact on grain filling, starch biosynthesis, and ultimately, an

optimization in starch composition and structure in the endosperm. Furthermore,

these variations were shown to be associated with a protein-coding gene: GF14f

(encoding GF14f isoform of 14-3-3 proteins) and such gene negatively impacts

oxidative and environmental resistance in ratoon rice.

Conclusion:Our findings suggested that this genetic regulation by GF14f gene was

the main cause leading to changes in rice yield and grain chalkiness improvement

of ratoon rice, irrespective of seasonal or environmental effects. A further

significance was to see how yield performance and grain quality of ratoon rice

were able to be achieved at higher levels via suppression of GF14f.

KEYWORDS

ratooning season rice, GF14f gene, carbon reserve remobilization, starch composition,
oxidative and environmental resistance
Introduction

China is the largest global producer and consumer of rice (FAO, 2020). This is especially true

regarding Southern China, whichmakes the greatest contribution to both China's rice industry and

global rice production (Lin et al., 2022). However, Southern China has now been forced to

significantly change its practices because light and temperature resources in this region are
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enough for one seasonal crop but insufficient for two seasons (Lin et al.,

2015). To counteract this challenge, ratoon rice cropping was introduced

for greater rice production and has become increasingly popular in

Southern China (Xu et al., 2021). Rice ratooning refers to a regenerative

phenomenon of rice where new tissues can develop from dormant buds of

stem nodes on residual stubbles after harvesting the main crop (Plucknett

et al., 1970), and is the hallmark of more green and economic rice

production (Shen et al., 2021; Yu et al., 2021; Xu et al., 2022). Modern

formsof ratoonrice croppingoriginate fromTexasandsouthernLouisiana,

USA, havinghad a longhistory there beginning in approximately 1927 and

then expanding to Asian countries in 1970 (Wang et al., 2021). In the past

decade inChina, ratoon rice cropping has beenwidely disseminated due to

the Chinese government actively promoting the practice and introducing

several policies, such as the Project of High-Yield Cultivation Techniques

for Ratoon Rice (2009-2010), the Project of Comprehensive Cultivation

Techniques forRatoonRice (2015-2016), and theProjectofHigh-Yieldand

Highly Efficient Cultivation Techniques for theMechanized Harvesting of

Ratoon Rice (2017-2018). Through the use of this system, an average

increase in yield was achieved, with the yield advantages of ratoon rice

cropping jumping from 26.1% to 71.43%, as compared to the traditional

cropping system (Firouzi et al., 2018; Yuan et al., 2019). Not only that,

ratoon rice was able to meet the fast-growing market demand for grain

quality in the global rice industry (Fitzgerald et al., 2009). It has been

documented that ratoon rice cropping significantly contributes to a distinct

improvement in rice quality. For example, the physicochemical properties

and textural characteristics of cooked ratoon rice were highly improved

when compared to themain crop (Deng et al., 2021). Zhou (2006) andWu

(2005) claimed a significant decrease in chalky grain percentage in ratoon

rice as compared to the main crop. Recently, it has been documented that

ratoon rice significantly reduced grain chalkiness as compared to late-

seasonrice, indicating that suchan improvement in thechalkinessof ratoon

rice might be irrespective of the seasonal effect (Huang et al., 2020).

However, the potential molecular mechanism remains unclear. Despite

that, there is compelling evidence to claim the significance of ratoon rice

cropping for higher yield and better quality rice.

Grain filling is the final stage of growth for cereals with a duration

that continues into maturity. Grain filling will initiate source-to-sink

transport for delivering the carbon and nitrogen substances into

caryopsis (Cruz-Aguado et al., 1999) and, as a result, determine the

yield and quality of cereals (Zhang et al., 2021; Wang et al., 2008;

Shimoyanagi et al., 2021). However, both source-to-sink transport

and grain-filling properties are distinctly different in the comparisons

between ratoon rice and traditionally-cultivated rice. Rice ratooning

can regenerate new spikes from auxiiary buds on the residual stubbles

and break into the grain-filling stage instead of undergoing a long-day

vegetative growth period (Lin et al., 2015). This means that there is an

inherent pre-start and speed-up for senescence occurring in ratoon

rice. It was previously pointed out that a whole senescence sequence

of cereal is required to remobilize and transfer assimilates pre-stored

in vegetative tissues to grains (Yang and Zhang, 2006). It has been

widely accepted that the role of plant hormones, especially regarding

abscisic acid (ABA), determines the intimate relationship between

senescence and carbon reserve remobilization (Yang et al., 2002; Yang

et al., 2006; Wu et al., 2008). For example, ABA promotes the

transference of carbohydrates from stem to grain by regulating the

relative gene expression in carbon reserve remobilization (Wang and
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Zhang, 2020; Wang et al., 2020). Meanwhile, the sucrose and abscisic

acid interaction affected the activities of key enzymes in sucrose-to-

starch conversion (Tang et al., 2009; Wang et al., 2015), thereby

regulating the grain-filling process. Abscisic acid, a kind of dominant

hormone in rice senescence (Mao et al., 2017; Sakuraba et al., 2020),

was documented to be enriched in the source tissues of ratoon rice at

post-anthesis while displaying low levels in their counterparts of the

single-cropping late rice (Zhou, 2020). These results indicated a

potential ABA-dominated senescence with additional effects of

carbon reserve remobilization and grain filling process underlying

rice ratooning. Except for ABA-associated senescence, environmental

stimuli are also a major contributing factor inducing the senescence

process in rice (Yang et al., 2001a; Yang et al., 2001b; Yang et al., 2002;

Kim et al., 2011; Prathap et al., 2019; Ren et al., 2021). Indeed,

controlled environmental stress helps in initiating the remobilization

of carbon reserves and thereby greatly contributes to an increase in

rice yield and grain quality (Yang et al., 2003; Yang et al., 2004).

