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In recent times, the demand for food and feed for the ever-increasing population

has achieved unparalleled importance, which cannot afford crop yield loss. Now-

a-days, the unpleasant situation of abiotic stress triggers crop improvement by

affecting the different metabolic pathways of yield and quality advances worldwide.

Abiotic stress like drought, salinity, cold, heat, flood, etc. in plants diverts the energy

required for growth to prevent the plant from shock and maintain regular

homeostasis. Hence, the plant yield is drastically reduced as the energy is

utilized for overcoming the stress in plants. The application of phytohormones

like the classical auxins, cytokinins, ethylene, and gibberellins, as well as more

recent members including brassinosteroids, jasmonic acids, etc., along with both

macro and micronutrients, have enhanced significant attention in creating key

benefits such as reduction of ionic toxicity, improving oxidative stress, maintaining

water-related balance, and gaseous exchange modification during abiotic stress

conditions. Majority of phytohormones maintain homeostasis inside the cell by

detoxifying the ROS and enhancing the antioxidant enzyme activities which can

enhance tolerance in plants. At the molecular level, phytohormones activate stress

signaling pathways or genes regulated by abscisic acid (ABA), salicylic acid (SA),

Jasmonic acid (JA), and ethylene. The various stresses primarily cause nutrient

deficiency and reduce the nutrient uptake of plants. The application of plant

nutrients like N, K, Ca, and Mg are also involved in ROS scavenging activities

through elevating antioxidants properties and finally decreasing cell membrane

leakage and increasing the photosynthetic ability by resynthesizing the chlorophyll

pigment. This present review highlighted the alteration of metabolic activities

caused by abiotic stress in various crops, the changes of vital functions through

the application of exogenous phytohormones and nutrition, as well as

their interaction.
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1 Introduction

Feeding the global population rise which is soon to reach 2.3

billion by 2050 is a challenging task in every way, so a considerable

increase in grain productivity to at least about 70% is the need to

accomplish this global challenge efficiently (Tilman et al., 2011).

However, the major drawback in achieving this objective is the

frequent occurrence of abiotic stress which affects the plant’s

metabolic activities and triggers the biosynthetic pathways

ultimately reflected in the reduction in quality and yield loss. Plants

show their own mechanism to overcome the period of abiotic stress,

for which maximum of their energy synthesized by the plant becomes

diverted towards creating resistance or tolerance to the stress

condition. The abiotic stress includes drought, cold, salinity, heat,

water logging, metallic stress, etc. in plants transferring the energy to

prevent the plant from such stresses and maintain normal growth. In

the current scenario, these abiotic stressors are the major factors

affecting production and productivity. Amongst various abiotic

stresses, high temperature, water scarcity, and salinity are the most

widespread and significant ones (Wani et al., 2013).

Plant body is a complex of several biomolecules, among them

phytohormones are the molecules produced in very low

concentrations, however, they show their active participation in

regulatory activities (Shabir et al., 2016). The cellular activities are

mostly regulated by the chemical communication inside the plant body

with low-volume phytohormones (Vob et al., 2014). Phytohormones are

most important to regulate various signal transduction pathways during

abiotic-stress response. They regulate external as well as internal stimuli

(Kazan, 2015). Auxin, cytokinin (CK), gibberellic acid (GA), ethylene,

abscisic acid, brassinosteroids, salicylic acid, jasmonates, and

strigolactones are the major phytohormones that have the major

network in plant growth and development as well as in alleviating

abiotic stress in plants. Nutrients are another crucial component that

canminimize the effect of abiotic stress in plants bymaintaining the inner

homeostasis of the cell. Plant nutrients are considered the available form

of food for plants for their normal growth and development. The plant

nutrients are grouped into primary nutrients like nitrogen (N),

phosphorus (P), and potash (K); secondary nutrients like calcium (Ca),
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magnesium (Mg)and sulfur (S); micronutrients like boron(B), zinc (Zn),

