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tolerance in cereals

Songtao Liu1, Tinashe Zenda2, Zaimin Tian1*

and Zhihong Huang1*
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University, Zhangjiakou, China, 2State Key Laboratory of North China Crop Improvement and
Regulation, Hebei Agricultural University, Baoding, China
Drought (D) and heat (H) are the two major abiotic stresses hindering cereal crop

growth and productivity, either singly or in combination (D/+H), by imposing

various negative impacts on plant physiological and biochemical processes.

Consequently, this decreases overall cereal crop production and impacts

global food availability and human nutrition. To achieve global food and

nutrition security vis-a-vis global climate change, deployment of new

strategies for enhancing crop D/+H stress tolerance and higher nutritive value

in cereals is imperative. This depends on first gaining a mechanistic

understanding of the mechanisms underlying D/+H stress response.

Meanwhile, functional genomics has revealed several stress-related genes that

have been successfully used in target-gene approach to generate stress-tolerant

cultivars and sustain crop productivity over the past decades. However, the fast-

changing climate, coupled with the complexity and multigenic nature of D/+H

tolerance suggest that single-gene/trait targeting may not suffice in improving

such traits. Hence, in this review-cum-perspective, we advance that targeted

multiple-gene or metabolic pathway manipulation could represent the most

effective approach for improving D/+H stress tolerance. First, we highlight the

impact of D/+H stress on cereal crops, and the elaborate plant physiological and

molecular responses. We then discuss how key primary metabolism- and

secondary metabolism-related metabolic pathways, including carbon

metabolism, starch metabolism, phenylpropanoid biosynthesis, g-aminobutyric

acid (GABA) biosynthesis, and phytohormone biosynthesis and signaling can be

modified using modern molecular biotechnology approaches such as CRISPR-

Cas9 system and synthetic biology (Synbio) to enhance D/+H tolerance in cereal

crops. Understandably, several bottlenecks hinder metabolic pathway

modification, including those related to feedback regulation, gene functional

annotation, complex crosstalk between pathways, and metabolomics data and

spatiotemporal gene expressions analyses. Nonetheless, recent advances in

molecular biotechnology, genome-editing, single-cell metabolomics, and data

annotation and analysis approaches, when integrated, offer unprecedented
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opportunities for pathway engineering for enhancing crop D/+H stress tolerance

and improved yield. Especially, Synbio-based strategies will accelerate the

development of climate resilient and nutrient-dense cereals, critical for

achieving global food security and combating malnutrition.
KEYWORDS

D/+H stress, metabolic pathway, synthetic biology, pathways crosstalk, cereal crops,
multiple-trait modification
1 Introduction

Crop plants` sedentary nature exposes them to persistent

environmental and pathogenic stresses, often causing harmful effects

(Ahanger et al., 2017; Iqbal et al., 2021b; Zhang et al., 2022a). Among

several abiotic stress factors, drought (DS) or/and heat stress (HS)

hinder plant fitness, growth and productivity the most (Lamaoui et al.,

2018; Tenorio Berrıó et al., 2022). Conspicuously, the unequivocal

climate change intensifies the intensities, durations and incidences of D

+H stress across spatiotemporal scales (Dai, 2013; Environment, U. N

2021; Zandalinas et al., 2021a). This aggravates the adverse impacts on

cereal crops such as wheat (Triticum aestivum), rice (Oryza sativa),

maize (Zea mays), barley (Hordeum vulgare) and sorghum (Sorghum

bicolor) across most terrestrial regions (Dhankher and Foyer, 2018;

Santini et al., 2022), consequently fuelling global food and nutrition

insecurities (Raza et al., 2019).

Particularly, the occurrence of D/+H stress at the reproductive

stage has more devastating effects than at any other phenological

stage in cereal crops (Barnabás et al., 2008; Sehgal et al., 2018).

Besides, the combinatorial effects of D+H are huge than each

individual stress effects compared (Zandalinas et al., 2018; Sinha

et al., 2021). Therefore, biotechnological approaches that emphasize

the development of transgenic crops under conditions mimicking

field situations and focusing on the plant reproductive stage will

significantly increase the opportunity of producing stress tolerant

crops. Especially, developing customized cereal crops harbouring

D/+H tolerance is critical for climate change resilience and food

security attainment (Zhang et al., 2018; Rivero et al., 2022).

Over the past decades, coupling conventional plant breeding to

modern approaches such as genomics assisted breeding (GAB) (Kole

et al., 2015; Raza et al., 2021; Varshney et al., 2021b; Yadav et al., 2021),

omics (Scossa et al., 2021; Zenda et al., 2021b; Singh et al., 2022),

genetic engineering (Krenek et al., 2015), biotechnology (Dwivedi et al.,

2020; Munaweera et al., 2022), and genome editing (Chen et al., 2019;

Gao, 2021) has helped us decode the multi-level nature of plant

responses to abiotic stresses, identify key genetic factors modulating

complex plant stress-regulatory networks, and introgress beneficial

traits, leading to practical applications in stress tolerance and quality

improvement in crops (Scheben et al., 2016; Voss-Fels et al., 2019;

Evans and Lawson, 2020; Gupta et al., 2020; Henry, 2020; Zenda et al.,

2021a; Munaweera et al., 2022). However, the large yield gaps still

evident in major crops, and our mounting quest to meet human food

needs, suggest that there is huge scope for significantly lessening abiotic
02
stress-induced decrease in potential crop yields. Therefore, in view of

the foregoing reasons, other avenues for improving crop tolerance to

abiotic stresses need to be pursued.

To date, several studies have generated stress tolerant phenotypes

by manipulating single traits/genes through the target-gene approach

(Umezawa et al., 2006; Reguera et al., 2012; Esmaeili et al., 2022).

However, the polygenic nature and complexity of D/+H tolerance

suggest that multiple genes or pathways participate in stress response

(Shinozaki and Yamaguchi-Shinozaki, 2007; Blum, 2011; Fang and

Xiong, 2015; Zhang et al., 2022a), and therefore, conspire against the

continued reliant on single-gene targeting to improve such traits; it

may not achieve the desire outcome, or may cause inhibition effects

on other protein functions or downstream pathways (Zhu et al., 2019;

Sharma et al., 2021). Thus, improving plant D/+H tolerance may

require deliberate metabolic pathway manipulation (see Box 1 for

definition), through simultaneous targeting of multiple traits/genes

within the same or interlinked pathways (Reguera et al., 2012; Zenda

et al., 2022). Meanwhile, several candidate metabolic pathways such

as g-aminobutyric acid (GABA) biosynthesis (Li et al., 2019; Balfagón

et al., 2022), starch biosynthesis (Pinheiro and Chaves, 2011; Hasan

et al., 2023), phenylpropanoid biosynthesis (Dong and Lin, 2021) and

phytohormonal signalling (Wani et al., 2016) have been implicated in

abiotic stress responses. For instance, GABA signalling regulates

stomatal opening to enhance plant water use efficiency (WUE) and

drought tolerance. In Arabidopsis (Arabidopsis thaliana), guard cell

GABA synthesis essentially and sufficiently minimizes stomatal

opening and transpirational water loss, thereby improving WUE

and drought tolerance, through negative regulation of the guard cell

tonoplast-embedded anion transporter (Xu et al., 2021a; Xu et al.,

2021b). Besides, several metabolites with emerging hormone and

antioxidant functions in plants have been identified and implicated in

D/+H stress tolerance, including myoinositol, phytomelatonin,

trehalose, serotonin, mannose, etc. (Obata et al., 2015; Guo et al.,

2018; Itam et al., 2020; Sun et al., 2021; Chen and Arnao, 2022; Raza

et al., 2022a). In wheat, for example, a metabolomics study showed

that sugars, amino acids, organic acids etc. dominated wheat shoot

metabolomic response and enhanced tolerance to drought (Guo et al.,

2018). Under prolonged drought stress, osmolytes such as proline,

mannose, sucrose, etc., were markedly accumulated, especially in the

tolerant genotype JD17. Additionally, drought induced significant

alterations in metabolic networks related to tricarboxylic acid cycle,

glutamate-mediated proline biosynthesis, glycolysis, shikimate-

mediated secondary metabolism and GABA biosynthesis (Guo
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et al., 2018), suggesting the important role these metabolic pathways

play in drought tolerance regulation. Similarly, in soybean (Glycine

max), myo-inositol and maltose were identified as essential D+H

stress biomarkers and were involved in catalase and amino acids

biosynthesis pathways (Vital et al., 2022). Additionally, it was

observed that under combined D+H stress, network heterogeneity

increases whilst integration among metabolic, morphological, and

physiological nodes is enhanced (Vital et al., 2022). With metabolite

profiles of plant tissues exposed to D/+H revealing a strong

relationship between metabolism and grain yield under stress

(Obata et al., 2015), such metabolomics studies can provide crucial

insights into plant metabolic responses to D/+H stress and reveal

novel key potential metabolite biomarkers for engineering D/+H

tolerance in cereals (Obata and Fernie, 2012; Michaletti et al., 2018;

Vital et al., 2022). However, despite their involvement in diverse

abiotic stress response, not much has been achieved in harnessing

these candidate metabolic pathways for engineering D/+H stress

tolerance in cereals.

In this review, therefore, we discuss how targeted manipulation of

specific key metabolic pathways (related to both primary and

secondary metabolism), using modern molecular biology tools and

approaches such as synthetic biology (Synbio) (see Box 2) (Shelake

et al., 2022) could help the efficient tailoring of D/+H stress tolerance

in cereal crops. In particular, we focus on how carbon metabolism,

starch metabolism, GABA biosynthesis, phenylpropanoid

biosynthesis and phytohormonal signalling pathways can be

deliberately altered to enhance D/+H stress tolerance. First, we

briefly highlight the effects of D/+H stress on cereal crops and the

corresponding plant responses, before we discuss the deliberate

modifications to those key metabolic pathways. We then proffer

some perspectives and prospects on metabolic pathway modification

for D/+H tolerance, which we hope will invigorate our pursuit to

develop climate-smart future crops.
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2 An overview of the impact of
drought or/and heat (D/+H)
stress on cereals

The impact of stress on crop plants is dependent upon stress

extent and exposure duration, as well as crop species, genotype and

growth stage (Gray and Brady, 2016; Fahad et al., 2017). Generally,

millets and sorghum can better tolerate D/+H stress than other

cereals (Satyavathi et al., 2021; Babele et al., 2022), with certain

genotypes exhibiting greater tolerance than others (Azzouz-Olden

et al., 2020; Pradhan et al., 2022a). Additionally, the R-stage is more

sensitive to D/+H stress than the seedling and vegetative stages

(Barnabás et al., 2008; De Storme and Geelen, 2014; Sehgal et al.,

2018; Lohani et al., 2020; Chaturvedi et al., 2021; Sinha et al., 2021).

Therefore, biotechnological approaches that focus on developing

transgenic crops under field or mimicked (close-to-field) conditions

and target the reproductive stage will considerably boost chances of

creating abiotic stress resilient cultivars (Reguera et al., 2012; Zenda

et al., 2022).

Water deficit disrupts numerous cellular and whole-plant

functions, exerting negative impacts on plant growth and

reproduction (Bray, 1997). Drought stress essentially decreases

stomatal conductance, which significantly limit transpiration and

CO2 assimilation for photosynthesis (Flexas et al., 2004),

consequently repressing plant growth and reproduction (Pinheiro

and Chaves, 2011). Indisputably, stress disturbs plant cellular

homeostasis, hinders key physiological and metabolic processes,

which affects overall plant growth (Rivero et al., 2022).

Chiefly, D/+H stress severely affects leaf photosynthesis (Prasad

et al., 2008; Pinheiro and Chaves, 2011; Costa et al., 2021), by evoking

ROS accumulation in the thylakoid membrane-localized photosystem

II (PSII) of the chloroplasts. This causes oxidative stress and damages to
BOX 1 Glossary

Biofortification: an innovative way of increasing crop micronutrient densities through conventional plant breeding, agronomic, or modern biotechnological approaches
during the growth of the crop.

Crop synthetic biology: an emerging interdisciplinary research field, driven by model design and engineering principles, which involves the construction of novel
biological parts, devices and complex systems, or reconstitution of the endemic biological systems for specific useful agronomic and nutritional purposes in crops.

Differential stress response: conflicting or contrasting morphological, physiological, biochemical or molecular adjustments (in respect to a specific given trait such as leaf
water loss) that plants (cultivars, species, genus, or clades) institute in their pursuit to aptly acclimate or adapt to the imposed stress.

Metabolic pathway manipulation: intentional modification of cellular metabolism for improved metabolic productivity for the desired outcomes. It is achieved in
different ways, viz., through (i) overexpression of upstream genes encoding rate-limiting enzymes or several key enzymes in the target pathway to increase metabolic flux
into that target pathway, (ii) repressing the expression (via knock-out or knock-down) of key enzyme genes in the competitive pathway/s of the branch point/s or the
degradation/catabolic pathway of the target product to eliminate intermediates diversion and negative feedback onto the target metabolite, (iii) concomitant expression of
multiple target genes within the same pathway, or simultaneous activation of multiple-pathway-involved key (hub) genes from interlinked pathways to increase metabolic
flux, and (iv) integration of the above approaches to maximize or optimize the biosynthesis of the target metabolite or molecule (Zhu et al., 2019).

Metabolic pathway: a set of molecular interactions between component enzymes/genes and their products that yield to the creation or alteration of some component of
the system, underpinning the proper functioning of a biological system. It is connected by intermediates and is linked to other pathways.

Pathways crosstalk: interaction between two or more different pathways, which may be metabolism (metabolites biosynthesis and degradation) or signal (stress, growth,
or development) transduction-related. A complex network of the converging modules is often created, with the outcome being either synergistic or antagonist depending
with the nature of the interaction.
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photosynthetic pigments and thylakoid membranes, consequently

escalating lipid peroxidation, PSII photochemistry inhibition,

photosynthesis reactions (electron transfer, ATP synthesis, etc.)

depression, programmed cell death, metabolic impairments, and

eventually, crop yield reduction (Ramachandra Reddy et al., 2004;

Fahad et al., 2017; Hussain et al., 2019; Zhao et al., 2020).

D/+H stress at floral meristem development constricts the overall

sink size by decreasing number of florets. Stress inhibits panicle

initiation and inflorescence development, resulting in mutilated floral

organs, and decreased spikelet number and size (Farooq et al., 2014;

Arshad et al., 2017; Begcy and Dresselhaus, 2018; Xu et al., 2021c).

Further, D/+H stress causes gametogenesis modification, with the

combined stress affecting male reproductive organs more than

female reproductive organs (Wang et al., 2019b; Zahra et al., 2021).

Pre-anthesis D/+H stress adversely impacts meiosis and ovaries

growth, whilst anthesis-stage stress reduces pollen synthesis and

transfer, consequently limiting kernel number (Arshad et al., 2017;

Qaseem et al., 2019; Choudhary et al., 2022).

Anthesis stage D/+H stress adversely impacts male and female

reproductive functions, including pollen germination, pollination, seed

set and yield (Barnabás et al., 2008; Alqudah et al., 2011). Combined D+H

stress considerably reduce days to anthesis (DTA) and days to maturity

(DTM); for example, in bread wheat, DTA and DTMwere reduced by 25

and 31%, respectively (Qaseem et al., 2019). In maize, HS alone at pre-
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anthesis (40/30 °C) and anthesis (36/26 °C) advanced tasselling and pollen

shedding duration, reduced the number and viability of pollen shed, and

lengthened ASI, consequently reducing final grain yield (Wang et al.,

2019b). Meanwhile, anther and pollen development are more prone to

stress, which leads to pollination and fertilization failures, and

consequently, reduced seed set (Prasad et al., 2006; Djanaguiraman et al.,

2020). D/+H stress-induced cytological changes cause drastic effects on

several physiological processes, including anther dehiscence, pollen

reception, pollen and stigma viability, pollen germination and

development, fertilization and seed formation, consequently impacting

yield (Farooq et al., 2014; Arshad et al., 2017; Lohani et al., 2020;

Chaturvedi et al., 2021; Zahra et al., 2021; Bheemanahalli et al., 2022).