However, ratoon rice might also exhibit poor grain filling as

traditionally-cultivated rice, particularly in the inferior spikelets

(Yang et al., 2000; Ishimaru et al., 2003), which often display a

stagnant status from 5 to 15 days after flowering (Zhang et al.,

2019). Furthermore, Yang and Zhang (2010) demonstrated that the

grain average weight and the average filling rate of inferior spikelets

were 20.9% and 20.7% lower than those of superior spikelets,

respectively. Besides, the poor activity of the involved enzymes in

sucrose-to-starch metabolism (Mohapatra et al., 2009; Zhang et al.,

2012) and lower hormone levels of ABA (Nonhebel and Griffin, 2020)

are the major factors that contribute to poor grain filling. It has been

previously documented that microRNA expression in seed

development may cause poor grain filling of rice (Peng et al., 2014).

Teng et al. (2022) demonstrated that starch synthesis and

phytohormone biosynthesis were affected by differentially expressed

microRNA leading to a decrease in rice yield. However, this standpoint

currently lacks further support based on genetic evidence. In contrast,

our research documented that the GF14f isoform of 14-3-3 proteins

could be considered the hub of the regulatory network responsible for

the poor grain filling in rice (Zhang et al., 2014; Zhang et al., 2015b;

Zhang et al., 2017). Recently, the molecular mechanism has revealed

that GF14f negatively affects rice grain filling in addition to interacting

with key enzymes in sucrose-to-starch conversion (Zhang et al., 2019).

Interestingly, the GF14f gene (encoding GF14f isoform of 14-3-3

proteins) was weakly expressed in the grains of ratoon rice during the

time course of 7 to 28 days after flowering while taking a turn for highly

up-regulated expression at 35 days, as compared to its counterparts in

both early-season rice and late-season rice (Supplementary Figure S1).

These results indicated the potential associations between differentially

expressed GF14f and the grain filling process underlying rice ratooning.

Therefore, in this study, we analyzed the rice yield and grain

quality comparing early-season rice, ratoon rice, and late-season rice

with additional evaluation of carbon reserves remobilization. A

further aim was to elucidate the key roles the GF14f gene has on

carbon reserves remobilization, grain filling properties, starch

composition, and structure. Finally, our aim was to understand

whether gene-dependent regulation by GF14f had an impact on rice

yield and quality improvement under rice ratooning, irrespective of

seasonal or environmental effects.
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Materials and methods

Experimental design and materials

GF14f-RNAi line, GF14f mutant, and their WT (Jinhui-809) were

grown at the Experiment Station of Fujian Agriculture and Forestry

University, Fuzhou, Fujian, China (119.280E, 26.080N). The GF14f-

RNAi line was obtained by transgenic technology as previously

described (Zhang et al., 2019), displaying a specific suppression of

GF14f gene expression. The GF14f mutant was obtained from the T-

DNA-inserted japonica line Dongjin, displaying the loss in expression

of the GF14f gene (http://signal.salk.edu/cgi-bin/RiceGE). The

suppression degree of the GF14f-RNAi line and GF14f mutant was

investigated using qRT-PCR (Figure S2). Field trials were performed

from March 2019 to October 2019 and repeated from March 2020 to

October 2020. Weather data from 2019 and weather data from 2020

are provided in Supplementary Figures S3–S4. To provide evidence

for revealing the key role of the GF14f gene in ratoon rice, the GF14f-

RNAi line, GF14f Mutant, and the corresponding WT were

specifically grown as ratoon rice and late-season rice, having the

same or different genetic background and having a synchronized

heading time. Planting and fertilization were conducted as in our

previous research (Lin et al., 2022). These plant materials were

provided by Fujian Provincial Key Laboratory of Agroecological

Processing & Safety Monitoring, Fujian Agriculture and Forestry

University, Fuzhou 350002, China.
Evaluation of the ability of carbon
reserve remobilization

The harvested rice plants were sampled at the heading stage and

at maturity, respectively. Then, the plant materials were further

divided into four tissue parts, which contained roots, stems, leaves,

and grains. Here, the whole root, whole stem, whole leaf, and full-

filled grains were respectively collected with their three replications to

form a composite sample. Three composite samples were used as the

three biological replications in the following experiments. Then, the

samples were immediately dried in a forced-air dryer at 80 °C to

constant weight for the estimation of dry matter weight (Ying et al.,

1998). Stems and leaves were freeze-dried and ground to a fine

powder for the estimation of non-structural carbohydrates (NSC).

Total soluble sugar content was measured by a colorimetric method of

anthracenone determination (Yang et al., 2001b; Wang et al., 2020).

Total starch content was measured spectrophotometrically (Li and

Peng, 2018). The absorbance was measured at 630 nm using a

spectrophotometer (Model 340, Sequoia-Turner Co., Taiwan). Total

NSC content was calculated as the sum of total soluble sugar and total

starch. Other calculation formulas are as follows. Here, the

transferable dry matter and transferable NSC were respectively

referred to as the reduction of dry matter and the reduction of NSC

in source tissues between the heading stage and the mature stage.