iron (Fe)conditions, copper (Cu); and other beneficial nutrients like

cobalt (Co), selenium (Se), silicon (Si). Due to global climate change,

plant suffers a lot from nutrient deficiency. It was also noted that nutrient

deficiencies are the major cause of yield loss during abiotic stress. Hence,

proper nutrient management can elevate abiotic stress conditions in

plants to some extent. Plant nutrients can mitigate stress also by

activating stress resistance genes, enhancing antioxidant enzyme

activity, creating osmoprotectant in cells, synthesizing heat shock

proteins and other proteins related to stress tolerance, decreasing ROS

activities, creating membrane stability, repairing DNA, enhancing

chlorophyll content in leaves, reducing the uptake of heavy metals in

the plant.
2 Effects of abiotic stress on plants

Abiotic stresses cause disorders in plants like osmotic stress in

cells, retardation in cell development, reduced photosynthetic activity,

seed dormancy, and late reproduction, and eventually show a negative

effect on yield (Table 1). Among different types of abiotic stresses,

water-deficit stress is most frequent in nature and causes ample of

damage to crop plants. The rigorous impact of water deficit stress is

due to reduced plant relative water content which causes osmotic and

oxidative stress (Diouf et al., 2018). This condition occurs in salinity

stress also and further triggers the same effect as drought (Munns and

Tester, 2008). Both the drought and salinity stress the most menacing

global abiotic stresses, which force a series of morphological,

physiological, and molecular changes in plants, and in order to

survive they require osmotic adjustment, ROS detoxification

stomata closure, and cellular signaling (Diouf et al., 2018). Among

the other stressors, high temperature can impact plants’ hormone

production, nutrient uptake, stomatal conductance, transpiration

rate, photosynthetic activities, enzymatic activity, antioxidants level,

membrane stability index and reactive oxygen species (ROS)

production (Hussain et al., 2018). Similarly, chilling stress in plants

can also affect by putting impacts on tissue water content, membrane

fluidity, and chlorophyll content (Zhang et al., 2012).
TABLE 1 Common responses of plants under abiotic stress conditions.

Types of
stress

Effect on plant References

Drought Increases in leaf yellowing and senescence, leaf drooping, wilting, scorching of leaves, leaf rolling and brittleness, closed flowers and flower
sagging, leaf etiolation, and premature fall of leaves.

Ruehr et al.,
2019

Salinity Ion toxicity, osmotic stress, nutrient deficiency, oxidative stress on plants, leaf area and chlorophyll content reduction, altered stomatal
conductance, limited water uptake, and cell death,

Shrivastava and
Kumar, 2015

Water
logging

Inhibition of root respiration, blocked gas exchange between soil and atmosphere, accumulation of toxic substances, leaf stomata closure,
chlorophyll degradation, leaf senescence, and yellowing, the decline in photosynthetic rate, inhibition of germination, nutrient deficiencies,
inadequate ATP production, ROS production, chlorosis and necrosis in waxy leaves and yield reduction

Jiawei et al.,
2021

Chilling/
frost injury/
cold stress

Reduced water potential, ice crystal formation leads cell and plant death, membrane destabilization, altered membrane permeability,
destruction or degradation of chlorophyll, photosynthetic inhibition, cell expansion inhibition, cell death, tissue browning, blackening,
wilting or curling of leaves and stems, disruption of conversion of starch to sugar, decrease CO2 exchange, disturbed mating system and
yield reduction.

Mayland and
Cary, 1970;
Salvi et al.,
2021

High
temperature/
heat stress

Inhibition of seed germination, increased oxidative stress, water loss, alteration in phenology, improper growth and development, alteration
in photosynthesis, pollen grain sterility, improper seed setting, reduced shoot, and root growth scorching of leaves, branches and stems leaf
senescence and abscission, fruit discoloration, and altered dry matter accumulation, reduced yield in plants

Hasanuzzaman
et al., 2013
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2.1 Drought stress