At the seed growth stage, D/+H stress causes abortion of florets,

reduced cell expansion and growth, and significant seed size reduction,

which all contribute to depressed grain yields and quality in cereals

(Sehgal et al., 2018; Costa et al., 2021; Ndlovu et al., 2021;

Bheemanahalli et al., 2022). H+D stress arrests cell division and

expansion in the central and peripheral endodermis, thereby limiting

the breadth and length of the endodermis (Prasad et al., 2008).

Subsequently, grain sink potential is considerably reduced; eventually

leading to shrivelled grain and decreased mature grain mass (Zahra

et al., 2021). At the grain-filling stage, D/+H stress decreases seed

weight by quickening the grain-filling duration, consequently

diminishing grain yield and quality (Barnabás et al., 2008; Prasad
BOX 2 Plant synthetic biology at a nascent stage: can it deliver abiotic stress tolerance in cereals?

Synthetic biology (Synbio) is a fairly new research domain at the intersect of model design and engineering that aims to rationally and systematically construct novel
biological systems or modify the existing ones for specific purposes (Serrano, 2007; Liu and Stewart, 2015; Nemhauser and Torii, 2016; Zhu et al., 2021). The engineering
principles can be deployed at any level of biological organisation, from molecular to whole-organism (Serrano, 2007), and Synbio has significantly expanded the
approaches and tools for conventional biological research (Sargent et al., 2022).

Several modern tools and technologies anchor Synbio, including gene drivers, Golden Gate gene assembly, RNAi, CRISPR-Cas systems, machine learning, artificial
gene regulators and promoters, synthetic genetic circuits, biosensors, plastids and metabolic pathways (Kelwick et al., 2014; Braguy and Zurbriggen, 2016; Goold et al.,
2018; Garcıá-Granados et al., 2019; Lv et al., 2022). Whereas conventional genetic engineering entails manipulation or transfer of individual elements, Synbio can aptly
generate complex multigene constructs by simultaneous incorporation or modification of multiple components derived from natural hosts or synthetically synthesized
(Goold et al., 2018; Roell and Zurbriggen, 2020). Thus, Synbio enhances the utility of genetic engineering, facilitating for more rapid generation of improved crops
harbouring multiple complex traits, which is critical for climate change resilience (Sargent et al., 2022).

Synbio is transforming several disciplines including manufacturing (Köpke, 2022; Scown and Keasling, 2022), food (Lv et al., 2021), and medicine (Xie et al., 2020),
and rapidly gaining prominence in agriculture and plant research (Goold et al., 2018; Wurtzel et al., 2019; Steinwand and Ronald, 2020; Llorente et al., 2021). Already,
Synbio has been successfully applied to enhance photosynthesis (Głowacka et al., 2018; Batista-Silva et al., 2020; De Souza et al., 2022; Mao et al., 2023), plant disease and
pest resistance (Eakteiman et al., 2018; Pixley et al., 2019), and plant nutrition (Roell and Zurbriggen, 2020; Ryu et al., 2020; Yan et al., 2022).

The key question is: can it deliver abiotic stress tolerance in cereal crops? The answer is ‘yes’ (Cabello et al., 2014; Yang et al., 2020; Lohani et al., 2022), although
several bottlenecks still need to be overcome (Kwok, 2010; Brooks and Alper, 2021; Zhu et al., 2021). Synbio can facilitate D/+H tolerance and yield improvement by
enhancing photosynthesis, via re-tuning RuBisCO or other enzymes for better CO2 assimilation (Batista-Silva et al., 2020; Qu et al., 2021; Raines, 2022), and integration of
multiple genes to enhance photoprotection (De Souza et al., 2022). Additionally, WUE and drought resilience can be improved by introducing novel AQPs (Ermakova
et al., 2021), or manipulating ABA biosynthesis via engineering of ABA receptors (Park et al., 2015). Further, it will become more feasible to fine-tune activities of key
transcription factors and pleitropic genes to optimize productivity-stress defense trade-offs (Dwivedi et al., 2021; Husaini, 2022). Besides, Synbio can facilitate engineering
of genetic circuits able to confer prescribed spatiotemporal gene expression patterns. For instance, root development can be redesigned by quantitatively controlling lateral
root density (Brophy et al., 2022). Remarkably, Synbio can essentially facilitate trait/gene stacking or metabolic pathways integration, which enables creation of complex
and effective crop tolerance to certain stress combinations.

One of the key challenges in Synbio is how to rationally create new genetic circuits capable of achieving predictable functions in a diverse range of conditions (Garcıá-
Granados et al., 2019; da Fonseca-Pereira et al., 2022). Another bottleneck relates to the limited transferability of Synbio platforms and products to ‘outside-the-lab’
resource-limited and off-the-grid settings, since they lack long-term storage capabilities, flexibility and amenability to limited equipment and human intervention (Brooks
and Alper, 2021). Besides, technical bottlenecks related to the identification of precise gene/s for targeted functions still persist, especially when dealing with multigenic
functions (Sargent et al., 2022). Moreover, most Synbio-based techniques are not amenable to cereal species, which already possess inherent tissue-culture-transformation-
incompatibilities due to recalcitrance (Silva et al., 2022). Further, several significant ethical concerns comes to the fore, including potential health hazards and ecological
consequences linked to genetically modified organisms (GMOs) (Wang and Zhang, 2019). Biosafety regulatory issues - costs and complexity of compliance with biosafety
regulatory requirements, as well as social acceptance limit R&D and deployment of GMO products (Pixley et al., 2019; Wurtzel et al., 2019; Sargent et al., 2022).
Nevertheless, the expansion of Synbio field opens up new possibilities for abiotic stress tolerance improvement in crops and future climate-smart agriculture.
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et al., 2008; Barutçular et al., 2016; Djanaguiraman et al., 2020; Ndlovu

et al., 2021; Zahra et al., 2021). In rice, for instance, D+H stress at

flowering (in Dular cultivar) and grain-filling (in N22 cultivar) caused

73.2 and 77.6% reduction in yields, respectively. Additionally,

combined D+H stress at the grain-filling greatly diminished quality,

mainly by increasing grain chalkiness in all the three rice cultivars

evaluated (Lawas et al., 2018a). Compared to the control, combined D

+H stress significantly reduced the 100-seed weight, grain yield plant-1

and harvest index (HI) in both maize hybrids evaluated (Hussain

et al., 2019).

Meanwhile, studies have shown that different stresses applied

individually often impose lesser effects on plant growth and

development as compared to the accumulated impact of

combined stresses which is detrimental (Zandalinas et al., 2021a;

Bheemanahalli et al., 2022). For instance, HS aggravates DS

(Hussain et al., 2019; Balfagón et al., 2020; Pradhan et al., 2022a).

The combined D+H stress induced more damaging effects on

sorghum than the sole (D/H) factors, mainly by increasing

canopy temperature considerably (Pradhan et al., 2022a).

However, the drought-tolerant genotype Phule Vasudha was less

impacted by the exerted stress than the drought-sensitive genotype

Phule Revati (Pradhan et al., 2022a). Besides, D, H and D+H

triggered oxidative stress, by over-production of ROS and

increased MDA contents, which consequently decreased

photosynthetic efficiency, nutrients uptake and yield in hybrid

maize. The concurrent occurrence of D+H was more severe for

maize growth than the individual stresses (Hussain et al., 2019).

Taken together, different stress interactions impose varied impacts

on plants based on the extent, magnitude and length of the

interaction of the involved stress factors (Pandey et al., 2017b),

with D+H stress largely exhibiting complementarity that is skewed

towards significant negative net impact (yield reduction) (Mittler,

2006). Nonetheless, the impact of combinatorial stress on crops is

not automatically accumulative; rather, the result is dependent

upon which sole stress factors are involved and how they relate

with each other (Pandey et al., 2017b). Therefore, understanding the

nature and magnitude of those interactions will be crucial in

revealing the actual impact/contribution of each individual and

the combinatorial stress on crop plants.
3 D/+H stress-induced physiological
and molecular responses in cereals

Plant responses to D/+H stress are multi-natured and involve

multiple-level adaptations, including morphological (shoot elongation

inhibition, root system architecture adjustment, etc.), physiological

(stomatal conductance, osmotic adjustment, etc.), biochemical

(osmolytes accumulation, antioxidant systems activation, metabolic

pathways induction, etc.) and molecular (transcription factor

activation, stress-responsive genes up-regulation, etc.) adaptations

(Zhao et al., 2020; Vital et al., 2022; Zhang et al., 2022a). Drought

and heat tolerance are complex multigenic traits that share some

common characteristics with regards to interacting molecular

responses and effects on plant growth and development (Georgii
Frontiers in Plant Science 05
et al., 2017; Zandalinas et al., 2018; Jaldhani et al., 2022). For

instance both drought and heat inflict oxidative stress damage and

dehydration to plant cells (Lipiec et al., 2013; Lamaoui et al., 2018).

Additionally, they involve similar components such as stress sensors,

protein kinases, phytohormones, transcription factors (TFs), stress-

responsive genes and microRNAs (Priya et al., 2019a; Gong et al., 2020;

Costa et al., 2021). However, their combination often modifies and

yields distinct effects and molecular responses in plants (Zandalinas

and Mittler, 2022) which warrant unraveling, especially with regards to

multi-factors simultaneously affecting crops in the field.
3.1 D/+H-induced physiological responses

In general, plants sense abiotic changes and aptly alter their

physiology and metabolism to maximise their productivity at

minimum costs (Zhang et al., 2006; Gupta et al., 2020;

Moshelion, 2020). Meanwhile, plants tailor their responses to

combined stresses, exhibiting some universal and several unique

responses (Pandey et al., 2015).
3.1.1 Responses common to individual
D and H stresses

Among the common plant physiological responses, a gradual

decrease in stomatal conductance and photosynthesis with

increasing water stress is characteristic to drought-adapted plants

(Ghannoum, 2009). Stomata regulation functions to balance

photosynthetic CO2 absorption and transpirational water loss

(Gosa et al., 2019). In homoiohydric plants, a slight change in

vapour pressure deficit (VPD) triggers a rapid stomatal closure to

maintain plant water balance (Moshelion, 2020). However, despite

its efficiency in water balance maintenance, this passive-hydraulic

sensitivity strategy yields less CO2 absorption and lower

productivity (Moshelion, 2020). On the other hand, plants

maintain their water balance via an ABA-driven (chemical-

hydraulic) strategy; for instance, guard cells synthesize ABA in

response to water-deficit stress (Geiger et al., 2011; Bauer et al.,

2013). This mechanism was initially thought to be de novo

transcription independent, until several microarray analysis

studies identified numerous up- or down-regulated genes

responsive to exogenous ABA treatment (Leonhardt et al., 2004;

Tuteja, 2007; Bauer et al., 2013; McAdam et al., 2016; Kuromori

et al., 2018). Especially, NCED (9-CIS-EPOXYCAROTENOID

DIOXYGENASE) gene is up-regulated and mediates extremely

rapid de novo ABA biosynthesis and stomatal responses to VPD

in seed-bearing plants (McAdam et al., 2016). Besides, the site-

specific ABA concentrations, for instance in guard cells, depend

upon several factors, including biosynthesis, catabolism and inter-

tissue or inter-organ transport (Merilo et al., 2015; Merilo et al.,

2018). Meanwhile, root-derived ABA potentially govern root water-

solute potential dynamics, possibly by modulating aquaporin

(AQP) activity, which may essentially facilitate plant adaptation

to diverse stress conditions (Kuromori et al., 2018; Kuromori

et al., 2022).
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Generally, ABA reduces the stomatal sensitivity threshold for

VPD such that the stomata are open longer, allowing the plant to be

productive for a longer time period. However, this anisohydric

mechanism comes at the cost of increased susceptibility to water

stress; it is more prone to plant hydraulic failure (Richards, 2000;

Moshelion, 2020). Contrarily, isohydric mechanism of VPD

response is characterized by rapid stomatal closure and more

stable water potential (Tardieu and Simonneau, 1998). Noticeably,

crop plants exhibit inter-species, inter-organ, or tissue-specific

differences with regards to VPD thresholds and sensitivity to

similar environmental stimuli and stress conditions (Moshelion,

2020; Kuromori et al., 2022; Sinha et al., 2022). It has been reasoned

that most crop plants are less sensitive to, or synthesize less ABA, in

response to stress which reduces their sensitivity to water loss,

ultimately elevating their risk of dessication. This has created a

productivity-vulnerability dichotomy, whereby more yielding crop

cultivars are potentially susceptible to abiotic stresses, due to their

rapid growth; greater biomass and sluggish stomatal-closure

response (Moshelion, 2020). In view of the foregoing, we must

continuously pursue redesigning of anisohydric crop cultivars that

could hypothetically sustain higher carbon assimilation rates, or

isohydric cultivars that could circumvent CO2 starvation under

stress conditions. Already, optogenetic manipulation of stomatal

kinetics (rate of opening and closing) improved Arabidopsis` CO2

assimilation, water use efficiency (WUE) and growth in response to

light (Papanatsiou et al., 2019). Notably, the engineered plants

produced greater biomass than Wt plants under fluctuating light

conditions (Papanatsiou et al., 2019), suggesting that improving

stomatal kinetics can potentially enhance WUE, and eventually

stress tolerance, without penalty in carbon fixation in crops.

Meanwhile, plants have also evolved various mechanisms to

resist D/+H stress, and these mechanisms can be in form of escape,

avoidance, tolerance or recovery. Whereas escape involves

readjustment of plant phenology to enable completion of a

developmental phase or full life cycle prior to the onset of a

harmful stress, avoidance involves plants maintaining high tissue
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water potential under stress (detailed in (Wahid et al., 2007; Aslam

et al., 2015; Babele et al., 2022)). Meanwhile, osmotic adjustment,

antioxidant systems, phytohormonal regulation, and signal

transduction cascades all constitute the tolerance mechanisms (for

details, see (Bray, 1997; Wahid et al., 2007; Ndlovu et al., 2021)).

Stress recovery involves some plant genotypes surviving the initial

stress event and resume their growth once the stress factor is

removed; they develop stress memory within their system

allowing them to ‘recall’ the stress when it recur and institute apt

responses, as aided by epigenetic mechanisms (for details, refer to

(Molinier et al., 2006; Chang et al., 2020; Jacques et al., 2021)).

3.1.2 Differential responses unique to
combined D+H stress

Literature is replete with studies focusing on plant responses to

single stresses, viz., drought (Liang et al., 2018; Danilevskaya et al.,

2019; Wang et al., 2019a; Collin et al., 2020; Itam et al., 2020) and

heat (Shi et al., 2017; Cai et al., 2020; Mikołajczak et al., 2022).

However, in nature, or in the field, plants are often exposed and

respond to combined stresses (Mittler, 2006; Lamaoui et al., 2018;

Zandalinas et al., 2018; Rivero et al., 2022). Moreover, studies have

shown that multi-factor stress produces distinct plant responses

that lack direct inference from each sole stress factor responses

(Lawas et al., 2018a; Zandalinas et al., 2018). Therefore, it is more

useful to investigate the effects of abiotic stress combination and

corresponding plant responses (Wani et al., 2016; Zandalinas et al.,

2018; Rivero et al., 2022; Sinha et al., 2022; Zandalinas and Mittler,

2022). Thus, here, we shall discuss recently revealed fascinating

plant responses to combined D+H stress.