Dry matter translocation efficiency(% )

= (1 − (dry matters in source tissue at maturity=

dry matters in source tissue at heading stage)) � 100%
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Contribution of dry matter assimilation to grains( % )

= (transferable dry matters=grain weight)� 100%

NSC translocation efficiency(% )

= (1 − (NSC contents in source tissues at maturity=

NSC contents in source tissues at heading stage))

� 100%

Contribution of NSC to grains( % )

= (transferable NSC=grain weight)� 100%
Evaluation of yield performance and
grain quality

At maturity, rice plants with uniform morphological features were

harvested. Each panicle that had a seed setting percentage of over 50%

was considered a productive panicle and grain weight was calculated

based on 200 grains and was converted to 1,000-grain weight (Li et al.,

2014). The seed-setting percentage, per-unit yield, and harvest index

were calculated as previously described (Huang et al., 2020; Lin et al.,

2022). Seed-setting percentage (%) = filled grains/(filled grains +

partially filled grains + unfilled grains) × 100%, per-unit yield (t·ha-1)

= total rice yield/whole-field area and harvest index (%) = grain dry

weight/biological yield of overground parts × 100%. The panicles that

were headed on the same day were tagged and then used to calculate the

grain number per spike. The annual rice yield of ratoon rice was

composed of the yield of early-season rice and the yield of ratoon rice.

Daily average yield = per-unit yield/duration of the growing period.

Brown rice yield, milled rice yield, and head rice yield were counted

according to the “Chinese agricultural standard: NY/T 83-2017”

(Ministry of Agriculture of the PRC, 2017). Chalky grain percentage

and chalkiness degree were measured using a grain scanner

(ScanMaker i800 plus, Microtek, Shanghai) according to the

manufacturer’s instructions. Chalky grain percentage = (numbers of

chalky grains/numbers of total grains) × 100%. Chalkiness degree =

(sum of chalky area/sum of whole grain area) × 100%.
Assay of starch composition in
the endosperm

Amylose content was measured using a continuous flow analytical

system (Skalar San++ System, Netherlands). Standards were prepared

using potato amylose (Solarbio, China) with a concentration gradient

of 2%, 4%, 8%, 12%, 16%, 20%, and 32%. The absorbance of amylose

content was determined at 600 nm. Total starch content was

measured spectrophotometrically based on the determination of the

absorbance of glucose concentration at 540 nm (Li and Peng, 2018).

According to the transformational equation between starch and

glucose, total starch content was calculated by the following

formula: Total starch content (mg·g-1) = glucose concentration × 10
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× 9.11 ml × 0.9/(50 × 1000). Amylopectin content = total starch

content - amylose content (Prathap et al., 2019).
Scanning electron microscopy analysis of
the endosperm fine structure

According to the method described by Li et al., 2014, milled rice

grains were cut in the middle and coated with gold under vacuum

conditions. The starch morphology in the belly part of the endosperm

was examined using a scanning electron microscope (Phenom ProX,

FEI NanoPorts, America) at an accelerating voltage of 10 kV and a

spot size of 30 nm.
Transcriptomic and bioinformatics analysis

The GF14f mutant should be more genetically stable in the

disturbing function of this gene than the GF14f-RNAi line.

Therefore, we used the rice grains which were sampled from the

GF14f mutant and its WT Dongjin for the following RNA sequencing.

Total RNA was extracted from these two rice lines on the 7th day after

flowering. Grains from ten tagged panicles were collected and

combined into an independent biological replication for each

sample (at least 3 replicates). Total RNA was extracted using a

TRIzol reagent (TransGen Biotech, China) and double-stranded

cDNA was synthesized and purified using a QIAquick PCR

extraction Kit (QIAGEN Inc., USA). The size-selected DNA of PCR

products was ligated by pulse-field gel electrophoresis. We

constructed cDNA libraries and completed Illumina sequencing

(Illumina Hiseq™ 2500, America) at Majorbio company, China.

For further bioinformatic analysis, the reads with > 50% low-

quality bases (Q-value of ≤30) or >10% of unknown nucleotides were

removed (Lin et al., 2022). Transcriptome assembly was performed

using the short-read assembly program Trinity (Grabherr et al.,

2011). The unigene expression abundance was normalized to reads

per kb per million reads (RPKM) using the following formula: RPKM

= (1,000,000 × C)/(N × L/1000). Here, C is the number of reads that

are uniquely mapped to one unigene, N is the total number of reads

that are uniquely mapped to all unigenes and L is the length (base

number) of one unigene (Fang et al., 2017). Further analysis and

graphing were performed according to our previous research (Lin

et al., 2021; Lin et al., 2022). More specifically, the edgeR package

(http://www.r-project.org/) was used to identify differentially

expressed genes (DEGs). Target proteins of DEGs were collectively

annotated according to their numeric order in the GO database

(http://www.geneontology.org/). GO terms with a p-value< 0.05 and

an FDR< 0.05 were defined as the significant terms. GO enrichment

analysis displayed the key DEGs that were clustered into their

corresponding GO terms (https://www.omicshare.com).
Assay of H2O2 concentration, O2 production
ratio, and MDA content

The crude proteins of grain samples were extracted at 4°C, and

then H2O2 concentration, O−
2 production rate, and MDA
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concentration were determined according to previously published

methods (Ke et al., 2007; Chakrabarty and Datta, 2008).
Data processing and statistical analysis