About half of the global arid and semi-arid regions are affected by

drought stress. Under the conditions of drought stress,

photosynthesis, growth, and physio-biochemical processes of plants

are highly disrupted, which inhibits plant growth and development

and results in yield loss. A significant loss in total biomass and

productivity has resulted due to water stress conditions. Many

researchers have reported that oxidative stress from excessive ROS

i.e. superoxide, hydroxyl ions, nitric oxide, singlet oxygen production,

and nutrition imbalance, altered cell membrane balance and

biomolecules like DNA, proteins, and lipids, imbalanced

photosynthetic efficiency reduced turgor pressure, and alterations in

leaf gas exchange rates as some of the harsh impacts due to drought

(Perveen and Hussain, 2020; Sofy et al., 2021; Alam et al., 2021; Zandi

and Schnug, 2022). Numbers of morphological characteristics of

plants, including seed germination, plant height, relative root

length, root diameter, the total biomass of leaves and roots, number

of leaves/plants, number of branches/plants, etc. are negatively

impacted by drought stress (Table 2) which are more or less

observed in every crops. Among the physiological impacts, crop

plants experience partial stomatal closure and an increase in

photorespiration due to an imbalance in carbon metabolism during

water stress (Hu et al., 2019). Additionally, during stress, plants

produce more reactive oxygen species (ROS), which harms

chloroplasts through oxidation. All of these factors work together to

limit photosynthates, which eventually lowers agricultural

productivity. In response to the deadly impacts of water stress,

plants activate their natural defense systems including various

morphological, physiological, and biochemical adaptations, leaf
Frontiers in Plant Science 03
rolling, altered leaf angle, deep root system, drought-resistant

epigenetic phenotypic plasticity and gene activation, production of

osmolytes, soluble proteins, proline, soluble sugars, and glycine

betaine, etc. (Ozturk et al., 2021; Ghafar et al., 2021). While

considering the effect of drought on phytohormones, the impact of

stress depends on balancing of IAA and ABA content (Krishnan and

Merewitz, 2014). Rapid ABA accumulation has also been observed

under salinity and heat stress (Xiong et al., 2001). Experimental

evidence regarding the exposure of moderate drought on Triticum

aestivum and T. spelta showed initial increased accumulation of ABA

and SA, decreased level of GA3 and IAA, alteration of CKs in roots

and shoots (Kosakivska et al., 2022). ABA and ethylene significantly

reduced gas exchange parameters, chlorophyll a and b content in

cotton (Pandey et al., 2003).
2.2 Salinity stress

Saline soil having a high concentration of soluble salts with an

ECe value of 4 dS/mL or higher in the soil. Salinity in the soil make it

harder for roots to absorb water, and make it hazardous for plants.

Salinity-resistant plants display morphological, biochemical, and

physiological adaptations in an effort to maintain their life cycles.

It’s estimated that 50% of cultivated agricultural lands will be under

salt stress by 2050 (Shrivastava and Kumar, 2015; Salts of NaCl and

Na2SO4 are the main reasons affecting the salinity of agricultural

lands (Pessarakli and Szabolcs, 2010). Germination and early seedling

stages are the most susceptible stages to soil salinity (Munns and

Gilliham, 2015). By disrupting ionic and osmotic equilibrium, salinity

creates stress, which ultimately causes physiological drought in plants.
TABLE 2 Impacts of drought stress on some major crops.

Crop Effect Reference

Wheat Spikelet fertility and grain filling
reduced crop yields and quality

Grzesiak et al., 2019

Reduced leaf area Naz and Perveen, 2021

Rice Poor seedling germination Liang et al., 2021

Reduced leaf area Naz and Perveen, 2021

Pea Poor seedling germination Al-Quraan et al., 2021

Reduces nitrogen fixation Gonzalez et al., 2001

Maize Seedling germination

Reduced number of leaves Ahmad et al., 2019

Reduced hypocotyl length and fresh and dry weight of roots Hu and Chen, 2020

Decreased seed oil content Ali et al., 2010

Phaseolus vulgaris Drop in the dry weight of the shoot Widuri et al., 2018

Soybean Reduces nitrogen fixation Serraj, 2003

Decreased oil content up to 12.4%, reduction in oleic acid content Dornbos and Mullen, 1992

Common bean Altered Fe, Zn, P, and N nutrient concentrations, decreased in total protein content Ghanbari et al., 2013

Chickpea Altered ABA levels and seed-filling rate Sehgal et al., 2018

Nicotiana tabacum Chlorophyll pigments affected Hu et al., 2018
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Salt stress causes a number of cellular and metabolic changes such as

cellular growth and expansion disruption, plant membrane

instability, ion toxicity, altering metabolism, inhibited seed

germination, reduced photosynthesis, and reduced shoot, root, and

leaf development in various crops (Table 3).