Abiotic stress combinations induce varied and at times

conflicting stomatal regulation behaviours (Rizhsky et al., 2004;

Zhang and Sonnewald, 2017; Rivero et al., 2022). For instance, DS

causes leaf stomata to close to maintain high plant water balance,

whereas HS triggers the leaf stomata to open to enhance leaf

transpiration cooling (Zandalinas et al., 2020a; Zandalinas and

Mittler, 2022) (Figure 1).
FIGURE 1

Plant common and differential responses to D/+H stress. VPD, vapour pressure deficit; ABA, abscisic acid. Upward pointing arrows denote
increment, hyphens denote optimum or equilibrium (or no significant change) conditions, × implies weak or no correlation, whereas a question
mark signifies that the kind of interaction or effects is not yet clear or confirmed.
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During combined D+H stress, leaf stomatal orifice remains

shut, implying that DS-driven, rather than HS-driven, stomatal

regulation takes precedence (Rizhsky et al., 2004; Zandalinas et al.,

2020b). Meanwhile, under H+L stress, HS-driven stomatal

regulation supersedes HL (high light)–driven one, which allows

stomatal orifice to open under H+L conditions (Balfagón et al.,

2019), (Figure 1). Intriguingly, despite the established role of ABA

in stomatal conductance regulation, no correlation between ABA

levels and stomatal closure was observed under D+H conditions

(Zandalinas et al., 2016b). These findings may suggest that other

regulatory mechanisms, supported by phytohormones such as

jasmonic acid (JA) and other processes (eg., ROS stress sensing),

may underpin prioritization of certain stomatal responses/

behaviours over others under certain stress combinations

(Zandalinas et al., 2016a; Balfagón et al., 2019; Balfagón et al.,

2020; Sinha et al., 2021; Rivero et al., 2022).

ABA-deficient mutants showed extensive and rapid stomatal

closure in response to high VPD, indicative of the passive hydraulic

nature of VPD-induced stomatal regulation (Merilo et al., 2018).

However, recently, it has emerged that ABA modulates stomatal

behaviour by VPD (Li and Liu, 2022). Notably, low VPD impairs

stomatal responsiveness (due to lower ABA concentrations).

However, DS increases VPD and plants respond by early closure

of stomata (due to elevated ABA concentrations) (Li and Liu, 2022).

However, plants subjected to HS may not exhibit the same

behaviour due to observed lack of correlation between ABA and

stomatal conductance under HS conditions (Zandalinas

et al., 2016b).

More recently, both leaf and flower stomata have been shown to

open under control (non-stress), and both close under DS

conditions. Under HS, soybean plants kept both leaf and flower

stomata open to maintain transpiration. However, under D+H

stress, plants kept the flower stomata open, whilst closing the leaf

stomata (Sinha et al., 2022). Authors proposed the opening offlower

stomata under HS or combined D+H stress to be a culmination of

accelerated ABA catabolism uniquely occurring in flowers on plants

grown under those environments. This differential transpiration

mechanism helps D+H stress exposed plants to cool their flowers

and minimize heat-induced damages onto the reproductive organs

(Sinha et al., 2022). In sorghum, contrasting genotypes have

exhibited differential leaf canopy cooling in response to D+H

stress (Pradhan et al., 2022a). Whereas the drought-tolerant

genotype displayed remarkable canopy cool capacity, the drought-

sensitive genotype had greater canopy temperature and hotter plant

canopy under the imposed stress treatments, suggesting that cooler

canopy underpins sorghum adaptation to D+H combination

(Pradhan et al., 2022a). The tolerant cultivar might aptly balance

moisture conservation and protection from overheating, which

helps extend canopy cooling duration until the grain filling stages

(Saitou, 1999; Pradhan et al., 2022a). Interestingly, cooler canopies,

even under stress, are always associated with higher yields (Zhang

et al., 2007; Costa et al., 2021). Previously, wheat sensitivity to D+H

stress had been linked to low response of transpiration to high VPD

(El Habti et al., 2020), suggesting that maintenance of transpiration

and soluble sugars in the grains battling stress are critical for plant D

+H stress tolerance.
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Moreover, high-resolution dissection of PSII electron transport

has revealed differential response to DS and HS in isolation and D

+H combined in pearl millet [Pannisetum glaucum (L.) R. Br.]

(Shanker et al., 2022). The damage to the oxygen evolution complex

(OEC) was predominant in heat-stressed, but not in drought-

stressed plants. Additionally, OEC damage-induced low exciton

absorption flux was evident in HS and H+D stress, causing electron

transport congestion in the donor side of PSII (Shanker et al., 2022).

These results showed that combined D+H stress was more

dominant than the individual stresses on the overall electron

transport pathway of the PSII (Shanker et al., 2022).

In view of on-going climate change, combinatorial abiotic

stresses and the future of crop productivity, eCO2 takes center

stage (Lara and Andreo, 2011; Gray and Brady, 2016). Under eCO2

conditions, most plants shut stomata, limiting stomatal

conductance and water loss (Zhang et al., 2021). Although this

may favour plants (especially C4 than C3 species) under DS or D+H

conditions by enhancing WUE (Allen et al., 2011; Xu et al., 2013;

Ozeki et al., 2022), it may not profit plants acclimating to HS or HS

+HL stress that need to maintain stomata open for enhanced

cooling (Balfagón et al., 2019; Rivero et al., 2022). Therefore,

understanding species differences in eCO2 responses in lieu of

abiotic stresses will be useful in designing appropriate crop-

specific stress tolerance strategies.
3.2 D/+H-induced molecular responses

3.2.1 Commonly-shared and convergent
stress responses

Plant molecular stress responses encompass stress sensing,

signalling, and activation of TFs and stress-responsive genes, as

well as post-translational protein modifications (PTMs) and

epigenetic alterations [for extensive details, see recent reviews,

(Lamers et al., 2020; Zenda et al., 2022; Zhang et al., 2022a)].

Plants alter their signal transduction and metabolic pathways, with

ABA and other phytohormones being involved. Once modulated,

the signalling pathways elicit TFs activation, ultimately evoking

stress-responsive genes and associated metabolic pathways (Zhang

and Sonnewald, 2017; Lawas et al., 2018b; Shelake et al., 2022;

Zhang et al., 2022a). Notably, antioxidant enzyme encoding genes,

conferring osmoprotection, are amplified (Zulfiqar et al., 2019). For

instance, OE of OsRab7 gene confers tolerance to combined H+D

stress and improves grain yield in rice through modulation of

osmolytes, ROS and stress-responsive genes (OsSOD-Cu/Zn,

OsAPX2, OsCATA and OsCATB) (El-Esawi and Alayafi, 2019).

Besides, overexpressing ZmHs06 gene improved H+D tolerance in

Arabidopsis through enhancing antioxidant capacity (Li et al.,

2015a). Altogether, induction of ROS detoxification enzymes has

been distinguished as a common response to D+H stress

combination in various plant species, suggesting that enhanced

antioxidant capacity is associated with plant tolerance to stress

combination (Ahanger et al., 2017; Zhang and Sonnewald, 2017;

Zandalinas et al., 2018). Several other D+H stress-responsive genes

have been identified (Priya et al., 2019a; Esmaeili et al.,

2022) (Table 1).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1111875
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2023.1111875
Meanwhile, different combinatorial stresses induce considerable

gene expression profile readjustments, with HS exerting a dominant

effect over osmotic and salinity stresses in relation to global gene

expression and relative metabolite abundance changes (Sewelam

et al., 2020). Osmotic stress and HS exhibited antagonistic effects on

gene expression, with osmotic treatment causing induction of most

genes, whilst HS repressed majority of the genes (Sewelam et al.,

2020). These divergent stress-induced effects on gene expression

may clarify the conflicting physiological responses between D and

H stresses discovered earlier on (Rizhsky et al., 2002; Rizhsky et al.,

2004; Suzuki et al., 2014; Zhang and Sonnewald, 2017). Moreover,

plants enduring combined abiotic stresses (especially where HS is

part of the combination) rearrange their transcriptional architecture

to repress the induction of most lavish genes (mainly ribosomal and

photosynthetic), possibly as a trade-off mechanism to conserve

energy and resources for enduring stress (Sewelam et al., 2020).

This response, involving down-regulation of redundant proteins to

serve energy for battling stress, has been reported previously (Cui
Frontiers in Plant Science 08
et al., 2015; Zenda et al., 2018), suggesting it is a vital abiotic stress

acclimation strategy. However, this comes at a cost of reduced

productivity. Meanwhile, two categories of usually disregarded

genes (the ‘unknown function’ and ‘highly abundant under

control conditions’) have been brought to the fore (Sewelam

et al., 2020). Since most plant genomes comprise large

percentages of ‘unknown function’ genes, there is huge scope for

targeting these yet-to-be-characterized genes as novel candidates for

engineering abiotic stress tolerance in crops (Luhua et al., 2013).

Moreover, the redundant genes may be highly modified or exhibit

distinct transcriptional and functional changes under different

stress combinations, qualifying them for consideration as

potential targets for plant abiotic stress tolerance under such

conditions (Shaar-Moshe et al., 2017).

The enormous omics data and gene functional characterization

information generated from single stress studies have revealed

intriguing convergent stress molecular responses and signalling

pathways (Kissoudis et al., 2014; Zandalinas et al., 2020a; Raza
TABLE 1 Selected genes useful for D/+H tolerance improvement in cereals using metabolic engineering.

Gene
name

Source Host Approach Outcome Reference

HSFs and HSPs

TaHsfA6f Wheat Arabidopsis OE
Improved sensitivity to ABA, ABA accumulation and tolerance to HS, DS and
salinity

(Bi et al., 2020)

OsHSP18.6 Rice Rice OE Enhanced antioxidant capacity and improved tolerance to H+D stress
(Wang et al.,
2015)

DREB2A Maize Maize CE;OE Enhanced tolerance to D+H stresses (Qin et al., 2007)

TFs

ZmWRKY106 Maize Arabidopsis OE Improved antioxidant capacity and D+H stress tolerance
(Wang et al.,
2018a)

SNAC3 Rice Rice OE Enhanced antioxidant capacity, ROS homeostasis and tolerance to H+D stresses.
(Fang et al.,
2015)

Rab7 Rice Rice OE Improved survival rate, RWC, antioxidant capacity and rice grain yield under D
+H stresses.

(El-Esawi and
Alayafi, 2019)

OsMYB55 Rice Maize OE Enhanced expression of stress-associated genes and improved H+D tolerance (Casaretto et al.,
2016)

OsWRK11 Rice Rice OE
Reduced water loss and leaf wilting, but increased survival rate and H+D
tolerance

(Wu et al., 2009)

ZmbZIP4 Maize Maize OE Regulated ABA synthesis and root development, and enhanced stress-responsive
genes expression and tolerance to multiple stresses

(Ma et al., 2018)

Stress-responsive genes

HVA1 Wheat Wheat DHP OE
Improved ABA sensitivity, reduced oxidative load, and increased D+H tolerance
and grain yield

(Samtani et al.,
2022)

TaFER-5B Wheat
Wheat and
Arabidopsis

OE Improved tolerance to H+D, oxidative and excess iron stresses.
(Zang et al.,
2017)

Protein kinases

ZmMAPK1 Maize Arabidopsis OE Improved ROS scavenging and enhanced D+H stress tolerance (Wu et al., 2015)

TaPEPKR2 Wheat
Wheat and
Arabidopsis

OE Enhanced H+D tolerance in wheat and Arabidopsis plants
(Zang et al.,
2018)
HSFs, heat shock factors; HSPs, heat shock proteins; TFs, transcription factors; CDPKs, calcium-dependent protein kinases; OE, overexpression; CE, constitutive expression; Wt, wild type; D+H,
combined drought and heat stress; TaPEPKR2, wheat phosphoenolpyruvate carboxylase kinase-related kinase.
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et al., 2021; Zandalinas et al., 2021b; Zenda et al., 2021b; Bhardwaj

et al., 2022). Exploration of these shared responses, for instance,

through meta-analysis, may reveal key candidate genes for

combined stress tolerance that can be tested via transgenic

approaches. Additionally, understanding the converging signalling

pathways, including shared components, can help to pinpoint target

metabolic pathways for engineering combined D+H stress tolerance

in cereals (Costa et al., 2021). Besides, the functional relevance of

other gene types or families (including ion and sugar transporters,

protein kinases, TFs, etc.) specifically induced under combined D

+H stress conditions can be tested or evaluated (Shelake et al.,

2022). In this regard, modern systems biology and Synbio

approaches (Box 2), to identify core gene regulatory networks,

and engineer multiple metabolic pathways and combined stress

tolerance, respectively, will be central.

3.2.2 Transcriptional regulation of D/+H
stress responses

Transcription factors (TFs) are key transcriptional regulators of

drought (Nakashima et al., 2014; Singh and Laxmi, 2015; Joshi et al.,

2016; Manna et al., 2021) and heat (Guo et al., 2016; Ohama et al.,

2017; Zhao et al., 2020; Haider et al., 2022; Zenda et al., 2022) stress

responses in plants. TFs link signaling pathways with downstream

gene regulation; once modulated by these signaling pathways, TFs

directly or indirectly interact with cis-acting elements to regulate the

transcriptional programs of their target genes (Weidemüller et al.,

2021). Both ABA-dependent and ABA-independent signal

transduction pathways underpin transcriptional responses to

drought (Yamaguchi-Shinozaki and Shinozaki, 2006). Several TFs

such as ABSCISIC ACID-RESPONSIVE ELEMENT BINDING

PROTEIN1 (AREB1), DEHYDRATION-RESPONSIVE ELEMENT

BINDING PROTEIN 2A/2B (DREB2A/2B), MYC/MYB, RD22BP1,

etc., mediate the ABA-responsive mechanism, via interaction with

their corresponding cis-acting elements such as ABRE, DRE/CRT

(DRE/C-repeat sequence), MYCRS/MYBRS, respectively (for

details, see (Tuteja, 2007)). These upstream TFs modulate cis-

regulatory elements (CREs), such as DRE/CRT (A/GCCGAC),

ABRE (PyACGTGGC), MYCRS (MYC recognition sequence,

CANNTG) and MYBRS (MYB recognition sequence, C/

TAACNA/G), harbored in the promoters of stress-induced genes

(Fujita et al., 2005; Yamaguchi-Shinozaki and Shinozaki, 2006;

Fujita et al., 2013). The canonical ABA-SnRK2s-PYR/PYL/RCAR-

PP2C-ABF/AREB signaling module drive the ABA-dependent

pathway (Umezawa et al., 2009; Fujita et al., 2013), whereby ABA

accumulation triggers class III SnRK2 (SUCROSE NON-

FERMENTING-1 RELATED PROTEIN KINASE 2) protein

kinases induction, via the PYR/PYL/RCAR-PP2C [PYRABACTIN

RESISTANCE1/PYR1-LIKE/REGULATORY COMPONENTS OF

ABA RECEPTOR - PROTEIN PHOSPHATASE 2C] complex, and

AREB1, AREB2, ABF3 (ABRE binding factor 3), and ABF1 are

phosphorylated under drought stress conditions to regulate the

expression of downstream target genes (for details, see (Fujita et al.,

2009; Yoshida et al., 2010; Fujita et al., 2013; Hsu et al., 2021)).

AREB induce the expression of RD29B gene (Uno et al., 2000),

whereas MYC/MYB TFs, RD22BP1 and AtMYB2 bind MYCRS and

MYBRS, respectively, to induct RD22 gene (Uno et al., 2000; Tuteja,
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2007). The activation of these genes relies on the build-up of

endogenous ABA levels, suggesting their later-stage involvement

in drought stress response (Tuteja, 2007). Meanwhile, DREB2A/2B

and other ABA-reliant drought-responsive TFs trans-induct several

stress-responsive genes (reviewed/listed in (Singh and Laxmi, 2015;

Todaka et al., 2015; Joshi et al., 2016); Table 1). For instance,

ZmDREB2A overexpressed in Arabidopsis improved transgenic

plants` H+D stress tolerance, through influencing LEA (late

embryogenesis abundant), heat shock, and detoxification

encoding genes (Qin et al., 2007). Overexpressed ZmHsf06

enhanced H+D tolerance in transgenic Arabidopsis, possibly by

increasing SOD, POD, CAT activities and ROS homeostasis (Li

et al., 2015a). Other TF families such as WRKY and MYB also

participate in ABA-dependent pathway. For example, overexpreed

TaWRKY1 and TaWRKY33 confer D/+ H tolerance in transgenic

Arabidopsis, by activating several stress-responsive genes (He et al.,

2016). TaWRKY1 exhibits slight up-regulated response to HS and

ABA, whereas TaWRKY33 shows high responses to HS, ABA, and

MeJA (jasmonic acid methylester) (He et al., 2016).