SPSS v. 25.0 (IBM Corp., Armonk, NY, USA) and Origin pro 2021

(OriginLab Corp., Northampton, MA, USA) were used for data

processing and analysis of variance (ANOVA). Significant

differences were evaluated with a p-value< 0.05.
Results

An extensive carbon reserve remobilization
induced by rice ratooning

The ability to remobilize the carbon reserves significantly

contributes to rice yield and grain quality. Here, both dry matter

translocation efficiency and contribution of dry matter assimilation

to grains in the different source tissues of ratoon rice were higher

than in their counterparts in early-season rice and those in late-

season rice. In 2019, the dry matter translocation efficiency in the

root, stem, and leaf of the ratoon rice significantly (P< 0.05)

increased by 7.9%, 24.4%, and 40.2%, respectively, as compared to

early-season rice. Whereas, those parameters significantly (P< 0.05)

increased by 9.0%, 37.5%, and 41.5% when compared to late-season

rice. The contribution of dry matter assimilation to grains in the

root, stem, and leaf of the ratoon rice significantly (P< 0.05)

increased by 1.3%, 2.8%, and 2.4%, respectively, as compared to

early-season rice. Furthermore, those parameters significantly (P<

0.05) increased by 1.1%, 2.9%, and 1.9% when compared to late-

season rice. In 2020, a similar scenario was observed in the dry

matter translocation efficiency and contribution of dry matter

assimilation to grains, which were higher in the ratoon rice than

those of early-season rice and of late-season rice. Consistently, both

NSC translocation efficiency and contribution of NSC to grains in

the different source tissues of the ratoon rice were also higher than

in their counterparts in early-season rice and those in late-season

rice. In 2019, the NSC translocation efficiency in the root, stem, and

leaf of the ratoon rice significantly (P< 0.05) increased by 11.4%,

15.0%, and 16.5%, respectively, as compared to early-season rice. In

contrast, those parameters significantly (P< 0.05) increased by 6.4%,

22.0%, and 13.0% when compared to late-season rice. In addition,

the contribution of NSC to grains in the root, stem, and leaf of the

ratoon rice significantly (P< 0.05) increased by 4.7%, 1.5%, and 2.0%

when compared to early-season rice, while significantly (P< 0.05)

increased by 4.1%, 1.7%, and 1.6% when compared to late-season

rice. In 2020, the NSC translocation efficiency and the contribution

of NSC to grains significantly (P< 0.05) increased in the root, stem,

and leaf of the ratoon rice as compared to their counterparts in

early-season rice and late-season rice (Table 1).

These results suggested that rice ratooning could induce an

extensive carbon reserve remobilization, thereby providing the

grains with more carbon substances.
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Yield performance and grain quality
improvement underlying rice ratooning

In our work, yield performance varied significantly between early-

season rice, ratoon rice, and late-season rice. Between these treatments,

panicle number, grain number per spike, 1000-grain weight, and per-unit

yield all decreased in the ratoon rice. In contrast, the seed-settingpercentage

andharvest index of ratoon rice turned out to bemuchhigher than those of

early-season rice and of late-season rice. Furthermore, the results showed

that the daily average yield of the ratoon rice was significantly (P< 0.05)

higher than the daily average yield of early-season rice and of late-season

rice. In 2019, the daily average yield of ratoon rice significantly (P< 0.05)

increasedby28.1%and28.6%whencompared toearly-seasonriceand late-

season rice, respectively. And in 2020, the daily average yield of ratoon rice

significantly (P< 0.05) increased by 16.6% and 22.6% when compared to

main and late crops. It has also been found that the annual rice yield of

ratoon rice (composed of main + ratooning crops) was significantly (P<

0.05) higher than the yield of late-season rice. In detail, the annual rice yield

of ratoon rice significantly (P< 0.05) increased by 60.5% in 2019 and

increased by 62.4% in 2020 (Table 2).

In addition, thekeyparameters of ricequality, suchasbrownrice yield,

milled rice yield, head rice yield, chalky grain percentage, and chalkiness

degree, were thoroughly investigated. In 2019, the head rice yield of the

ratoon rice significantly (P< 0.05) increased by 2.1% and 2.3% when

compared to early-season rice and late-season rice, respectively. However,
Frontiers in Plant Science 05
the chalky grain percentage of the ratoon rice significantly (P< 0.05)

reduced by 4.1%and 3.2%when compared to its counterparts ofmain and

late crops. Likewise, the chalkiness degree of the ratoon rice significantly

(P< 0.05) reduced by 1.8% and 1.5% when compared to early-cropping

season and late-season rice, respectively. Consistently, in 2020, the head

rice yield of the ratoon ricewas significantly (P<0.05) higher than thehead

rice yield of early-season rice andof late-season rice. In contrast, the chalky

grainpercentage and the chalkiness degree of ratoon ricewere significantly

(P< 0.05) lower than in their counterparts of early-season rice and late-

season rice. Finally, the data did not display any statistical or biological

differences in either brown rice yield or milled rice yield between early-

season rice, ratoon rice, and late-season rice (Table 2).

In general, our results suggested distinct progress in improving

head rice yield and grain chalkiness under rice ratooning. Moreover,

the daily average yield of the ratoon rice was improved significantly by

depending on the shorter growing period with the additional

advantage of increasing the annual rice yield of ratoon rice.
GF14f gene impacts on yield performance
and grain chalkiness improvement
underlying rice ratooning

As was previously described above, per-unit yield in combination

with panicle number, grain number per spike, and 1000-grain weight
TABLE 1 Comparison of carbon reserve remobilization between early-season rice, ratoon rice, and late-season rice.