Along with the aforesaid effects, there is a fall observed in osmotic

potential which ultimately reduced the uptake of nutrients and water

by salinity stressed roots (Jose et al., 2017). Salinity induced stomata

closure led to the inhibition of CO2 fixation and destruction of

photosynthetic pigments (Qados, 2011), which adversely affected

the photosynthetic processes, and electron carrier (Sudhir et al.,

2005). Salinity stress has a negative impact on plants considering

the hormonal level as well as nutrient level. It causes a hormonal

imbalance of the ABA, and IAA levels in stressed plants as reported

(Wu et al., 2005). Further, salts of NaCl increases concentrations of

Na+ and Cl- ions which put forward the ionic stress by getting in to

competition with essential nutrients such as K+, Ca2+, and Mg2+

leading a nutrient deficiency condition in plants (Botella et al., 2007).

The aforesaid negative implications of NaCl salt will gradually lead to

decreasing photosynthetic activity, generation of ROS, and

programmed cell deaths (Serrano et al., 1999).
3 Response of phytohormones during
abiotic stress

Low molecular weight phytohormones are considered to be the

most important endogenous compounds having a crucial role in

regulating physiological reactions of helps plants to heal in adverse

environmental stress condition. (Khan et al., 2013). Reduced seed

germination and plant growth have been linked to lower endogenous

levels of phytohormones which can further be aggravated by various

abiotic stresses (Iqbal et al., 2006). Stress can induce and activate

various plant endogenous phytohormonal activities which further

help in expression of various beneficial plant genes and proteins

(Hamayun et al., 2010). Exogenous phytohormone application has
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also been proposed as a useful tactic to address various abiotic

stresses, such salinity, drought, etc. (Iqbal et al., 2006), and also

associated with several studies in reducing the negative impacts of

abiotic stressors (Sharma et al., 2013; Iqbal and Ashraf 2013a, b;

Amjad et al., 2014). The primary location for auxin production is in

the apical meristem of shoots, immature leaves, and seeds. They

contribute to phyllotaxis, apical dominance, root formation,

embryogenesis, and reaction catalysis. In the molecular mechanism

of auxin production, the TRYPTOPHAN AMINOTRANSFERASE

OF ARABIDOPSIS (TAA) family, YUCCA gene families are the most

important contributors. Majorly YUC gene family from which YUC

flavin monooxygenases (YUC1, YUC2, YUC4, and YUC6) play

essential roles in its auxin biosynthesis and plant development

(Cheng et al., 2006).

The main cytokinins found in higher plants are zeatin,

isopentenyl adenine, and dihydrozeatin, however zeatin is the most

common cytokinin (Kieber and Schaller, 2018). The inhibition of

lateral root initiation (Bielach et al., 2012), differentiation of phloem

and metaxylem in roots (Bishopp et al., 2011), differentiation of

photomorphogenic cells in expanding leaves and shoots (Efroni et al.,

2013), and inhibition of leaf senescence are just a few examples of the

significant regulatory functions of cytokinins at the tissue and organ

levels (Zwack and Rashotte, 2015). The phytohormone has a good

control over cell division (Miller et al., 1955), cell homeostasis, and

adaptation of plants to climate change (Landrein et al., 2018). ABA is

also known as stress hormone as whilst under stress, plants build up

ABA, which sets off a reaction to deal with the adverse environment

(Mahajan and Tuteja, 2005). It is a signaling molecule for regulation

of seed germination and plant growth and development and seed

maturation (Yan and Chen, 2016). From seed germination until

senescence, the physiological and developmental processes of plants

are thought to be significantly regulated by ethylene (Pierik et al.,

2006). It plays a part in the regulation of photosynthesis, the

metabolism of nutrients and proline and the antioxidant defense

mechanism that shields plants from environmental stressors.