The ABA-independent DS response regulation mechanism

involves DREB and other TFs such as NAC [NAM, ATAF, and

CUC], WRKY, MYB/MYC, NF-Y (nuclear factor-Y), etc., in

modulating several drought-responsive genes (Fujita et al., 2013;

Singh and Laxmi, 2015). For instance, OsNAC016 regulates

crosslinking of BR-mediated plant architecture (positive

influence) and ABA-mediated drought tolerance (negative

influence) in rice, by interacting with GSK2 and SAPK8 kinases

via PTMs (Wu et al., 2022). However, expression of OsWRKY5 is

decreased by DS, ABA, NaCL, mannitol treatments, suggesting that

inactivation of OsWRKY5 improves rice DS tolerance (Lim et al.,

2022). Meanwhile, ZmNF-YC12 is highly induced by drought and

rewatering treatments, and modulates drought tolerance and

recovery ability in maize, by inducing genes related to improved

photosynthesis and antioxidant capacities (Cao et al., 2023).

Similarly, overexpressed ZmNF-YA1 and ZmNF-YB16 modulated

maize plant growth and drought tolerance, via induction of genes

related to root development, photosynthesis and antioxidant

capacity (Yang et al., 2022). Besides, these TFs cross-talk with

each other or with phytohormones such as brassinosteroids (BRs)

for efficient regulation of stress response ((Nakashima et al., 2014;

Singh and Laxmi, 2015; Jogawat et al., 2021); also discussed here in

detail later under ‘Phytohormone biosynthesis and signalling

pathways’ section). Therefore, identifying and manipulating those

key/hub stress-responsive TFs cross-linking several pathways (for

instance, through Synbio) offers much better prospects of

improving D/+H stress tolerance than attending to each

functional gene individually (Joshi et al., 2016; Tenorio Berrıó

et al., 2022).

HEAT SHOCK FACTOR A1 (HSFA1) centrally activates

transcription and HS response, by stimulating immediate

induction of other HS-responsive TFs such as DREB2A, HSFA7,

HSFBs, etc. (Ohama et al., 2017). HSFA1 also transactivates other

HSFs (DREB2A, HSFA2, HSFA3, HSFA7, etc., to trigger the

expression of other HS-inducible genes (reviewed in (Guo et al.,

2016; Haider et al., 2022)). This is achieved through HSFA1

crosslinking with HSP70 and HSP90 under HS (Jacob et al.,
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2017). For instance, HSFA1 directly targets DREB2, which regulates

HSFA3 by creating a coactivator complex with NF-YA2, NF-YB3

and DPB3-1/NF-YC10, whose affinity to bind to HSFA3 promoters

induct HSFA3 expression (Schramm et al., 2008). More

importantly, DREB2A integrates HS and DS responses by

triggering the corresponding sets of stress-responsive genes,

including LEA proteins and HSPs (Guo et al., 2016; Zhao et al.,

2020). These HSPs (HSP70, HSP90, HSP100, etc.) and sHSPs are

actively recruited to regulate protein homeostasis, by repairing or

replacing HS-damaged proteins (Al-Whaibi, 2011); thus, their

molecular chaperone function positively modulates D/+H

tolerance ((Jacob et al., 2017); Table 1). For instance, OsHSP50.2,

an HSP90 family gene, overexpressed in rice, promoted DS

tolerance, possibly through modulating ROS homeostasis and

osmotic adjustment (Xiang et al., 2018). Meanwhile, upon HS,

cytosolic HSP70-3 interacts with plasma membrane-embedded

PLDd (phospholipase Dd) to stabilize cortical microtubules,

facilitate phospholipid metabolism, and enhance HS tolerance in

Arabidopsis (Song et al., 2020). Other TF families that modulate

HS-responsive genes include WRKY, NAC, MYB, AP2/EREBP,

bZIP, etc. (Wang et al., 2016; Zhao et al., 2020). For example,

OsWRKY11 constitutively expressed under the control of HSP101

promoter improved H+D tolerance in rice (Wu et al., 2009). Of

note, we have extensively detailed the molecular mechanisms of HS

response in cereals in our more recent review (Zenda et al., 2022);

therefore, we refer readers to that article. Taken together, regulation

of stress-responsive genes by TFs, crosslinking with phytohormonal

and stress signaling pathways underlie D+/H stress responses in

plants; increased understanding of these mechanisms helps to reveal

key hub TFs, genes or candidate pathways for engineering D/+H

tolerance in major crops, including cereals.

3.2.3 Epigenetic regulation and non-coding
RNAs-mediated modulation of D/+ H
stress response

Epigenetic regulation mechanisms (eg., histone modification,

DNA methylation, chromatin remodelling, etc.) (Banerjee and

Roychoudhury, 2017; Begcy and Dresselhaus, 2018; Liu et al.,

2022; Singh and Prasad, 2022), small RNAs (sRNAs, 18-30

nucleotides (nt) long) (Zhang, 2015; Banerjee et al., 2017; Wani

et al., 2020; Zhou et al., 2020) and long noncoding RNAs (lncRNAs,

> 200 nt) (Nejat and Mantri, 2018; Yu et al., 2019; Chang et al.,

2020; Jha et al., 2020) have emerged as essential modulators of

various plant abiotic stress responses (Zhao et al., 2020;

Miryeganeh, 2021; Zenda et al., 2021a; Zhang et al., 2022a).

Histone modification and DNA methylation regulate gene

expression responses to abiotic stresses [see (Liu et al., 2022)].

Histone acetyltransferase (HATs) promote enhanced gene

expression through acetylation/relaxation of chromatin from

histones (Ueda and Seki, 2020) whilst DNA methyltransferases

underpin transcriptional repression of transposable elements

(Zhang, 2015; Begcy and Dresselhaus, 2018). Recently, histone

acetyltransferase TaHAG1 has been shown to interact with

TaNACL to promote HS tolerance by maintaining photosynthetic

stability in wheat (Lin et al., 2022).
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Non-coding RNAs (ncRNAs), lacking obvious protein coding

capacity, and comprising sRNAs, lncRNAs, circular RNAs

(circRNAs), etc. (Yu et al., 2019; Bhogireddy et al., 2021),

crucially regulate plant growth, development and stress response

processes, by modulating transcriptional and post-transcriptional

expression of target genes, and fine-tuning growth-stress defense

trade-offs (Wang et al., 2017; Zhang et al., 2022b). These ncRNAs

interact with their targets to create complex gene regulatory

networks that orchestrate metabolic reprogramming essential for

D/+H tolerance (Bhogireddy et al., 2021; Gelaw and Sanan-Mishra,

2021). sRNAs, especially microRNAs (miRNAs), target TFs or

sequester mRNA (messenger RNA) cleavage sites to control gene

activation or post-transcriptional translation inhibition (Zhang,

2015; Li et al., 2019). Several plant stress-responsive miRNAs have

so far been discovered (Li et al., 2019; Zhou et al., 2020; Zahra et al.,

2021). For instance, miR398 actively participates in HS response

regulation, as a direct target for HSFA1 (Ohama et al., 2017), and is

induced by HS (Guan et al., 2013). miRNA398 chiefly target ROS-

scavenging genes, viz., Cu/Zn superoxide dismutases (cytosolic

CSD1, and chloroplastic CSD2), CCS1 (a Cu chaperone for SOD),

et. (Sunkar et al., 2006). Rapid induction of miRNA398 under HS

reduces transcripts of CSD1, CSD2 and CCS1 (Guan et al., 2013).

On the other hand, increased transcript levels of CSD1 and CSD2

down-regulates miR398 transcription under oxidative stress, with

this feedback loop being critical for CSD1 and CSD2 mRNA

accumulation post-transcriptionally and oxidative stress tolerance

(Sunkar et al., 2006). Overall, this reveals the importance of

miR398-CSD/CCS-HSF pathway in plant HS response (Zhao

et al., 2016). Meanwhile, the induction of miR156 under HS post-

transcriptionally down-regulates SQUAMOSA-PROMOTER

BINDING-LIKE (SPL) genes in Arabidopsis, which is vital for HS

memory (Stief et al., 2014). The created miRNA156-SPL module,

thus, critically mediates HS memory and tolerance (Stief et al., 2014;

Zhao et al., 2016).

Long non-coding RNAs (lncRNAs) also actively participate in

D+/H stress response regulation (Chen et al., 2020; Jha et al., 2020).

They underpin several regulatory mechanisms, including acting as

target mimics (decoy RNAs) for miRNAs to thwart interactions

between miRNAs and their authentic targets, serving as sRNA

precursors to generate sRNAs (miRNAs, siRNAs, etc.), antisense

lncRNAs interacting with sense mRNAs to form natural antisense

transcripts (NATs) which regulate gene expression, lncRNA-

meditated chromatin modifications (eg., lncR2Epi pathway), and

RNA-directed DNA methylation (RdDM) pathway, all of which

orchestrate stress response in one way or the other (excellently

detailed in (Wang et al., 2017)). For example, the lncRNA DANA2

has been recently shown to recruit an AP2/ERF transcription factor

ERF84 to evoke Jumonji 29 (JMJ29)-mediated histone

demethylation and positively regulate drought tolerance in

Arabidopsis (Zhang et al., 2023). In rice, 98 drought-responsive

lncRNAs modulated several drought-responsive regulatory genes

involved in different metabolic processes (Chung et al., 2016).

Meanwhile, 231 heat-responsive lncRNAs have been identified

and characterized in two rice cultivars contrasting in heat

tolerance (Zhang et al., 2022c). Notably, as mediated by osa-
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miR1439, some heat-responsive lncRNAs co-interacted with

protein coding genes (eg., TCONS_00001878 with Os01g0104900,

TCONS_00030558 with Os01g0196800, etc.) to form ceRNA

(competing endogenous RNA) pairs in the heat-sensitive cultivar

SYD2 (Zhang et al., 2022c). Previously, osa-miR1439 exhibited

induced expression under high temperature, revealing that osa-

miR1439 possess a specific function in HS-response regulation

(Mangrauthia et al., 2017). Equally, lncRNAs potentially modulate

HS responses via a ceRNA mode involving lncRNA-osa-miR1439-

regulatory gene circuits (Chen et al., 2020; Zhang et al., 2022c). In

maize, 53 249 (including 259 known and 52 990 unknown) heat-

responsive lncRNAs were identified, among which 993 lncRNAs

showed significant differential expression under HS (Hu et al.,

2022). The cis- and trans- regulation mechanisms involving these

differentially expressed lncRNAs shared 953 common gene targets.

Several important biological processes and stress response-related

pathways, including photosynthesis, hormone signal transduction,

etc. were enriched in these shared gene targets, revealing their

crucial involvement in HS response (Hu et al., 2022).

Meanwhile, circRNAs have been suggested to act as miRNA

sponges under heat and drought stress conditions, in Arabidopsis

and wheat, respectively (Litholdo and da Fonseca, 2018). Besides,

endogenous RNAs (miRNAs, lncRNAs, circRNAs, etc.) compete

with miRNA recognition elements (MREs) for miRNA binding sites

and, thus, regulate each other in the process; the dynamic balance of

endogenous RNAs is therefore critical in regulating plant cellular

homeostasis under stress conditions (Zhou et al., 2020). Here, we

underscore that systemic uncovering and analysis of key stress-

responsive epigenetic marks, sRNAs and lncRNAs and their target

genes could facilitate their endogenous modification and tailoring

of abiotic stress tolerance in cereals (Banerjee et al., 2017; Sihag

et al., 2021; Ali et al., 2022; Liu et al., 2022). Moreover, accruing a

repertoire of novel abiotic stress-associated sRNAs and lncRNAs

from diverse clades facilitates rigorous and dynamic stress resilience

in those rationally created varieties (Zhang, 2015; Zenda

et al., 2022).
4 Key pathways targeted
for manipulation

In this section, we will discuss the key primary metabolism- and

secondary metabolism-related pathways that can be modified using

modem biotechnological approaches to enhance cereal crops

growth and yield under D/+H stress conditions.
4.1 Carbon metabolism

Targeting improved photosynthesis remains a topical strategy

for enhancing crop productivity and abiotic stress tolerance (Simkin

et al., 2015; Nowicka et al., 2018; Furbank et al., 2020; López-

Calcagno et al., 2020; Zhu et al., 2022b). For decades, RuBisCO

(ribulose-1,5-bisphosphate carboxylase-oxygenase - an enzyme that

catalyses the first rate-limiting step in CO2 fixation) has been the
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main engineering focus for enhancing plant photosynthesis

efficiency, through its expression modification in transgenic plants

(reviewed in (Orr et al., 2017; Sharwood, 2017; Roell and

Zurbriggen, 2020)). However, several new targets have emerged.

For instance, considering the fundamental role Calvin–Benson–

Bassham (CBB) cycle plays in primary carbon metabolism,

modifying the expression of other CBB cycle-involved enzymes

(eg. ribulose-1,5-bisphosphate; sedoheptulose-1,7-bisphosphatase;

chloroplastic fructose-1,6-bisphosphatases, etc.) can also improve

photosynthetic capacity and growth (Raines, 2022). Especially,

retuning RuBP regeneration, via simultaneous incorporation of

proteins that function outside of the CBB cycle, can significantly

improve photosynthesis and plant growth over single gene

manipulations (Simkin et al., 2015; Simkin et al., 2019; Raines,

2022). Besides, increased expression of brassinole resistant 1 (BZR1)

TF amplified the expression of a set of CBB cycle genes (RCA1,

FBA1, PGK1 and FBP5) and improved photosynthetic capacity,

revealing that concurrent OE of these multiple proteins can

invigorate the CBB cycle (Yin et al., 2021; Raines, 2022).

Crop yield is determined by photosynthetically active radiation

(PAR) availability, PAR capture efficiency, light energy conversion

(into biomass) and harvest index (Long et al., 2006; Simkin et al.,

2019; Roell and Zurbriggen, 2020). Whilst all other determinants

have reached their potential maxima, energy conversion is still <

40% of its theoretical potential (due to photorespiration losses),

representing, therefore, a potential engineering target (Long et al.,

2015; Simkin et al., 2015; Slattery and Ort, 2015). Key strategies for

improving plant carbon metabolism include boosting carboxylation

efficiency (via repurposing efficient CO2-concentrating

mechanisms, eg., C4 photosynthesis, cyanobacterial carboxysomes

or pyrenoids) (Nowicka et al., 2018; Adler et al., 2022; Pradhan

et al., 2022b), minimizing photorespiratory and respiratory CO2

losses (for instance, via engineering of chloroplastic

photorespiratory bypasses) (Roell and Zurbriggen, 2020; da

Fonseca-Pereira et al., 2022), developing synthetic and more

efficient CO2 fixation routes (such as the construction, in vitro, of

crotonyl–coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-

CoA (CETCH) cycle) as the CBB cycle surrogates (Long et al.,

2015; Kubis and Bar-Even, 2019; South et al., 2019), creating more

efficient photoprotection systems to minimize heat dissipation (De

Souza et al., 2022), RuBisCO reengineering for enhanced catalytic

rate and greater specificity for CO2 (Orr et al., 2017; Batista-Silva

et al., 2020; Iqbal et al., 2021a; Mao et al., 2023), and development of

synthetic (artificial) systems that tolerate high light conditions (Yu

et al., 2018; Zhu et al., 2020; Raines, 2022; Zhu et al., 2022b).

Fortunately, the availability of versatile tools such as Synbioand

nanomaterials is facilitating targeted manipulation of these

photosynthesis aspects for improved abiotic stress resilience and

enhanced yield (Raines, 2022).