Years Tissues Cultivation
system

Dry matter transference
ratio (%)

Dry matter
contribution
ratio (%)

NSC translocation
efficiency (%)

Contribution of NSC
to grains (%)

2019

Root

MR 8.3 ± 0.2b 6.6 ± 0.2b 35.2 ± 2.7c 6.2 ± 0.7c

RR 16.2 ± 0.3a 7.9 ± 0.2a 46.6 ± 2.4a 10.9 ± 1.0a

LR 7.2 ± 0.3c 6.8 ± 0.3b 40.2 ± 5.7b 6.8 ± 0.7b

Stem

MR 15.6 ± 0.1b 13.4 ± 0.2b 46.4 ± 3.8b 6.5 ± 1.1b

RR 40.0 ± 0.2a 16.2 ± 0.2a 61.4 ± 1.4a 8.0 ± 0.4a

LR 12.5 ± 0.1c 13.3 ± 0.2b 39.4 ± 4.3c 6.3 ± 1.3b

Leaf

MR 16.5 ± 0.4b 10.4 ± 0.3b 39.9 ± 3.6b 2.9 ± 0.4b

RR 56.7 ± 1.4a 12.8 ± 0.3a 56.4 ± 4.7a 4.9 ± 0.9a

LR 15.2 ± 0.4b 10.9 ± 0.3b 43.4 ± 4.5b 3.3 ± 0.7b

2020

Root

MR 4.5±0.2b 3.4 ± 0.1b 36.2 ± 9.2b 4.2 ± 1.1b

RR 9.2±0.7a 4.4 ± 0.3a 43.8 ± 5.8a 6.5 ± 0.8a

LR 3.7±0.1b 3.4 ± 0.1b 33.3 ± 3.9b 4.2 ± 0.7b

Stem

MR 16.0±0.2b 13.9 ± 0.2b 36.2 ± 2.5b 8.5 ± 0.6c

RR 33.8±0.5a 16.3 ± 0.3a 73.0 ± 1.1a 11.2 ± 0.5a

LR 12.7±0.3c 12.8 ± 0.4c 28.0 ± 2.8c 9.4 ± 0.4b

Leaf

MR 12.4±0.3b 7.0 ± 0.2b 29.9 ± 4.0b 2.6 ± 0.5b

RR 41.7±1.2a 8.9 ± 0.3a 42.0 ± 6.1a 3.2 ± 0.7a

LR 10.5±0.3b 6.2 ± 0.1c 32.7 ± 6.3b 2.9 ± 0.7b
Superscript letters indicate statistical groups that are significantly different (P< 0.05, ANOVA) between early-season rice, ratoon rice, and late-season rice. Note: Jinhui-809 was used as the tested
cultivar in the two-year experiment; MR, RR, and LR represent early-season rice, ratoon rice, and late-season rice, respectively.
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all performed at lower levels in the ratoon rice than their counterparts

in late-season rice. However, these yield-related parameters strongly

increased in either the GF14f-RNAi line or the GF14f mutant,

respectively, as compared to their corresponding WT. In detail,

panicle number, grain number per spike, 1000-grain weight as well

as seed-setting percentage, harvest index daily average yield, and per-

unit yield in ratoon rice of the GF14f-RNAi line significantly (P< 0.05)

increased by 42.0%, 24.9%, 5.3% 6.3%, 4.3%, 7.3%, and 28.6% when

compared to those in ratoon rice of the WT (Jinhui-809). Likewise,

those yield-related parameters significantly (P< 0.05) increased by

25.0%, 92.5%, 7.6%, 3.1%, 4.0%, 21.7%, and 27.2% in ratoon rice of

the GF14f mutant as compared to its WT (Dongjin) (Figures 1A–G).

In addition, the data did not display statistical and biological

differences in brown rice yield, milled rice yield, and head rice yield

between the GF14f-RNAi line, GF14f mutant, and their WT when

grown as ratoon rice (Figures 1H–J). However, the low levels of chalky

grain percentage and chalkiness degree in ratoon rice of the WT were

significantly (P< 0.05) reduced by 0.4% and 2.8% in ratoon rice of the

GF14f-RNAi line. Consistently, chalky grain percentage and

chalkiness degree were significantly (P< 0.05) reduced by 2.5% and

1.6% in ratoon rice of the GF14f mutant as compared to those in

ratoon rice of its WT. Chalky grain percentage and chalkiness degree

in late-season rice of the WT also significantly improved (P< 0.05)

when the GF14f gene function was suppressed (Figures 1K–L).

Furthermore, ANOVA analysis indicated that most of the

evaluative parameters (except brown rice yield, milled rice yield,

and head rice yield) were simultaneously significantly influenced by
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two factors, namely cultivation system and genotype. The changes

occurring in panicle number, grain number per spike, 1000-grain

weight, per-unit yield, daily average yield, chalky grain percentage,

and chalkiness were even affected by the cultivation system, genotype,

and interaction effects between cultivation system and

genotype (Figure 1).

Thus, these results suggested that yield performance and grain

quality improvement underlying rice ratooning were strongly

dependent on the GF14f, which negatively affected yield

performance and grain chalkiness.
GF14f gene impacts on carbon reserve
remobilization and sucrose-to-starch
biosynthesis underlying rice ratooning

As previously described, dry matter translocation efficiency and

dry matter assimilation from root to grains were displayed at higher

levels in the ratoon rice as compared to their low levels in late-season

rice. A significant (P< 0.05) increase in dry matter translocation

efficiency and dry matter assimilation to grains were further achieved

in the root of the GF14f-RNAi line and the GF14f mutant, whether

grown as ratoon rice or late-season rice, as compared to those in their

counterparts of the WT. Moreover, NSC translocation efficiency and

contribution of NSC from either stem or leaf to grains also displayed

distinct improvements in the ratoon rice of the GF14f-RNAi line and

the GF14f mutant, respectively (Figure 2A). During the grain-filling
TABLE 2 Comparison of grain quality and yield performance between early-season rice, ratoon rice, and late-season rice.