Numerous studies have shown both benefits as well as negative

impacts of the phytohormone. while in corn, Arabidopsis, tomato,
TABLE 3 Impacts of salinity stress on some major crops.

Crop Effect Reference

Rice Excessive accumulation of Na+ ion in the root, reduction in the plant root and shoot growth, fresh weight, poor
development of spikelets and panicle sterility, and loss of grain yield

Kazemi and Eskandari, 2011;
Hussain et al., 2017; Munns, 2002;
Hussain et al., 2019

Wheat Decrease in seed germination, reductions in the growth and development of shoot and roots, leaves, and cells,
decreases in ion transfer, gaseous exchange, decrease in the photosynthetic ratio and yield loss

Wahid et al., 2006; Motos et al.,
2017; Zhang et al., 2017

Maize Hampered seed germination, decrease in shoot growth, necrosis Khodarahmpour et al., 2012; Farooq
et al., 2015

Sorghum Mineral deficiency, ion toxicity, decrease in plant stem yield and photosynthates Netondo et al., 2004; Almodares
et al., 2014

Cotton Leaf area reduced, reduced plant growth, root and shoot growth, decreases in photosynthetic activity, Fiber quality,
metabolic activities, decrease in fiber quality

Muhammad et al., 2018; Hussain
et al., 2019

Coconut
palm

Reduction in CO2 permeability, photosynthetic inhibition, Gomes and Prado, 2007

Medicago
truncatula

Damaged Photosystem II, reduction in photosynthesis rate, inhibition of gaseous exchange Najar et al., 2018
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and grapev ines , e thy lene and i t s precursor ACC (1-

aminocyclopropane-1-carboxylate) helps to tolerate environmental

adversities; in Cucurbita pepo, tomato, Arabidopsis, and tobacco

ethylene claimed its negative impact on plant growth (Lin et al.,

2012; Yang et al., 2013; Freitas et al., 2017; Gharbi et al., 2017; Xu

et al., 2019; Cebrián et al., 2021). The genetic basis unravels the

APETALA 2/ethylene-responsive element binding factor (AP2/ERF)

which is a plant specific transcription factor family is an important

ethylene biosynthesis factor. It has four major subfamilies: DREB

(Dehydration Responsive Element-Binding), ERF (Ethylene-

Responsive-Element-Binding protein), AP2 (APETALA2) and RAV

(Related to ABI3/VP), and Soloists (few unclassified factors). These

subfamilies act as crucial regulators in a variety of biological and

physiological processes, including signal transduction, regulator of

plant morphogenesis, stress-response mechanisms, and metabolic

activities (Li et al., 2020). Gibberellins (GA) are growth regulators

that are particularly effective for seed germination, stem lengthening,

enlarging fruit, and inducing blooming (Camara et al., 2018).