High complexity and crosstalk of photosynthesis and abiotic

stress response pathways (which often impact multiple pathways)

dictates that traits aimed at improving photosynthetic efficiency and

resilience to combined stresses call for targeted multiple-gene or/

and novel reaction pathways integration (Nowicka et al., 2018; Lata

and Shivhare, 2021; Sargent et al., 2022). For instance, for a highly

efficient photosystem, tissue-specific promoters can be used to
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precisely regulate specific spatio-temporal expression of genes

encoding photosystem components, such as psaAB and psbA

(encoding the reaction centre apoproteins of PS I, and the D1

protein of PS II, respectively) (Pfannschmidt et al., 1999; Zhu et al.,

2020). Synbio tools such as CRISPR-Cas9 [clustered regularly

interspaced palindromic repeats (CRISPR)-Cas9 (CRISPR-

associated protein 9)] can now competently perform transference

of lengthy gene constructs with customized expression profiles or

facilitate fine-tuning of gene expression levels (Kubis and Bar-Even,

2019; Sargent et al., 2022). Moreover, considering the intricate

nature of the photosynthesis system, it now more plausible to

exchange complete photosynthetic multi-protein complexes

(instead of individual components) between different species

(Batista-Silva et al., 2020). Further, single-cell transcriptomics and

stereomics are now enabling identification of novel gene promoters

conferring spatiotemporal, phonological or environment specificity

(Xia et al., 2022).

Meanwhile, high-throughput plant phenotyping platforms

(HT3Ps) integrated with genomic-wide association studies

(GWAS) are facilitating the discovery and characterization of

novel traits/genes underpinning photosynthetic efficiency (Zhu

et al., 2020; Araus et al., 2022). Besides, multi-scale systems

modelling of photosynthesis enables not only dissection of

mechanisms regulating the competence of certain photosynthetic

proteins or complexes, but also the custom designing of optimized

photosynthesis machineries with enhanced efficiency under diverse

stress environments (Xiao and Zhu, 2017). Taken collectively, new

technologies now offer unprecedented opportunities to design

completely new photosynthesis systems tailored for combined

abiotic stress conditions (Zhu et al., 2022b).

Other potential ways to improve crop biomass production

encompass engineering of specific proteins (such as ion

transporters) or phytohormones (Nowicka et al., 2018), and

enhancing antioxidant capacities of plants under field and

combined stress conditions (Zhu et al., 2020). However, it is

worth noting that precise photosynthetic limitations vary between

species, for instance, the rates of stomatal conductance, canopy

structure, etc. (Kromdijk and McCormick, 2022); therefore,

photosynthesis engineering strategies need to be tailored to each

species. Besides, given that growth-defense trade-off is a critical

survival mechanism in plants (Dwivedi et al., 2021), novel genetic

and Synbio tools will facilitate rewiring of plant fitness programs

and promote/optimise concomitant plant biomass production and

stress defense. Furthermore, tailoring of root traits and HSPs (Hu

and Xiong, 2014; Reddy et al., 2016; Lawas et al., 2018b; Rahman

et al., 2022), when integrated with photosynthetic enhancements,

could enhance crop D+H stress tolerance and yield (López-

Calcagno et al., 2020; Sargent et al., 2022).

Thus, considering that several attempts to modify single core

traits/components has generally yielded undesired effects

(Sweetlove et al., 2017), largely due to the interactive nature of

most metabolic pathways (Batista-Silva et al., 2020; da Fonseca-

Pereira et al., 2022), we amplify the view that targeted manipulation

of multicomponent traits and/or metabolic pathways (preferably

concomitantly) offers great promise for managing such complexity,

enhance overall plant system performance, improve combined
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abiotic stress resilience and productivity (Sargent et al., 2022;

Shelake et al., 2022). Synbio integrated with other modern tools,

including systems biology, computational and multi-omics

approaches will drive this pursuit (Perez de Souza et al., 2022;

Zhan et al., 2022) (Box 2).
4.2 Starch metabolism

Uncovering of the plasticity of starch metabolism under abiotic

stress conditions supports that starch metabolism alterations

crucially regulate plant responses to abiotic stresses such as

salinity, drought and heat (MacNeill et al., 2017; Thalmann and

Santelia, 2017). For instance, under stress and constrained

photosynthesis conditions, starch reserves are remobilized to

provide energy, sugars and derived metabolites, subsequently

helping plants to alleviate stress (Thalmann and Santelia, 2017;

Hasan et al., 2023). The released sugars, besides providing the

osmoprotection function, may act as primary stress signal

transducers, and crosstalk with phytohormones such as ABA, SA,

JA, etc. This fortifies plant responses to the stress (Rosa et al., 2009;

Jogawat et al., 2021; Saddhe et al., 2021). Further, soluble sugar

levels modulate gene expressions and enzyme activities in both

sugar exporting and sugar importing tissues (Roitsch, 1999; Gupta

and Kaur, 2005; Pinheiro and Chaves, 2011), thereby optimizing

synthesis and utilization of carbon and energy resources (Rosa et al.,

2009; Yoon et al., 2021). For instance, soluble sugars and

metabolites levels were considerably increased under H+D stress

in the floral organs of the tolerant rice genotype N22 (Li et al.,

2015b). Nine key metabolites, mostly TCA cycle- and sugar

metabolism-related (sucrose, myo-inositol, succinate, etc.), were

suggested to confer tolerance to H+D stress, among which six

had greater accumulation in N22 genotype. More strikingly, sucrose

level was significantly decreased in the susceptible genotype,

suggesting that sugar starvation contributes to reproductive

failure under H+D stress (Li et al., 2015b). Besides, the resistant

cultivar N22 showed greater expression of genes encoding sugar

transporter (MST8) and cell-wall invertase (INV4) under H+D

stress, signifying these genes` key role in combined H+D stress

tolerance (Li et al., 2015b).

Several enzymes catalyse starch biosynthesis, including the

cytosolic ADP-glucose pyrophosphorylase (AGPase), UDP-

invertase, sucrose synthase (SuSy), etc. and plastidial starch

synthase, starch-branching enzyme, etc. [reviewed in

(Comparot-Moss and Denyer, 2009; Cho and Kang, 2020;

Huang et al., 2021)] (Figure 2). Especially, altering AGPase, one

of the main enzymes catalyzing the rate-limiting and first

committed key enzymatic step of starch biosynthesis

(Comparot-Moss and Denyer, 2009), can enhance the regulation

of starch synthesis and distribution under combined D+H stress

conditions (Saripalli and Gupta, 2015). Therefore, thermotolerant

variants of AGPase can be harnessed (eg. via overexpression) to

develop HS tolerant wheat (Kang et al., 2013) and maize (Li et al.,

2011) cultivars with enhanced starch biosynthesis and higher

grain weight. Thus, altering AGPase to enhance leaf starch

biosynthesis and during grain filling (using seed-specific
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promoters) potentially improves grain yield and abiotic stress

tolerance in cereals (Saripalli and Gupta, 2015). Further, boosting

ADPglucose transportation into amyloplast and modification of

other enzymes involved in photoassimilate partitioning into

storage organs has the potential to increase plant productivity

and stress tolerance (Tuncel and Okita, 2013). For example,

engineering a heat-stable plastidial 6-phosphogluconate

dehydrogenase (6PGDH) enhanced grain yield in heat-stressed

transgenic maize (Ribeiro et al., 2020). To improve heat stability of

the amyloplast-localized and heat-labile, but critical grain-starch-

accumulation-involved enzyme PGD3, authors used endosperm-

specific promoters to target/import 6PGDH into endosperm

amyloplasts by fusing the Waxy1 chloroplast. Consequently,

WPGD1 and WPGD2 transgenes showed improved 6PGDH
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activity and heat stability in vitro, complemented the pgd3-

defect ive kernel phenotype , and reduced high night

temperature-induced grain yield loss via increased kernel

number (Ribeiro et al., 2020).

Different abiotic stresses induce differential source-sink

dynamics that evoke differential expression of various

carbohydrate metabolism-related proteins/genes (starch-

biosynthesis and starch-degrading or sucrose metabolism

enzymes) (Roitsch, 1999; Rosa et al., 2009; Pinheiro and Chaves,

2011; Tuncel and Okita, 2013). In general, storage proteins (eg.

sporamin) are induced, whereas sucrose metabolism-related

proteins (eg. a-amylase and sucrose synthase) are repressed

under abiotic stresses (see (Gupta and Kaur, 2005; Rosa et al.,

2009)), with sucrose-specific signalling pathways mainly repressing
B

A

FIGURE 2

Simplified illustration of the starch biosynthesis pathways in cereal endosperm (A) and photosynthetic leaf (B) cells, with key enzymes that can be
targeted for manipulation shown in blue. (A). The cytosolic and amyloplastic compartments are demarcated by the light gray longitudinal dashed
line. Sucrose is converted into starch (mainly amylose and amylopectin) through a series of enzymatic steps, involving glucose 6-phosphate (G6P),
glucose 1-phosphate (G1P) and adenosine diphosphate glucose (ADP-Glucose). The enzymes are abbreviated as follows: SuSy, sucrose synthase;
UGPase, UDPglucose pyrophosphorylase; FK, fructokinase; PGI, phosphoglucose isomerase; PGM, phosphoglucomutase; AGPase, ADPglucose
pyrophosphorylase; SS, starch synthase; SBE, starch-branching enzyme. The red pods identified in red font denote sucrose transporters as follows:
GIF1, GRAIN INCOMPLETE FILLING 1; GPT, glucose 6-phosphate transporter; and BT1, BRITTLE1 (an ADPglucose/ADP antiporter transporter). The
dotted arrows signify a series of steps of the fructose-mediated pathway. Adopted from (Comparot-Moss and Denyer, 2009; MacNeill et al., 2017;
Huang et al., 2021). (B). Sucrose is converted into starch through a series of enzymatic steps, involving Uridine diphosphate glucose (UDP glucose),
G1P, G6P, and ADP-Glucose. Meanwhile, G6P in the chloroplast can also be converted into fructose-6-phosphate (F6P). Triose-phosphate (Triose-
P) generated from the Calvin cycle is converted through a series of events into sucrose and stored in sinks. Other enzymes GWD, glucan water
dikinase; PWD, phosphoglucan water dikinase; ISA1/2, isoamylase 1/2; GBSS1, granule-bound starch synthase 1; ALD, aldolase; FBPase, fructose-1,6-
bisphosphatase. Adopted from (Comparot-Moss and Denyer, 2009; Geigenberger, 2011; Hasan et al., 2023).
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ATB2 bZIP TFs (Wiese et al., 2005; Yoon et al., 2021). Meanwhile,

different combinations of starch-degrading enzymes accustom to

different abiotic stresses. For instance, b-amylase1 (BAM1) and a-
amylase 3 (AMY3) mediate starch degradation under osmotic stress

(Thalmann et al., 2016). The bam3 mutants efficiently activated

starch degradation under osmotic stress conditions (Thalmann

et al., 2016). On the other hand, BAM3 and glucan water dikinase

(GWD) are effective under cold stress (Thalmann and Santelia,

2017). Moreover, ABA regulates the activity of BAM1 and AMY3 in

leaves under osmotic stress via the AREB/ABF-SnRK2 kinase-

signaling pathway (Thalmann et al., 2016). Therefore, ABA-

dependent transcriptional coordination and differential regulation

of starch metabolism is critical for abiotic stress response (optimal

energy supply under stress conditions) in cereals (Mukherjee et al.,

2015; Thalmann and Santelia, 2017).

Several TFs directly regulate starch biosynthesis (see (Li et al.,

2021b; Li et al., 2021c)). Meanwhile, the protein kinase sucrose non-

fermenting1 (SNF1)-related kinase 1 (SnRK1) is activated when

energy levels decline during stress, reconfiguring starch metabolism

and gene expression to favour carbon degradation than build-up,

ultimately restoring energy balance and homeostasis (Peixoto and

Baena-González, 2022). Therefore, the capacity to efficiently

redistribute resources is essential for plants to cope with abiotic

stress, hence; targeted manipulations that enhance SnRK1 activity

and alter central metabolism may yield improved abiotic stress

tolerance in crops (Peixoto and Baena-González, 2022). We opine

that using modern tools such as single cell transcriptomics (Fiers

et al., 2018; Xia et al., 2022) and machine learning (ML) (Cortés and

López-Hernández, 2021; Sidak et al., 2022) to uncover the complex

starch biosynthesis regulatory networks, and the less explored

enzymes and genes (including TFs) (Cho and Kang, 2020; Huang

et al., 2021) will pave way for the identification of novel alleles and

targets (core/hub genes and key pathways) for manipulation (eg.,

via OE of multiple pathway enzymes (Li et al., 2021c) using

CRISPR-Cas9 (Gao, 2021; Shelake et al., 2022) to enhance leaf

and endosperm starch capacity, optimize energy use efficiency, and

improve abiotic stress tolerance in cereals (Cho and Kang, 2020;

Huang et al., 2021).
4.3 GABA (g-aminobutyric acid)
biosynthesis

GABA is a ubiquitous non-protein amino acid which is

conserved across animal, plant and bacteria kingdoms (Shelp

et al., 1999; Bouché and Fromm, 2004; Shelp et al., 2012; Bown

and Shelp, 2016). Whereas its cellular communication functions are

well documented in animals, GABA`s physiological and molecular

roles in plants have recently emerged (Fromm, 2020; Hasan et al.,

2021; Khan et al., 2021; Li et al., 2021a). GABA is synthesized in the

cytosol through the GABA shunt pathway, bypassing two stress

inhibited reactions of the mitochondrial-localized tricarboxylic acid

(TCA) cycle (Michaeli and Fromm, 2015; Bown and Shelp, 2016; Li

et al., 2021a). GABA biosynthesis can also possibly occur via the

polyamine degradation and proline synthesis routes (Khan et al.,

2021). GABA biosynthesis via the GABA shunt pathway involves
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the direct and irreversible conversion of glutamate to GABA by

glutamate decarboxylase (GAD), followed by the reversible

transformation of GABA to succinic semialdehyde (SSA) by

GABA transaminase (GABA-T), and the subsequent irreversible

oxidization of SSA to succinate by SSA dehydrogenase (SSADH).

Then, the oxidized SSA (succinate) is catabolized to g-
hydroxybutyrate (GHB) by succinic semialdehyde reductase (SSR)

or glyoxylate reductase (GLYR) (Shelp et al., 1999; Fait et al., 2008;

Shelp et al., 2012; Mei et al., 2016; Khan et al., 2021). GABA

production in plants is up-regulated by stress, and GABA is fed

back into the TCA cycle to maintain cellular energy production

(Michaeli and Fromm, 2015; Sita and Kumar, 2020; Xu et al.,

2021a). Therefore, GABA shunt components have a vital role of

maintaining ion homeostasis and abiotic stress tolerance [reviewed

in (Khan et al., 2021)].

Essentially, GABA rapidly accumulates during plant responses

to abiotic and pathogenic and insect attacks (Bown and Shelp,

2016), and elevated GABA concentrations invigorate plant stress

tolerance by enhancing photosynthesis, osmoregulation and

antioxidant enzymes activation (Bown and Shelp, 2016; Priya

et al., 2019b; Sita and Kumar, 2020; Hasan et al., 2021). Notably,

GABA critically modulates metabolic responses to drought (Hasan

et al., 2021; Xu et al., 2021a), heat (Li et al., 2019; Priya et al., 2019b),

H+D (Li et al., 2018; Zahra et al., 2021), or combined H+L (light)

stresses (Balfagón et al., 2022). For instance, GABA signalling

modulates stomatal opening to enhance plant WUE and drought

tolerance. In Arabidopsis, guard cell GABA synthesis has been

found essential and sufficient to minimize stomatal opening and

transpirational water loss, thereby improving WUE and drought

tolerance, through negative regulation of the guard cell tonoplast-

embedded anion transporter (Xu et al., 2021a; Xu et al., 2021b).

Meanwhile, exogenously applied GABA significantly improved heat

tolerance in Agrostis stolonifera , largely by enhancing

osmoprotection, photosynthesis capacity and osmotic regulation

(Balfagón et al., 2022). Besides, GABA modulates the expression of

genes involved in ROS production, signal transduction and stress-

responsive processes (Li et al., 2018; Li et al., 2019; Podlesá̌ková

et al., 2019). Further, GABA regulates GABA-gated anion channels

via the aluminum-activated malate transporters (ALMTs) (Bown

and Shelp, 2016; Kaspal et al., 2021) and may be involved in cross

talk with phytohormones to activate conserved pathways under

stress conditions (Li et al., 2017; Podlesá̌ková et al., 2019; Xu et al.,

2021b). Exploring such potential GABA-phytohormones crosstalk

is a promising strategy to deliberately alter the GABA biosynthesis

pathway for enhancing abiotic stress tolerance in crops. Further,

from the foregoing discussion, we postulate that GABA connects

primary metabolism to secondary metabolism and physiological

processes essential for fine-tuning abiotic stress responses, and,

thus, is a prime target for deliberate manipulation to enhance D+H

tolerance in cereals.