Parameters 2019 2020

MR RR LR MR RR LR

Brown rice yield (%) 86.9±0.4a 86.3±0.2a 87.0±0.2a 85.5±0.6a 85.5±0.8a 86.9±0.8a

Milled rice yield (%) 70.7±1.0a 72.2±0.9a 70.7±0.8a 73.9±1.0a 76.9±0.8a 74.1±1.0a

Head rice yield (%) 65.3±1.1b 67.4±1.4a 64.7±1.0b 66.3±0.8b 70.5±0.8a 65.7±1.3b

Chalky grain percentage
(%)

6.2±0.3a 2.1±0.1b 5.3±0.4a 8.0±0.5a 2.7±0.1b 6.7±0.2a

Chalkiness degree (%) 5.3±0.9a 3.5±0.2b 5.0±0.3a 5.3±0.4a 2.2±0.2b 5.5±0.2a

Panicle number (Pcs) 13.2±1.7a 10.0±1.4b 12.8±1.2a 12.2±1.3a 10.6±1.1a 11.8±0.7a

Grain number per spike
(Pcs)

275.6±5.1a 183.4±3.4b 273.6±10.8a 280.0±4.3a 162.6±3.3b 286.0±7.9a

1000-grain weight (g) 26.8±0.9a 24.7±0.9b 27.0±0.5a 27.2±0.4a 25.8±0.7b 27.2±0.3a

Seed-setting percentage
(%)

81.8±1.8b 86.7±1.6a 82.2±1.1b 80.8±1.4b 85.3±0.7a 82.0±0.9b

Harvest index
(%)

43.4±2.4b 51.3±2.0a 44.2±2.4b 41.8±1.6b 45.1±1.2a 41.6±1.3b

Per-unit yield (t·ha-1) 8.2±0.3a 5.6±0.1b 8.6±0.1a 8.5±0.3a 5.3±0.2b 8.5±0.4a

Daily average yield (kg·ha-
1)

70.5±1.2b 90.3±1.8a 70.2±2.5b 73.1±1.5b 85.2±2.8a 69.5±0.5b

Annual rice yield (t·ha-1) 13.8 ± 0.4a 8.6±0.1b 13.8±0.5a 8.5±0.4b
Superscript letters indicate statistical groups that are significantly different (P< 0.05, ANOVA) between early-season rice, ratoon rice, and late-season rice, except for annual rice yield. The annual rice
yield of ratoon rice was composed of two season yields and superscript letters here indicate statistical groups that are significantly different (P< 0.05, t-test) between main+ratooning crops and late-
season rice. Note: Jinhui-809 was used as the tested cultivar in the two-year experiment; MR, RR, and LR represent early-season rice, ratoon rice, and late-season rice, respectively.
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stage, the key enzymes in the sucrose-to-starch biosynthesis, which

contained ADPGase, soluble starch synthase, and starch branching

enzyme, reached greatly higher levels in not only ratoon rice but also

in late-season rice when the GF14f gene was suppressed (Figure 2B).

Starch is the main substance for rice grain and scattered starch

granules are the main contributing factor leading to poor grain

quality. Here, amylose content, amylopectin content, and amylose/

amylopectin ratio in the ratoon rice of the GF14f-RNAi line

significantly (P< 0.05) increased by 11.3%, 8.3%, and 17.4%,

respectively, when compared to those in the ratoon rice of the WT.

Amylose content, amylopectin content, and amylose/amylopectin

ratio in the ratoon rice of the GF14f mutant significantly (P< 0.05)

increased by 9.0%, 8.1%, and 16.2% as compared to its WT

(Figures 3A–C). Further analysis revealed that the ratoon rice of the

GF14f mutant contained lower numbers and surface areas of scattered

starch granules in the endosperm, displaying a complete and compact

starch structure in contrast to the WT (Figures 3D–K).
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Thus, these results indicated the regulatory roles of the GF14f

gene negatively impacting carbon reserve remobilization and starch

accumulation in the ratoon rice.
GF14f gene modulates the gene-dependent
plant resistance under rice ratooning

We further investigated the regulatory roles for the GF14f

encoded regulator underlying rice ratooning using transcriptome

analysis. As a result, there were 948 differentially expressed genes

(DEGs) significantly (|Fold change| > 2, P< 0.05) varying between

ratoon rice and late-season rice in the WT (Dongjin). However, 340

DEGs that were significantly (|Fold change| > 2, P< 0.05) different

could be detected when comparing ratoon rice and late-season rice

using the GF14F Mutant. Among these, 252 DEGs were highly

differentially expressed in both the GF14F Mutant and the WT
A B
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FIGURE 1

Comparisons in grain quality and yield performance between GF14f-RNAi line, GF14f mutant and their WT. (A): Panicle number; (B): Grain number per
spike: (C): 1000-grain weight; (D): Seed-setting percentage: (E): Harvest index; (F): Per-unit yield; (G): Daily average yield; (H): Brown rice yield: (I): Milled
rice yield: (J): Head rice yield: (K): Chalky grain percentage: (L): Chalkiness degree. Note: MR. RR and LR represent early-season rice, ratoon rice and
late-season rice, respectively. Superscript letters indicate statistical groups that are significantly different (P< 0.05, ANOVA). Asterisks indicate factors
contributing to the differences between samples (n.s., not significant; *P< 0.05; **P< 0.01; ***P< 0.001).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1112146
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lin et al. 10.3389/fpls.2023.1112146
(Figure 4A). Furthermore, the 252 DEGs were clustered into their

corresponding GO terms (Top 10) using GO enrichment analysis.

Among these, all the GO terms were involved in the processes of

response to environmental stimuli and stress (Figure 4B). Thus, the

differential expression of these functional genes could be considered

as the potential cause leading to differentiation in stimuli-related

plant resistance.