Gibberellins’ main function is to promote cell elongation, which in

turn promotes cell division, accelerating both the vegetative and

reproductive stage of plant growth (Colebrook et al., 2014; Kang

et al., 2014). Exogenous GA treatment has also several benefits like it

promotes early and large number sprouting in potato tuber

(Alexopoulos et al., 2017), further it can improve the amount of

viable seeds and antioxidant enzyme activity, increases the weight of

individual fruits (Zang et al. , 2016). Among the other

phytohormones, brassinosteroid (BR) which was initially discovered

in pollen of Brassica napus (Saini et al., 2015) was reported to be

involved in root extension, maintenance of meristem size, initiation of

lateral roots, creation of root hairs, mycorrhiza, and nodule formation

(Mc Guinness et al., 2019; Wei and Li, 2016). Further during stress

condition, crops like maize, soybean and banana are benefitted from

methyl jasmonic acid in terms of increasing photosynthetic rate, grain

yield, and drought tolerance (Anjum et al., 2016; Yu et al., 2019) Stress

responses are essentially driven differently by different

phytohormones and their crosstalk, that leads to transcriptional

reprogramming in plants ’ response. The pivotal roles of

phytohormones can be manipulated for mitigating the effect of

the stressor.
4 Response of nutrients during
abiotic stress

All the seventeen essential nutrients of plants are more or less

responsible for abiotic stress alleviation in their own way. The most

important plant nutrients, nitrogen (N), have an impact on

physiology, growth, the reduction of biotic and abiotic stress, and

structural integrity (Karim et al., 2016). However, it has a significant

impact on crop plants’ ability to effectively use solar energy, increase

photosynthetic activity, and synthesize chlorophyll (Waraich et al.,

2011). Phosphorus not also improves root architecture and

proliferation in the soil even in soil drying conditions, but also

stimulates root volume and hydraulic conductivity (Tariq

et al.,2017). The modulation of numerous morphological,

physiological, and biochemical processes by phosphorous within the
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plant system helps them to withstand stress better. Plant growth and

development under stress are strongly and positively correlated with

the use of phosphoric fertilizers. Ge et al. (2012) reported that

potassium is another crucial nutrient for many fundamental

physiological and metabolic processes including photosynthesis,

stomatal control, photosynthesizing, carbohydrate metabolism,

preservation of cell turgidity, enzyme activations, etc. Potassium is

also essential for improving crops’ tolerance to various abiotic stresses

(Danial et al., 2010).

Calcium (Ca), an important secondary nutrient, acts as a signaling

molecule in a number of physiological and biochemical processes that

are necessary for a plant to develop stress tolerance (Ahmad et al.,

2015). Magnesium (Mg) is essential for the conformational

stabilization of macromolecules such as nucleic acids, proteins, cell

membranes, and walls and is a structural component of the ribosome

(Marschner, 2012). Its absence can have an impact on photosynthesis

because it is a crucial element of the chloroplast, which controls

photosynthetic activity. In the abiotic stress response, cellular

acclimatization, and adaptability to challenging circumstances,

sulfur performs protective roles (Cao et al., 2014). According to

reports, an exogenous dose of sulfur increases crop productivity

while maintaining regular metabolic processes that enable plants

survive in harsh settings (Hasanuzzaman et al., 2013). The

micronutrients like boron, zinc, iron, and copper reduce

environmental stress through a variety of mechanisms, including

glucose metabolism and transport, production of cellular

integuments, preservation of membrane integrity, and activation of

numerous enzymes. The structural role of selenium (Se) in the

synthesis of glutathione peroxidase (GPX), which protects plants

from the damaging effects of ROS, is also well documented

(Lobanov et al., 2008). An adequate supply of Zn shields plants

from the damaging effects of heat stress because it plays a significant

role in maintaining membrane permeability (Peck and McDonald,

2010). The plant nutrients can be very much effective similar to the

phytohormones for alleviation of various negative impacts of abiotic

stresses. A brief account of abiotic stress alleviation using plant

nutrients has been depicted in Figure 1. It is observed that in

response to several abiotic stresses, major nutrients like N can

enhance the photosynthesis of plant, phosphorus can be able to

produce proliferate and strong root system, calcium can enhance

the membrane stability and cellular integrity in plant, the

micronutrients can able to regulate the cellular activity and mitigate

abiotic stress by activating numerous enzyme and selenium can

protect the plant from ROS activities.
5 Phytohormones and their effect on
abiotic stress

During abiotic stress, it was observed that the phytohormones

levels are altered; majorly ABA and ethylene level enhanced along

with reduction of auxin and cytokinin are seen in a number of crops.

The phytohormone works both in the response to stress as well as

works for alleviation of stress. Both endogenous and exogenous level

of phytohormones is showing equal importance in alleviation by

regulating the internal and external stimuli in plants. The genes
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responsible for the phytohormone level regulation are activated and