Thus, the recently discovered roles of GABA in plant stress

tolerance (as an essential metabolite, transport regulator and signal

transducer) have spurred intensive investigations on its

biosynthesis-involved enzymes and genes (Podles ̌áková et al.,

2019; Kaspal et al., 2021; Khan et al., 2021; Xu et al., 2021b).

Among the GABA pathway-related enzymes, GAD is the most
frontiersin.org

https://doi.org/10.3389/fpls.2023.1111875
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2023.1111875
extensively characterized in plant species, including Arabidopsis

(Turano and Fang, 1998), Camellia sinensis (Mei et al., 2016) and

maize (Zhuang et al., 2010). Therefore, the other enzymes (GABA-

T, SSADH, SSR/GLYR, etc) remain unexplored and potential

targets for manipulating the GABA pathway for enhancing

abiotic stress tolerance in crops (Podles ̌áková et al., 2019).

Additionally, the discovery of putative GABA binding sites and

GABA regulation of anion channels (Žárský, 2015) provides further

insights into GABA-mediated stress signalling, facilitates further

verification, and opens up possibilities for altering GABA-related

genes and enzymes for abiotic stress tolerance improvement in

cereals (Fromm, 2020; Kaspal et al., 2021). Essentially, emerging

tools such as KIPEs3 that facilitate the automatic annotation and

analysis of metabolites biosynthesis pathways with great consistence

and quality in diverse plant species (Rempel and Pucker, 2022)

could potentially drive the identification of not only core

biosynthesis players but also candidate genes for bioengineering

abiotic stress tolerance and quality improvements in cereals.

Meanwhile, significant alterations to miR398s, aly-miR159c-3p,

cca-miR156b, ama-miR156, and other novel miRNAs (eg. novel-

24223, novel-2964, etc.) engineered GABA-modulated heat

tolerance in bentgrass (Li et al., 2019). Additionally, miRNA396,

miRNA398, miRNA156, etc. orchestrated heat tolerance in wheat

via TF and stress-responsive genes activation (Sihag et al., 2021;

Zahra et al., 2021). Besides, miRNA159 regulates trans-generational

stress memory (Stief et al., 2014). Further, miRNAs-mRNAs

collaborate to evoke combinatorial effectors in response to co-

occurring abiotic stresses (Zhou et al., 2020). Taken collectively,

systematic characterization of drought-responsive and heat-

responsive ncRNAs, together with elucidation of their gene

expression regulation, will facilitate the identification of key hub

ncRNAs that can be harnessed for engineering GABA-mediated

stress responses and enhance D/+H tolerance in major crops (Hu

et al., 2022).
4.4 Phenylpropanoid biosynthesis

Anchored by a set of few core intermediates of the shikimate

pathway (Herrmann and Weaver, 1999; Fraser and Chapple, 2011),

phenylpropanoid biosynthesis pathway generates a variety of

specialized metabolites which function in diverse plant growth,

development and stress (biotic and abiotic) response processes

(Vogt, 2010; Francini et al., 2019; Dong and Lin, 2021). The

phenylpropanoid-derived metabolites such as tannins, lignin and

suberin provide plant mechanical strength and protection against

wounding (Dixon et al., 2002; Cesarino, 2019), heat (Cai et al., 2020;

Ren et al., 2021) and drought (Nakabayashi et al., 2014). Several

enzyme superfamilies catalyse the pivotal steps of the

phenylpropanoid biosynthesis pathway, including ligases,

oxygenases, transferases, reductases, oxidoreductases, etc. (Dixon

et al., 2002; Vogt, 2010; Fraser and Chapple, 2011); these orchestrate

organ-, phenology- and species-specific synthesis of diverse

secondary metabolites (Vogt, 2010; Dong and Lin, 2021).

Especially, phenylalanine ammonia lyase (PAL), 4-coumaroyl

CoA-Ligase (4CL) and cinnamate 4-hydroxylase (C4H) catalyse
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the mandatory initial three steps of the pathway that provide the

basis for all the downstream routes and resultant metabolites

(Fraser and Chapple, 2011; Dong and Lin, 2021) (Figure 3). PAL

modulates the conversion of L-phenylalanine to trans-cinnamic

acid by non-oxidative deamination, and directs the subsequent

metabolic flux distribution (from the shikimate pathway) to all

the downstream branches [for extensive details, see (Kong, 2015)].

The derived metabolites (eg. flavonoids) can then confer stress

tolerance, possibly by enhancing antioxidant capacity (Nakabayashi

et al., 2014; Nakabayashi and Saito, 2015; Cesarino, 2019; Sharma

et al., 2019).

Meanwhile, underpinned by complex gene regulatory networks,

the transcriptional regulation of phenylpropanoid biosynthesis

exhibits extreme response flexibility to different phenological and

stress alterations, which is critical for plant growth and stress

adaptation (Francini et al., 2019; Yuan and Grotewold, 2020).

Besides, phenylpropanoid biosynthesis is regulated by different

signalling pathways and other mechanisms such as post-

transcriptional, post-translational, epigenetic and phytohormonal

regulations (Dixon and Paiva, 1995; Dong and Lin, 2021).

Especially, MYB, WRKYs, NACs and MBW ternary complex TFs

regulate the transcription of lignin and flavonoids biosynthesis

genes such as C4H, 4CL, CAD, C3H, DFR, HCT, COMT, etc. in

response to abiotic stress (Fraser and Chapple, 2011; Xu et al., 2015;

Wessels et al., 2019; Cai et al., 2020; Anwar et al., 2021). For

instance, upregulation of F3H and DFR genes invigorated drought

tolerance in Arabidopsis via enhancement of flavonoids

(Nakabayashi et al., 2014). Moreover, among the 71 and 11

identified rice heat-responsive DEGs involved in lignin and

flavonoids biosynthesis, respectively, most (including PRX,

laccase, OsPAL, Os4CL, OsF5H, OsF3H, OsCHS, OsCHI, etc.) were

up-regulated under heat stress, especially in the tolerant genotype

SDWG005 (Cai et al., 2020), revealing their crucial role in

conferring rice heat tolerance at the meiosis (reproductive) phase.

Meanwhile, phenylpropanoid biosynthesis, ROS, and BRs signaling

pathways exhibit complex crosstalk in abiotic stress response

(Yaqoob et al., 2022).

Here, we underline that leveraging on the advances in

comparative- and multi-omics (Scossa et al., 2021; Depuydt et al.,

2022; Singh et al., 2022; Zhan et al., 2022), metabolomics (Razzaq

et al., 2019; Ma and Qi, 2021; González Guzmán et al., 2022; Hall

et al., 2022), single-cell metabolomics (Misra et al., 2014; Fujii et al.,

2015; Fiers et al., 2018; Srinivasan and Kannan, 2019; de Souza et al.,

2020), computational biology, annotation and analytical (Misra

et al., 2014; Ma and Qi, 2021; Perez de Souza et al., 2022; Sidak

et al., 2022) approaches that have enabled detection and elaboration

of diverse repertoire of trace and specialized metabolites (Hall et al.,

2022); we can screen accumulated big data (stored in various

databases (Razzaq et al., 2019; Ma and Qi, 2021; González

Guzmán et al., 2022)) for key target genes, enzymes and/or

metabolites for assembling functional transgenic or synthetic gene

regulatory circuits and pathways that can orchestrate enhanced D

+H tolerance in cereals (Kong, 2015; Lata and Shivhare, 2021; Zhan

et al., 2022). Additionally, PAL, a long-standing target for metabolic

engineering of phenylpropanoid biosynthesis (Kong, 2015; Nanda

et al., 2017), can be re-engineered using Synbio approaches (Garcıá-
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Granados et al., 2019; Ferreira and Antunes, 2021). For instance,

synthetic biosensors (Ferreira and Antunes, 2021), promoters and

codon-optimized enzymes (Kong, 2015) can be employed to

optimize metabolic fluxes to desired precursor pools or/and

inhibit or reduce metabolic fluxes to precursor competitor

pathways, thereby enhancing productivity of the target pathway

(Kong, 2015; Garcıá-Granados et al., 2019). Moreover, synthetic

biosensors or regulators can alleviate the challenges of growth

inhibition and metabolic burden on the chassis often associated

with manipulations to the phenylpropanoid metabolism (Kong,

2015; Muro-Villanueva et al., 2019; Ferreira and Antunes, 2021).

Besides, considering the role cell-wall remodelling plays in plant

drought and pathogenic resistance (Miedes et al., 2014; Tenhaken,

2014), we can modify root cell-walls (lignification) via

phenylpropanoid biosynthesis pathway manipulation to enhance

cereal crops tolerance to drought (Yadav et al., 2020; Lata and

Shivhare, 2021).
4.5 Phytohormone biosynthesis and
signalling pathways

Phytohormones such as ABA, BRs, auxins (Aux), ethylene

(ET), JA, salicylic acid (SA) and strigolactones (SLs) essentially

regulate plant growth and development, as well as environmental

stress response (Verma et al., 2016; Mubarik et al., 2021; Choudhary

and Muthamilarasan, 2022). Therefore, hormone metabolism and

signalling pathways become excellent targets for manipulation to

enhance abiotic stress tolerance (Wani et al., 2016; Mellacheruvu
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et al., 2019; Salvi et al., 2021; Tenorio Berrıó et al., 2022).

Importantly, phytohormone signal transduction modules crosstalk

among themselves (Divi et al., 2010; Verma et al., 2016; Pandey

et al., 2017a) and with other stress signalling molecules and modules

such as Ca2+, ROS, soluble sugars (Rosa et al., 2009; Lv et al., 2018;

Jogawat et al., 2021; Salvi et al., 2021; Singh et al., 2022) and MAPK

cascades (Li et al., 2020; Salvi et al., 2021), forming a complex

network critical for stress response (Jogawat et al., 2021; Choudhary

and Muthamilarasan, 2022) (Figure 4). Besides, the intricate

phytohormone crosstalk essentially modulates transcriptional

reprogramming and stress-responsive genes expression (Salvi

et al., 2021; Raza et al., 2022b; Zenda et al., 2022).

ABA is the major phytohormone orchestrating drought stress

response (Salvi et al., 2021; Choudhary and Muthamilarasan, 2022).

ABA signalling pathway regulates DS response via the ABA-

SnRK2-PP2Cs-PYLs module (Umezawa et al., 2010; Nakashima

and Yamaguchi-Shinozaki, 2013), with SnRK2s phosphorylation of

AREB/ABFs being pivotal in ABA-responsive genes expression

(Fujita et al., 2013). Plausibly, therefore, ABA biosynthesis and

signalling pathways become logical targets for engineering plant

drought tolerance (Tenorio Berrıó et al., 2022). Overexpression of a

TaABFs-regulated PYL gene TaPYL1-1B improves ABA signalling,

photosynthetic capacity and WUE, consequently improving

drought tolerance in wheat (Mao et al., 2022). Moreover,

modifying the ABA receptors (PYLs) alters ABA signalling,

increases WUE, minimises growth arrest whilst enhancing

drought tolerance in cereals (Park et al., 2015). Further, the

phosphorylation sites of PYL ABA receptors that are the

TARGET OF RAPAMYCINE (TOR) kinase targets can be
FIGURE 3

Simplified illustration of the phenylpropanoid biosynthesis pathway and its tributaries. Phenylpropanoid pathway provides precursors to two major
downstream routes – lignin and flavonoid biosynthesis pathways, which are the major sources of diverse plant secondary metabolites. Key enzymes
are shown in blue and abbreviated as follows: PAL, phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumaroyl CoA-Ligase;
C3H, p-coumaroyl shikimate/quinate 3-hydroxylase; CHS, chalcone synthase; HCT, hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl
transferase; C3′H, p-coumaroyl shikimate 3′ hydroxylase; CSE, caffeoyl shikimate esterase; CCoAOMT, caffeoyl CoA O-methyltransferase; CCR,
cinnamoyl CoA reductase; COMT, caffeic acid/5-hydroxyferulic acid O-methyltransferase; F5H, ferulate 5-hydroxylase; CAD, (hydroxy)cinnamyl
alcohol dehydrogenase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; FNS, flavone synthase; IFS, isoflavone synthase; FLS, flavonol
synthase; IOMT, isoflavone O-methyltransferase; IFR, isoflavone reductase; DFR, fihydroflavonol 4-reductase; ANS, anthocyanin synthase; F3′H,
flavonoid 3′-hydroxylase. Note: Complete arrows show a one-step enzymatic reaction, whereas dashed arrows denote series of enzymatic steps
that have been abstracted for simplicity purposes. Bold text is for emphasis of key stages and/or enzymes. Adopted from (Emiliani et al., 2009; Dong
and Lin, 2021; Ferreira and Antunes, 2021).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1111875
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2023.1111875
engineered to fine-tune PYLs activity and optimize plant growth

and stress response (Wang et al., 2018c). Other targeted

modifications to the interplay between core components of the

SnRK2-PP2Cs-PYLsmodule that fine-tune ABA biosynthesis, levels

and signalling to optimize the associated ABA-induced growth-

productivity trade-offs under stress conditions can be pursued

(Bhaskara et al., 2017; Belda-Palazón et al., 2020; Tenorio Berrıó

et al., 2022).

Meanwhile, WUE can further be enhanced by OE of AQPs,

especially the tonoplast- and plasma membrane-intrinsic

proteins (Ahmed et al., 2021; Ermakova et al., 2021). For

instance, OE of wheat TaAQP7 enhanced drought tolerance in

tobacco (Nicotiana tabacum) by improving cellular water

retention, ROS homeostasis and antioxidant capacity (Zhou

et al., 2012). Interestingly, AQPs are also regulated by various

phytohormones including ABA, gibberellins, JA, SA, IAA and

CKs (Kapilan et al., 2018; Ahmed et al., 2021). Therefore, on top

of modifying ABA biosynthesis, gating of AQPs holds much

promise in enhancing D+H tolerance in cereals. Meanwhile, a

nuclear-localized DRIR (DROUGHT INDUCED lncRNA) is

significantly induced by ABA treatment, and drought and salt

stresses, and positively regulates tolerance to these stresses in

Arabidopsis (Qin et al., 2017). The drirD mutant and DRIR

overexpressing transgenic plants exhibited higher sensitivity to

ABA, decreased transpirational water loss, and increased

tolerance to drought and salinity stresses as compared to Wt

plants (Qin et al., 2017). Taken together, modifying ABA

biosynthesis, gating of AQPs, and manipulating lncRNAs
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improves WUE, and hold much promise for enhancing D+H

tolerance in cereals.

Besides, TFs such as the NAC, WRKY, DREB2, etc. attune the

expression of DS- and HS-responsive genes via the ABA-

independent pathway (Lata and Prasad, 2011; Nakashima et al.,

2014). For instance, overexpressed TaWRKY1-2D confers DS

tolerance in transgenic Arabidopsis and wheat, through up-

regulated induction of stress-responsive and antioxidant genes

such as AtP5CS1, AtRD29A, AtCAT1, AtPOD1, AtSOD (Cu/Zn),

TaP5CS, TaCAT, TaPOD, TaSOD (Fe), etc. (Yu et al., 2023).