To further test the impact of the presence of the GF14f on plant

resistance, the H2O2 concentration, O−
2 production rate, and MDA

concentration in rice grains were investigated. It could be shown that

either the GF14f-RANi line or the GF14f mutant accumulated ROS

and MDA during the grain-filling stage at very low levels.
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Interestingly, H2O2 concentration, O−
2 production ratio, and MDA

concentration in the late-season rice displayed lower levels when the

GF14f gene was suppressed but showed much higher levels when

monitoring their levels in late-season rice of the WT (Figures 4C–E).

Furthermore, we performed qRT-PCR to investigate the differential

gene expression of key genes regarding transcriptome analysis as

described above. The results displayed that CAT-A, CAT-B, CAT-B

(which encode catalase), OsAPX1, OsAPX2, OsAPX4 (which encode

ascorbate peroxidase), and OsGPX1, OsGPX2, OsGPX4 (which

encode glutathione peroxidase) greatly increased in the ratoon rice

of the GF14f mutant when compared to those in the ratoon rice of the

WT (Figures S5A–I).
A

B

FIGURE 2

Comparisons in carbon reserve remobilization and sucrose-to-starch biosynthesis between GF14f-RNAi line, GF14f mutant and their WT. (A): Carbon
reserve remobilization in source tissues was mediated by the presence of the GF14f gene. Note: MR, RR and LR represent early-season rice, ratoon rice
and late-season rice, respectively. Superscript letters indicate statistical groups that are significantly different (P< 0.05, ANOVA). Asterisks indicate factors
contributing to the differences between samples (n.s., not significant; *P< 0.05; **P< 0.01; ***P< 0.001). (B): Starch biosynthesis were enhanced by
suppression of the GF14f gene. ADPGase, soluble starch enzyme and starch branching enzyme were essential for sucrose-to-starch biosynthesis.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1112146
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lin et al. 10.3389/fpls.2023.1112146
Thus, these results indicated the essential roles of the GF14f gene

in impacting plant resistance and ROS removal in the ratoon rice.
Discussion

Ratoon rice cropping contributes to high rice yield and higher

quality that can satisfy the present market demands (Xu et al., 2021),

thereby increasingly becoming popular in worldwide rice production

(Nakano et al., 2020; Wang et al., 2021; Xu et al., 2022). However, the

potential mechanism affecting yield performance and grain quality

underlying rice ratooning needs to be further investigated. In this

study, a key gene, GF14f, impacting rice yield and quality as the

regulatory hub in ratoon rice was explored for the first time.

Furthermore, we discussed the essential roles and implications of

how the GF14f gene impacts rice yield and grain quality under rice

ratooning, irrespective of seasonal or environmental effects.

Carbon reserves remobilization is the basis for the grain filling of

cereals leading to source-to-sink transport (Yang et al., 2006). Our

finding demonstrated that rice ratooning was able to initiate extensive

remobilization of carbon reserves to provide the grains with more

carbon substances. Therefore, current knowledge (Yang et al., 2001a;

Yang et al., 2001b; Wang et al., 2020) allows us to infer the following

scenario—yield performance and grain quality in the ratoon rice are
Frontiers in Plant Science 09
predicted to achieve higher levels. In our work, chalky grain

percentage and chalkiness degrees were highly improved when rice

plants were grown as ratoon rice. This result indicated a distinct

improvement in rice appearance quality under rice ratooning.

However, per-unit yield in combination with panicle number, grain

number per spike, and 1000-grain weight in the ratoon rice were

significantly reduced when compared to those in the early-season rice

and those in the late-season rice. It seems that rice ratooning in

particular contributes to obtaining higher grain quality rather than

higher yield. However, this is only true if applied universally without

considering the growing period. Under normal circumstances, the

duration of the growing phase of traditionally-cultivated rice was

longer than the duration of the growing phase of ratoon rice (Wang

et al., 2020; Xu et al., 2021). Rice ratooning initiated grain filling once

the new spikes were regenerated from auxiliary buds on the residual

stubbles (Lin et al., 2015; Lin, 2019), thereby reducing the duration of

the vegetative growth period. We, therefore, determined the daily

average yield of ratoon rice. Consequently, the daily average yield was

highly improved when monitoring ratoon rice. In addition, seed-

setting percentage and harvest index were both displayed at higher

levels in the grains of ratoon rice than their levels in either early-

season rice or late-season rice. Not only that, the annual rice yield of

ratoon rice (composed of main + ratooning crops) was much higher

than the yield of single-cropping late rice. Thus, ratoon rice cropping
A B
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FIGURE 3

Comparisons in starch composition and scanning electron microscope observation in endosperm structure. (A–C): Amylose, amylopectin and amylose/
amylopectin ratio that varied between GF14f-RNAi line, GF14f mutant and their WT; (D–K): Scanning electron microscopy images of the starch granules in
endosperm. Positions marked by rectangles in the middle bellies of the endosperm. Scale bars: 250 times magnificention (top); 5000 times magnificention
(bottom). Black arrows point loosened starch granules and yellow arrows point the loss of compositional parts of starch. MR, RR and LR represent early-season
rice, ratoon rice and late-season rice, respectively.
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is especially applicable for greater rice production in Southern China

because light and temperature resources are enough for one seasonal

crop but insufficient for two seasons (Lin et al., 2015; Huang et al.,

2020; Xu et al., 2022). Southern China, which makes the greatest

contribution to China’s rice industry, has currently been constrained

by labor shortage (Deng et al., 2019), water scarcity (Zhuang et al.,

2021), negative environmental impacts (Zhang et al., 2015a; Shen

et al., 2021), and a lower economic return (Yu et al., 2021). Therefore,

our finding provides compelling evidence to highlight the significance

of ratoon rice cropping in Southern China. Importantly, such

reductions involving per-unit yield, panicle number, grain number

per spike, and 1000-grain weight of ratoon rice were highly improved

when the GF14f gene was thoroughly suppressed. Additionally, the

original high-quality of ratoon rice was further improved when
Frontiers in Plant Science 10
investigating the GF14f-RNAi line and the GF14f mutant. A further

significance was to observe how it was possible to achieve higher levels

of yield performance and grain quality of ratoon rice via suppression

of the GF14f gene. Furthermore, all analyses were conducted based on

the comparison between ratoon rice and late-season rice, having the

same or a different genetic background and the synchronized rice

heading time so as to remove the seasonal and environmental effects.

Therefore, our finding provided the basis for a hypothesis that the

gene-dependent effect by the GF14f determines the yield performance

and grain quality underlying rice ratooning.

Grain filling of cereals is an essential process catalyzed by a series

of enzymes from sucrose-to-starch biosynthesis (Yang et al., 2003;

Yang et al., 2004; Tang et al., 2009). Carbon substances were quickly

transferred from source tissues into grains (Yang et al., 2001a; Yang et
A B

D
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C

FIGURE 4

GF14f gene modulates the gene-dependent response to environmental stimuli underlying rice ratooning (A) Up-set analysis of GF14 mutant and its WT.
(B): Go enrichment analysis (TOP 10) of the 252 key DEGS which were differentially expressed in the pathways of both the GF14f mutant and the
corresponding WT. GO database (http://www.geneontology.org/) was used to annotate the DEGs. The data showing the differentially expressed genes
were visualized using Circos (Version 0.69, http://circos.ca/). Each gene was classified as belonging to their sample groups and was assigned to one
special color in chordal diagram. (C) Temporal pattern of H2O2 concentration during grain-filling stage. (D) Temporal pattem of O−

2 production rate
during grain-filling stage. (E) Temporal pattern of MDA concentration during grain-filling stage.
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al., 2001b). In our work, the carbon reserves remobilization in the

ratoon rice of the GF14f-RNAi line and the GF14f mutant were also

further improved when compared to their WT. Meanwhile, the key

enzymes in sucrose-to-starch biosynthesis were kept at high levels

during the whole grain-filling stage when the GF14f gene was

suppressed. It should be noted that high yield and rice quality are

positive results ensuing from a continued high enzymatic activity of

the key enzymes in starch biosynthesis (Yang et al., 2003; Yang et al.,

2004; Yang et al., 2006). In addition, it was previously documented

that starch is the most abundant and essential element in rice grain

and that it greatly affects grain quality (Burrell, 2003; Bao, 2019), and

this trait was influenced by starch composition, structure, and

properties (Gu et al., 2019; Peng et al., 2021; Zhu et al., 2021).

Furthermore, the currently available data in our work suggested

that starch compositions varied significantly between the GF14f-

RNAi line, the GF14f mutant, and their corresponding WT and,

ultimately, displayed lower numbers and surface areas of scattered

starch granules in the endosperm of both the GF14f-RNAi line and the

GF14f mutant. It has been documented that lower numbers and

surface areas of scattered starch granules in combination with a lower

amylose/amylopectin ratio significantly contributed to reduced grain

chalkiness (Wani et al., 2012; Schirmer et al., 2013; Li et al., 2014; Lin

et al., 2018). This is consistent with our findings, thereby indicating a

negative regulatory role of the GF14f gene, which impacted starch

composition and structure in the endosperm. Our findings, therefore,

indicated that the GF14f negatively affected several essential processes

in ratoon rice, namely carbon reserve remobilization, grain filling

process, and starch biosynthesis. Nonetheless, the in-depth molecular

mechanism associated with these processes needs to be further

investigated. In this study, a transcriptome analysis of the GF14f

mutant and its WT would provide a more comprehensive

understanding of how the GF14f regulates the grain filling of ratoon

rice at the transcriptional level. Consequently, the data was suggested

to be involved in the process of stimuli-related plant resistance.

Environmental stimuli are the main cause of poor grain filling

(Lawas et al., 2018; Yao et al., 2020), and oxidative and

environmental stress were easily induced by many environmental

stimuli, which led to excessive accumulation of ROS and MDA

(Kaneko et al., 2016; Sharma and Sharma, 2018). In addition,

carbon reserve remobilization and grain filling are long-term

processes with accompanying cell metabolism, thereby producing

several toxic compounds such as ROS. These were especially true

when examining the loss of rice yield and grain quality (Xing and

Zhang, 2010; Hakata et al., 2012; Lo et al., 2016; Suriyasak et al., 2017).

However, both the GF14f-RNAi line and the GF14f mutant were

better at increasing oxidative and environmental stress resistance as

compared to their WT via reducing ROS accumulation and gene

expression of the involved gene. Our findings, therefore, indicated

that the GF14f gene can modulate the gene-dependent plant

resistance and ROS removal in grains underlying rice ratooning. In

addition, we also investigated the key genes that were documented to

be essential for the chalky grain process and yield-related process. As

a result, these key genes were also highly expressed in the GF14f

mutant using a qRT-PCR analysis.

In summary, this study revealed the yield performance and grain

chalkiness improvement underlying rice ratooning. Such processes
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were further shown to be associated with a key gene, GF14f. The

GF14f had a negative impact on many aspects ranging from carbon

reserve remobilization, starch biosynthesis, stimuli-related plant

resistance, and ROS removal. The yield performance and grain

quality were, therefore, dependent on the GF14f gene, irrespective

of seasonal or environmental effects.
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