Additionally, several components of the ABA-dependent and

ABA–independent response pathways crosstalk in stress

transcriptional regulation (Nakashima et al., 2014). Other ABA

biosynthesis- and catabolism-related enzymes/genes (NCEDs,

HvSUS1, HvAGP-L1, HvBAM1, HvBgs, HvABA8’OH-1, HvAO1,

etc.) have been identified (Seiler et al., 2011; Thalmann et al.,

2016). We reason that manipulating key components (eg.,

through OE or repression) or interactions (using specific/

conditional promoters) of these intricate signalling networks

potentially optimizes ABA biosynthesis-degradation dynamics

and enhance D+H tolerance in cereals (Nakashima et al., 2014;

Ciura and Kruk, 2018; Tenorio Berrıó et al., 2022). For instance, OE

of SNAC genes (OsNAC10 and OsNAC5) under the control of root-

specific (RCc3) and constitutive (GOS2) promoters enhances

drought tolerance via root structural adjustment and improves

grain yield in transgenic rice under field conditions (Jeong et al.,

2010; Jeong et al., 2013). Deploying diverse drought-responsive

tissue- or organ-specific promoters targeting roots or stomata could
FIGURE 4

Simplified graphical illustration of the phytohormonal signalling crosstalks underpinning plant drought and/or heat stress (D/+H) stress tolerance.
Generally, ABA negatively regulates growth-promoting hormones brassinostroids (BRs), giberrelic acids (GAs), cytokinins (CKs), ethylene (ET) and auxins
(Aux). Nonetheless, ABA, BR, ET and salicylic acid (SA) signaling pathways crosstalk to induce D/+H stress tolerance, through sharing similar
transcriptional targets (Choudhary and Muthamilarasan, 2022). Meanwhile, SA crosstalk with jasmonic acid (JA) to improve antioxidant capacity, whereas
strigolactones (SLs) interact with H2O2, nitric oxide (NO) and SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) to induce stomatal closure and enhance
osmotic stress tolerance (Lv et al., 2018). SLs also regulate root system architecture (RSA) adjustment, aquaporins (AQP) activity and AMF processes
(Mostofa et al., 2018), which all contribute to enhanced D/+H stress tolerance. Note: For clarity, connections between components have been kept to a
minimum; see text for detailed discussion. Solid arrows denote confirmed and positive regulation, whereas blunt ended lines show inhibition. Dashed
arrows imply relationships yet to be confirmed. Modified from (Tenorio Berrıó et al., 2022; Zenda et al., 2022). Pro, proline; Jas accum, jasmonates
accumulation; ROS, reactive oxygen species; HSFs, heat-shock factors; HSPs, ARFs, auxin-responsive factors; heat shock proteins.
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potentially regulate the expression of pleiotropic genes and help

suppress the harmful effects (Nakashima et al., 2014). However, it is

worth noting that the resultant effects of those genetic or pathway

manipulations will need further verification under field conditions

and across spatiotemporal scales (Ciura and Kruk, 2018).

Physiologically, BRs mediate meristematic cell proliferation,

cell-wall remodelling and osmolyte accumulation under abiotic

stress (Rao and Dixon, 2017; Planas-Riverola et al., 2019; Jogawat

et al., 2021; Choudhary and Muthamilarasan, 2022). In fact, BRs

and CKs are two key growth promoting hormones that regulate cell

division and expansion. However, they are repressed by ABA

(Verma et al., 2016). At the transcriptional level, BRs induce

HSPs via the BR-dependent TFs such as BRASSINOSTEROID

INSENSITIVE 1 (BRI1), BRASSINAZOLE RESISTANT 1

(BRZ1), BRI1-EMS-suppressor 1 (BES1), and phytochrome

interacting factors (PIF4, PIF7, etc.). BES1 can also induct the

ABA-repressed-PP2Cs facilitated heat shock response pathway [for

details, see our recent review (Zenda et al., 2022)]. BRs induce the

expression of cyclins (eg. CYCD3;1), cell wall-modifying enzymes

and expansins. Additionally, BR signaling activates several TFs such

as BIM1, MYB30 and MYBL2 (extensively reviewed in (Planas-

Riverola et al., 2019; Tenorio Berrıó et al., 2022)). Notably, BR and

ABA signaling pathways inhibit each other in abiotic stress

responses, converging at the level of brassinosteroid-insensitive 2

(BIN2) and BZR1 (Wang et al., 2018b; Planas-Riverola et al., 2019).

On one hand, BIN2 acts a repressor of BR signalling, enhancing

ABA-mediated pathway response via phosphorylation of SnRK2,

which consequently permit expression of ABA-responsive genes

(Cai et al., 2014). Conversely, exogenously applied BR dampens

ABA-mediated stimulation of RESPONSIVE TO DESICCATION 26

(RD26), a gene encoding a transcriptional activator of stress-

inducible gene expression (Chung et al., 2014). This reciprocal

antagonism existing between the ABA and BR signalling pathways

is critical for plant growth and stress adaptation (Planas-Riverola

et al., 2019). Therefore, we can capitalize on this antagonistic

relationship to suppress either ABA or BR pathway (depending

with the situation) as a strategy to enhance D+H tolerance in

cereals. For instance, three BR-signalling-associated TFs (WRKY46,

WRKY54 and WRKY70) cooperate with BES1 to enhance plant

growth, but drought response is dampened through inhibition of

drought-inducible gene expression (Chen and Yin, 2017). However,

the wrky46 wrky54 wrky7 tripple mutants exhibit repressed growth

and BR levels, but significantly improved drought tolerance (Chen

and Yin, 2017). Similarly, OE of the vascular BR receptor BRL3

enhanced plant drought tolerance (without arresting plant growth)

in Arabidopsis through increasing osmoprotectants such as proline,

GABA and soluble sugars (Fàbregas et al., 2018). Interestingly, these

molecules have already been implicated in D/+H tolerance (Rosa

et al., 2009; Pinheiro and Chaves, 2011; El Habti et al., 2020; Xu

et al., 2021a; Zahra et al., 2021; Balfagón et al., 2022).

However, any modification to the ABA-BR reciprocal feedback

mechanism should take into account the complex crosstalk among

ABA, BR and other hormone signalling pathways and molecules. For

instance, BRs interact with ET biosynthesis in a way dependent upon

BR levels. At low ABA levels, BRs can regulate, via BES1 and BZR1,

the suppression of ET biosynthesis, whilst at higher ABA levels, ET
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biosynthesis is enhanced post-transcriptionally (Jiroutova et al., 2018;

Tenorio Berrıó et al., 2022). Besides, the observed BR-mediated heat

and salinity tolerance in Arabidopsis has pointed to a possible cross-

talk of BR with SA, ABA and ET signaling pathways, through sharing

similar transcriptional targets (Divi et al., 2010) (Figure 4). All these

interconnectivities, when not carefully considered in the engineering

experiment design, may have negative effects on the actual intended

metabolic pathway improvement.

Meanwhile, strigolactones (SLs) together with H2O2 and nitric

oxide (NO) synthesis, and SLOW ANION CHANNEL-

ASSOCIATED 1 (SLAC1) activation crucially mediate stomatal

closure in ABA-independent manner (Lv et al., 2018). Further,

JA, SA, ET have been shown to crosstalk with ABA and AQPs

(Khan et al., 2013; Waadt, 2020; Ahmed et al., 2021; Choudhary and

Muthamilarasan, 2022; Tenorio Berrıó et al., 2022). Here, we

advance that decoding complex crosstalk among phytohormone

signalling pathways and other signalling molecules and modules, as

well as hub components amenable to modification without huge

growth penalties, hold much promise to engineering abiotic stress

tolerance in cereals. For instance, Schulz et al. (Schulz et al., 2021)

employed calcium-dependent protein kinases (CPKs)-mediated

combinatorial engineering approach to optimize signalling

networks (Ca2+ and BR) involved in balancing stress tolerance

and growth under water deficit conditions. Targeted genetic

transformation of a combination of CPK genes (CPK28 and

CPK29) into tobacco enhanced plant tolerance to drought and

growth under stress conditions (Schulz et al., 2021). Similar results

obtained in proof of concept (Arabidopsis) and validation (tobacco)

experiments (Schulz et al., 2021) showed that this combinatorial

genetic transformation based on synthetic network selection is an

innovative and promising approach for engineering complex

signalling networks to enhance crop abiotic stress tolerance.

Already, deployment of this technique in metabolic pathway

engineering in other plant species has been confirmed (Naqvi

et al., 2009; Fuentes et al., 2016).

A more recent review highlights how plant hormones such as

ABA, JA, SA, BRs, IAA, CKs, etc. interact with neurotransmitters

such as melatonin, acetylcholine, etc. to enhance morpho-

physiological responses to (and amelioration of) abiotic stress-

triggered oxidative stress, by activating the antioxidant system

and improving redox homeostasis (Raza et al., 2022b). For

instance, melatonin enhances thermotolerance in soybean

seedlings through balancing redox homeostasis, orchestrating

antioxidant defense, and modulating phytohomones and

osmolytes biosynthesis (Imran et al., 2021). Meanwhile,

phytohormones can reciprocally modulate epigenetic processes

and regulate gene expression via other transcriptional regulatory

pathways (Jiang et al., 2023). Therefore, untangling the complex

crosstalk existing among phytohormones, stress signalling

molecules and osmolytes will crucially assist in pinpointing key

hub points or nodes for targeted manipulation for metabolic

engineering of D/+H tolerance in crops (Lv et al., 2018; Jogawat,

2019; Jogawat et al., 2021; Saddhe et al., 2021; Sun et al., 2021;

Yaqoob et al., 2022). Additionally, a comprehensive understanding

of the common features of plant transcriptional- and epigenetic-

regulatory pathways and how cross-regulation among
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phytohormones acts upon gene expression will be key in identifying

hub target genes (such as CPKs and MPKs) for engineering D/+H

tolerance (Waadt et al., 2022; Jiang et al., 2023; Yin et al., 2023).

However, it must be highlighted that engineering phytohormone

signalling pathways is challenging and delicate, due to the large

genetic redundancy and complexity of the signalling pathways

(Braguy and Zurbriggen, 2016). Nonetheless, we envision that the

increased and accelerated adoption of advanced Synbio tools such

as the genetically encoded phytohormone signaling manipulators

(GEPHMans) (Waadt, 2020), synthetic hormone reporters and

biosensors (Zhao et al., 2021), genetically encoded aptamers and

heterologous systems (Tungsirisurp et al., 2023), coupled with

modelling tools, will simplify spatial and temporal monitoring of

phytohormones and other analytes such as sugars, helping in the

precise identification, analysis and regulation of interconnectivities

between multiple pathways (Isoda et al., 2021).
5 Perspectives on metabolic
engineering targeted approaches
associated with D/+H stress
tolerance in cereals

Core metabolic pathways related to primary metabolism (viz.,

carbon metabolism and starch metabolism) and secondary

metabolism (viz., phenylpropanoid biosynthesis and GABA

biosynthesis), as well as phytohormone biosynthesis and

signalling, can be both targeted for manipulation to enhance D/

+H stress tolerance as we have shown above. We do appreciate that

pathways involved in the biosynthesis of other osmoprotectants

such as proline, glycine betine, trehalose, melatonin, and several

ROS-scavengers are also critical in abiotic stress tolerance

(comprehensively and nicely reviewed in (Khan et al., 2015;

Zulfiqar et al., 2019; Raza et al., 2023a)). However, here, they

were not extensively covered; hence, we refer readers to those

articles. Rather, our current review majored on the five pathways

discussed above. Further, we briefly highlight other perspectives

pertinent to improving D+H stress tolerance in cereals, as

outlined below.
5.1 Multiple-component targeting versus
single trait targeting

We advance that considering the complexity and metabolic

pathways or phytohormonal crosstalks related to polygenic traits

such as D/+H tolerance, multiple genes/traits or pathways targeting

offers more prospects of delivering abiotic stress tolerance versus

single-trait modification. This is so because single-trait targeting

often leads to unintended consequences on other components or

downstream pathways due to feedback regulation (Zhu et al., 2019;

Shelake et al., 2022) and stress responses often involve invigoration

of overlapping pathways at different levels (Zhang and Sonnewald,

2017). Therefore, simultaneous targeting of multiple genes/

components from the same or interlinked pathways potentially
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eliminates the risk of negative impacts on other system components

or whole system functioning and may generate apt responses to D

+H stress (Shelake et al., 2022) (Figure 5).
5.2 Integration: a multi-pronged approach
to abiotic stress tolerance improvement

For a multi-pronged cereal crop improvement program for

climate resilience and high nutritive value, engineering of key

metabolic pathways should be integrated with other plant

breeding innovations such as GAB, GS, genomic prediction tools

(Crain et al., 2021), ML, AI, multi-omics, speed breeding (Watson
FIGURE 5

Hypothetical depiction of targeted metabolic pathway manipulation
for enhancing drought or/and heat (D/+H) stress tolerance.
Description to the diagram: Pods (A, B, C) and (D) denote different
genes, numbered sequentially in each pathway for simplicity
purposes. Different metabolic pathways are named MP1, MP2, MP3
and MP4. Meanwhile, e1 to e4 denote engineered outcome 1 to 4,
respectively. Blue connectors with/out questions marks depict
crosstalk between pathways, whose effect (synergistic or
antagonistic) is either confirmed or unconfirmed. Black pointing
arrows between genetic factors depict intermediates (either
enzymes, precursors or some metabolites, or series of steps). Green
upward pointing arrows show enhancement (overexpression or
knock-in) whereas downward pointing red arrows show repression
(down-regulation or knock-out). The pathways or arrows or pods
are not to scale, but for conceptual depiction only. The depicted
concept: Single genetic factor (pod A in MP1) or multiple-gene
factors (pods B, C and D in MP2) known to govern D/+H stress
response are targeted for modification using modern tools and
approaches such as CRIPR-Cas9, synthetic promoters, etc. Genes
are either enhanced (OE, knocked-in, etc.), eg., pod A in MP3, or
repressed (knocked-down or knocked-out), eg., pod A in MP1.
Multiple-genes within the same pathway (eg., B, C and D in MP2) or
from different pathways (eg. A in MP3 with any of those in MP2) can
be simultaneously expressed. In other scenarios, a competing
branch can be blocked to prevent metabolic flux to unwanted or
competitor product (branch B-D in MP3), or the intermediate is
modified instead of the gene factor (eg. OE of intermediate between
A and B in MP4). From these different kinds of manipulations (also
explained in Box 1), we argue that multiple-gene targeting (either
sequentially or simultaneously) from functionally linked pathways
harbors great potential to enhance D/+H stress tolerance than
single-gene modification (Zhu et al., 2019; Shelake et al., 2022).
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et al., 2018), fast forward breeding (FFB) (Varshney et al., 2021a),

and smart breeding (Xu et al., 2022). Genomic prediction tools

enhances GS, whereas speed breeding and GETs considerably fast-

track the development of climate-resilient crops (Tian et al., 2021;

Eckardt et al., 2023). FFB integrates advanced genome sequencing,

crop phenomics, systems biology, QTL mapping, genomic

prediction, ML, AI, and other novel breeding methods to

significantly enhance the genetic base of breeding programs and

accelerate genetic gains (Varshney et al., 2021a). Meanwhile, smart

breeding, driven by Big Data (gathered spatiotemporally over

multiple-environmental trial sites), AI, optimized prediction

models, and integrated genomic-enviromic prediction (iGEP) (Xu

et al., 2022), offers a platform for integration of multi-omics

information with ML and AI for targeted designing of breeding-

pipelines for crop improvement (Xu et al., 2022). Besides, HT3Ps

technologies such as novel sensors and high-resolution imagery can

be used to quantify plant performance in specific environments and

phenomics data usage optimized for genetic gains (Perez-Sanz et al.,

2017; Araus et al., 2018; Crossa et al., 2021; Araus et al., 2022; Hall

et al., 2022; Xu et al., 2022). Coupling all these innovations provides

the best shot to improving stress resilience in crops (Zenda et al.,

2021a; Zenda et al., 2021b; Raza et al., 2023b).
5.3 Hitting two birds with one stone:
biofortification of stress tolerant cultivars

Based on the successfully deciphered several major QTLs,

genomic regions, and genes underlying key nutritive traits in

major cereals, including grain zinc (Zn), iron (Fe) and vitamin E

contents (Jiang et al., 2017; Zhu et al., 2019; Puranik et al., 2020;

Singhal et al., 2021), key metabolic pathways for improving crop

grain nutrition quality through biofortification have been identified

(Jiang et al., 2017; Zhu et al., 2019; Singh et al., 2021). These

pathways include those involved in crop nutrient (especially Fe and

Zn) acquisition, uptake and accumulation into grains (Blancquaert

et al., 2017; Singh et al., 2021). For instance, enhanced expression of

Fe and Zn transporter genes (Blancquaert et al., 2017) or reduced

concentrations of anti-nutrient factors (such as phytic acid) (Aluru

et al., 2011) enrich Zn and Fe contents [reviewed in (Zhu et al.,

2019)]. Simultaneous expression of FERRITIN and nicotianamine

synthase (NAS) genes increases both Zn and Fe contents of grains

(Wirth et al., 2009; Trijatmiko et al., 2016), whereas concomitant

expression of four genes, viz., FERRITIN, NAS, carotene desaturase

(CRTI) and phytoene synthase (PSY), yielded a multinutrient-

enriched biofortified transgenic rice with greatly enhanced Zn, Fe

and b-carotene (caretonoid) contents (Singh et al., 2017). Besides

caretonoid, folate, and vitamin E biosynthesis pathways can be

targeted for manipulation to enhance grain nutritional contents in

cereals such as rice, maize, wheat and pearl millet (Jiang et al., 2017;

Kumar et al., 2019; Zhu et al., 2019; Sharma et al., 2021; Singh et al.,

2021). For instance, overexpression of OsMYBR22/OsRVE1 TF

significantly and simultaneously enhanced the contents of

chloroplast-biosynthesized nutritional and functional metabolites

such as carotenoids, chlorophylls, amino acids (lysine and

threonine), and amino acid derivatives (eg., GABA) in rice grains;
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this provides a new strategy for biofortification of rice (Jeong et al.,

2022). Essentially, recent advances in metabolomics, plant Synbio

and CRISPR-Cas systems have improved our understanding of the

biosynthetic pathways, facilitate the reconstruction and regulation

of multistep complex metabolic networks, and underpin

development of nutrient-dense cereals though biofortification

(Zhu et al., 2019). Increased deployment of these strategies in

developed elite D/+H tolerant cultivars and other minor cereals

across the marginalized drylands, especially the Sub-Saharan

African region, will hugely contribute to fighting global

malnutrition (Rodrıǵuez et al., 2020).
5.4 Challenges and prospects to
metabolic engineering for D/+H
tolerance improvement

It must be conferred that multiple components or pathway

modification for abiotic stress tolerance improvement is not devoid

of challenges. The main hurdles evolve around gene and metabolites

identification and functional annotation, elucidation of complex

crosstalk and redundancy among pathways, metabolomics data

analysis, and spatiotemporal analysis of gene expression, among

others. Here, we briefly highlight these challenges and the prospects

for circumventing them. To start with, D/+H tolerance

improvement is on its own complex due to the polygenic nature

of these traits, some linkage drag, and the low transformation

efficiency and recalcitrance of cereal species (Cortés and López-

Hernández, 2021; Silva et al., 2022) (Box 2). The identification of

precise genes for targeted functions is still a tedious task, especially

when dealing with multigenic functions, polygenic traits, or

combined stresses (Rivero et al., 2022; Sargent et al., 2022). This

is compounded by the lack of information on the functions of

several genes and the interactions of different protein family

members responding to stress (Shelake et al., 2022), and limited

functional annotation capabilities of some bioinformatics tools

often used (Zenda et al., 2022). Thus, the key regulators

governing D/+H stress tolerance are yet to be conclusively

identified. Encouragingly, GWAS (Challa and Neelapu, 2018) and

genomic selection (GS) (Meuwissen et al., 2001; Heffner et al., 2009;

Xu et al., 2020), coupled with genomic prediction models and

phenomics tools (Araus et al., 2018; Crain et al., 2021; Araus

et al., 2022; Hall et al., 2022), can help us efficiently identify the

major genetic factors underlying D+H stress tolerance. Moreover,

third-generation sequencing platforms and their associated long

reads (Pucker et al., 2022) now permit high-resolution genome-

wide scanning and identification of key genomic regions or

haplotypes underlying complex traits such as D/+H tolerance. At

the same time, harnessing crop wild relative (CWRs), harbouring

untapped diversity for potential climate-responsive traits

(Brozynska et al. , 2016; Leigh et al., 2022), facilitates

incorporation of novel climate-responsive traits/alleles (eg.,

photosynthetic characteristics, WUE, RSA, floral transition,

disease resistance, etc.) into new crop cultivars (Pourkheirandish

et al., 2020; Cortés and López-Hernández, 2021). Besides, ML

(Sidak et al., 2022) can help us explore the complex regulatory
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networks and precisely identify core regulators (including novel TFs

and protein kinases) mediating abiotic stress responses (Eckardt

et al., 2023). Meanwhile, to circumvent the hurdles of low

transformation and regeneration efficiencies, as well as genotype

dependency of the transformation process in recalcitrant species

(including cereals), new methods such as nano particles-based

CRISPR-Cas delivery systems, somatic embryogenesis, de novo

induction of meristem, and transgenic rice endosperms can be

used with much better outcome (Demirer et al., 2021; Duan et al.,

2021; Chen et al., 2022; Zhu et al., 2022a).

In addition, and more importantly, due to high level complexity,

redundancy and crosstalk among several pathways, dissecting the

roles of individual elements within those complex networks is more

daunting (Braguy and Zurbriggen, 2016; Sargent et al., 2022).

Fortunately, Synbio-anchored heterologous orthogonal platforms

now help us better understand protein functions and dissect the

roles of individual elements/components within complex signalling

networks by decreasing the protein environment complexity,

minimizing redundancy and limiting interactions with other

pathways (Braguy and Zurbriggen, 2016). Moreover, synchronized

gene targeting systems (such as TransGene Stacking II; TGSII)

premised on site-directed incorporation of transgenes into a

genomic position to construct multigene stacks are now feasible

(Kumar et al., 2015; Zhu and Liu, 2021). These are mostly mediated

by GETs such as CRISPR-Cas 9 (Chen et al., 2019; Zafar et al., 2020;

Gao, 2021) and other Synbio tools and approaches (see Box 2).

Moreover, due to immense and sheer structural and functional

diversity of plant metabolites, identification of key stress-responsive

metabolites is yet to be unified (Obata and Fernie, 2012). Particularly,

the multi-functionality of secondary metabolites as potent regulators

of plant growth, development, stress (biotic and abiotic) defense, and

primary metabolites (Erb and Kliebenstein, 2020; Bhambhani et al.,

2021) makes it very challenging to precisely disaggregate and analyse

the exact metabolites responsible for a particular stress response or

phenotype. However, the recent multi-omics-aided discovery of plant

metabolic gene clusters has provided new insights into the diversity,

evolutionary trajectories, composition, regulation, and function of

plant metabolites, which could facilitate efficient pinpointing of

desirable metabolites for metabolic engineering of stress tolerance

in crops (Weng et al., 2021; Zhan et al., 2022). Meanwhile, mass-

spectrometry (MS)-based metabolomics approaches, mostly applied

in plant metabolites profiling suffer limitations related tometabolome

stochasticity (dynamism), complexity in data analysis (often an

opaque of features from both known and unknown metabolites),

low sensitivity of analytical instrumentation tools, etc. (Misra et al.,

2014; Aretz and Meierhofer, 2016). Besides, cell-localization of

metabolites and analysis of spatiotemporal gene expression remain

cumbersome (Misra et al., 2014). Consequently, most studies of the

interplay between phytohormones and epigenetics, or transcriptional

regulation of abiotic stress reported to date have used whole-tissue or

single-time-point-collected samples, thereby overlooking

spatiotemporal information (Jiang et al., 2023). Here, we advance

that the recent advances in MS-based single-cell metabolomics,

encompassing microfluidic single-cell cultivation coupled to flow

cytometry and advanced MS methods, as well as single-cell

analyses, have refined techniques` quantitative abilities, sensitivity,
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resolution and accuracy at spatial-temporal scales [reviewed in (Jiang

et al., 2016; Duncan et al., 2019; Razzaq et al., 2019; Ma and Qi, 2021;

Depuydt et al., 2022; González Guzmán et al., 2022; Raza, 2022; Zhou

et al., 2022)]. Resultantly, single-cell omics approaches (de Souza

et al., 2020; Slavov, 2020; Longo et al., 2021; Mo and Jiao, 2022; Xia

et al., 2022), supported by ML and AI (Cortés and López-Hernández,

2021; Sidak et al., 2022), now permit decoding, monitoring and

analysis of metabolic fluxes and gene expressions at spatiotemporal

scales with greater accuracy (Mo and Jiao, 2022). We anticipate the

gradual switch from whole-plant or tissue-level to single-cell level

metabolomics, coupled to metabolites databases and other single-

omics approaches, to revolutionize the study of metabolic pathways,

provide insights into the spatiotemporal interplay among metabolic,

epigenetic and transcriptional regulatory networks, and accelerate the

development of abiotic stress tolerant crops.

Further, plant growth and development are dynamic processes,

and as such, constitutive synthesis of metabolites, by either

constitutive overexpression or knock down/out of certain genes or

enzymes, may negatively affect (mask or alter) plant cell

development and growth (Garcıá-Granados et al., 2019; Jiang

et al., 2023), On the other hand, metabolic pathway modification

may not always translate to predicted or desired outcomes, due to

feedback regulation and the complexity of interacting multiple

regulators, enzymes and competing pathways (Figure 5) (Zhu

et al., 2019; da Fonseca-Pereira et al., 2022). Therefore, each

targeted modification will require regulators to monitor metabolic

flux changes and associated downstream effects. Promisingly, as

already highlighted, increased adoption of GEPHMans, synthetic

biosensors, and heterologous systems, together with modelling

tools, will simplify spatio-temporal monitoring of metabolic flux

changes and aid precise identification, analysis and regulation of

several crosstalking pathways (Waadt, 2020; Isoda et al., 2021; Zhao

et al., 2021; Tungsirisurp et al., 2023). Moreover, these Synbio-based

tools have opened up prospects for multiple-traits or pathways

modification and creation of novel plant systems custom-designed

for specific climate environments (Batista-Silva et al., 2020; Zhu

et al., 2020; Shelake et al., 2022; Zhu et al., 2022b). Potentially, this

could facilitate translation of most proof of concept discoveries

(from lab to field) which have so far remained untested under field

conditions, thereby hindering or deferring their incorporation into

breeding programs. The limited transferability of metabolic

engineering products to ‘outside lab’ environments is largely due

to their limited environmental flexibility, and perceived or non-

perceived ethical concerns linked to genetically modified organisms

(GMOs), which have prompted policy makers to adopt a

conservative approach regarding GMO use (Wang and Zhang,

2019; Brooks and Alper, 2021) (Box 1). However, an increasing

number of countries is reviewing its stance (guidelines and policies)

on genome edited products and has shown commitment to

international harmonization of policies that promote the future

widespread adoption of GMOs (Menz et al., 2020; Liang et al., 2022;

Mallapaty, 2022; Sprink et al., 2022; Buchholzer and Frommer,

2023). This, together with trans-boundary multi-disciplinary

collaborations among scientists, policy makers, and agricultural

extension and communication experts is vital in the promotion

and adoption of these new techniques and created stress-resilient
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and nutrition-enhanced crop cultivars (Emerick and Ronald, 2019;

Acevedo et al., 2020).
6 Concluding remarks

In view of the current global climate change and the pressing

need to sufficiently feed the global human population, alternative

strategies for enhancing crop D/+H stress tolerance should be

pursued. Designing of those novel strategies relies on first gaining

a mechanistic understanding of plant responses to D/+H stress,

especially the nature and magnitude of crosstalk among multiple

signalling networks. Meanwhile, due to the polygenic and complex

nature of D/+H tolerance, and the fast changing climate, single gene

targeting approach may not suffice in improving such traits.

Conversely, as we opined (abstracted in Figure 5) and discussed,

metabolic pathways modification holds much promise for

effectively improving such complex traits in cereal crops. Strategic

targets for manipulation to improve D/+H stress tolerance include

carbon, starch, GABA, osmolytes, phenylpropanoid and

phytohormonal biosynthesis and signalling pathways as already

discussed. Untangling the metabolic circuitry and crosstalk among

pathways, and identifying key metabolites and super-coordinated

gene expression networks linking primary and secondary

metabolism will be critical in future attempts to metabolically

engineer D+/H stress tolerance. Additionally, elucidation of the

spatiotemporal nature of the stress responsive metabolites and

genes is critical. Further, understanding how plant metabolic

pathways are regulated facilitates designing of optimized

metabolic pathways and precise regulation of metabolic flow for

enhanced stress tolerance or nutritional densities. Although

metabolic pathway modification is saddled with its own

challenges as has been highlighted, the recent advances in

molecular biotechnology, single-cell omics, genome editing

technologies, computational biology and data analysis approaches,

supported by machine learning, offer great opportunities for

circumventing these hurdles (Zenda et al., 2023). Especially, we

anticipate Synbio-based tools and methodologies such as TGS II

and CRISPR-Cas9 to accelerate the development of stress resilient

and nutrient-dense cereal crops (as we have proffered in Box 2).

Besides, single-cell omics approaches, particularly single-cell

metabolomics and single-cell transcriptomics, will facilitate for

high-resolution single-cell or cell-type-specific identification and

quantification of key stress-responsive metabolites and genes, as

well as elaboration of spatiotemporal gene expressions, which will

aid metabolic engineering for D/+H tolerance in cereals (Depuydt

et al., 2022; Hall et al., 2022; Xia et al., 2022; Zhan et al., 2022).

Moreover, the gradual shift in policy position on GMOs by an

increasing number of countries is a promising move expected to
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promote the widespread adoption of these Synbio-based

methodologies and GMO products, essentially helping in meeting

global food security and combating malnutrition.
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Albacete, A., et al. (2018). Overexpression of the vascular brassinosteroid receptor
BRL3 confers drought resistance without penalizing plant growth. Nat. Commun. 9,
4680. doi: 10.1038/s41467-018-06861-3

Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., et al. (2017).
Crop production under drought and heat stress: plant responses and management
options. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.01147

Fait, A., Fromm, H., Walter, D., Galili, G., and Fernie, A. R. (2008). Highway or
byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci. 13, 14–19.
doi: 10.1016/j.tplants.2007.10.005

Fang, Y., Liao, K., Du, H., Xu, Y., Song, H., Li, X., et al. (2015). A stress-responsive
NAC transcription factor SNAC3 confers heat and drought tolerance through
modulation of reactive oxygen species in rice. J. Exp. Bot. 66, 6803–6817.
doi: 10.1093/jxb/erv386

Fang, Y., and Xiong, L. (2015). General mechanisms of drought response and their
application in drought resistance improvement in plants. Cell. Mol. Life Sci. CMLS 72,
673–689. doi: 10.1007/s00018-014-1767-0

Farooq, M., Hussain, M., and Siddique, K. H. M. (2014). Drought stress in wheat
during flowering and grain-filling periods. Crit. Rev. Plant Sci. 33, 331–349.
doi: 10.1080/07352689.2014.875291

Ferreira, S. S., and Antunes, M. S. (2021). Re-engineering plant phenylpropanoid
metabolism with the aid of synthetic biosensors. Front. Plant Sci. 12. doi: 10.3389/
fpls.2021.701385

Fiers, M. W. E. J., Minnoye, L., Aibar, S., Bravo González-Blas, C., Kalender Atak, Z.,
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Sidak, D., Schwarzerová, J., Weckwerth, W., and Waldherr, S. (2022). Interpretable
machine learning methods for predictions in systems biology from omics data. Front.
Mol. Biosci. 9. doi: 10.3389/fmolb.2022.926623

Sihag, P., Sagwal, V., Kumar, A., Balyan, P., Mir, R. R., Dhankher, O. P., et al. (2021).
Discovery of miRNAs and Development of Heat-Responsive miRNA-SSR Markers for
Characterization of Wheat Germplasm for Terminal Heat Tolerance Breeding. Front.
Genet. 12. doi: 10.3389/fgene.2021.699420

Silva, T. N., Thomas, J. B., Dahlberg, J., Rhee, S. Y., and Mortimer, J. C. (2022).
Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the
bioeconomy. J. Exp. Bot. 73, 646–664. doi: 10.1093/jxb/erab450
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