their upregulation can be helpful for enhancing stress tolerance in

plant. When plants are affected by several stresses, especially water

deficit, plant hormones play vital roles in their growth and

development (Raza et al., 2021). Several plant growth regulators,

including salicylic acid, gibberellins, auxins, cytokinin, and abscisic

acid, have reacted to drought (Chen et al., 2019). Phytohormones

regulate internal and external stimuli, as well as signal transduction

pathways, in addition to stress responses. Water logging or flood is a

major constraint in low land conditions, the use of phytohormones

signaling pathway can lead to a better way to alleviate the stress and

achieve higher yield. Cold stress is a major problem in tropical and

subtropical crops, whereas heat stress in temperate crops hampers

crop production and productivity. It was observed that endogenous

phytohormones level like gibberellic acid, brassinosteroids,

cytokinins, abscisic acid, salicylic acid, jasmonic acid, and, auxin

modified and regulates plant growth. A number of genes are activated

during the exogenous application of plant hormones as a result

tolerance can be created in the plants. So, studies on gene

regulation and translation mediated by phytohormones can unlock

a new way to recover low-temperature stress in plants.
5.1 Effect of auxin on stress

On exposure to drought, the plasticity of the plant root is affected

that is regulated by the auxin. Auxin buildup in the root system
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reduces daytime and nocturnal water use and modifies hydraulic

characteristics to allow the expression of water-saving features in

wheat, maize, and sorghum yields during droughts. (Shao et al., 2017;

Li et al, 2012; Rama Reddy, 2014). The exogenous application of

auxins has shown to be effective in managing drought stress in plants.

Indole-3-acetic acid (IAA) is the most common plant hormone of the

auxin class and is mainly synthesized from the amino acid tryptophan

(Trp). IAA triggers the activation of other stress-responsive hormones

as well as the production of ROS. ROS production molds several

physiological processes in a plant in response to water deficit stress.

Discovery and characterization of numerous auxin-responsive genes

in a number of plant species including rice, soybean, and Arabidopsis

has paved the way for exploiting the genes to induce stress response

(Hagen and Guilfoyle, 2002). A membrane-bound transcription

factor NTM2 was used for auxin signaling controls for seed

germination in salinity stress (Jung and Park 2011; Park

et al . ,2011). The number of genes like TRYPTOPHAN

AMINOTRANSFERASE OF ARABIDOPSIS (TAA) family,

YUCCA gene family is the most important contributors to auxin

biosynthesis (Cheng et al., 2006) that controls several metabolic

activities in the drought-affected crop plants. Table 4 highlighted

the impact of auxin-linked genes on the stress response.

Auxins have significant involvement in temperature-related

stress. Shibasaki et al. (2009) performed a direct transport assay

using an auxin-responsive marker (IAA2-GUS) on cold stress and

concluded that the intracellular auxin efflux carriers are inhibited in

plants due to cold stress. In high temperature, the plant mainly suffers
FIGURE 1

Negative impacts of abiotic stress and their alleviation using plant nutrients in plant.
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due to reduction of pollen viability in major crop, affecting seed set

and eventually reducing yield. In crops like wheat and barley, it was

observed that the initial pollen development stage is majorly

hampered due to the reduction of pollen auxin concentration at

high temperatures (Tadashi et al., 2010). They concluded that tissue-

specific auxin concentration reduction can lead to pollen abortion

during high-temperature stress. An analogous study was reported by

Zhang et al. (2018) through an experiment in rice by exposing the rice

spikelet to high temperature which drastically reduced the spikelet

fertility and mitigated its effect by the application of NAA (1-

naphthaleneacetic acid). Through the application of NAA in rice

crops, auxin concentration was increased and leads to the proper

development of pollen tube growth, elongation in the pistil, stylar

length of the flower, and ultimately the pollen behaves normally

under high temperatures leading to proper pollination and

fertilization. In wheat, the effect of the exogenous application of

auxin was estimated under heat stress conditions and found that the

application of 1 µM of IAA can enhance higher grain number and

yield by 6% – 8% under heat stress conditions (Abeysingha

et al., 2021).
5.2 Effect of abscisic acid (ABA) on stress

Abscisic acid is a signaling molecule in plants in responses to

stress conditions and noted as second group of phytohormone. ABA

is a 15-carbon atom compound that belongs to a group of metabolites,

known as isoprenoids or terpenoids, which are synthesized in the

plastids (Xiong and Zhu, 2003; De Ollas et al., 2013). Under optimal

conditions, ABA is expressed at low concentrations in plants (Parveen

et al., 2021) and the concentration increases with the signal of stress to
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plants. In drought conditions, ABA alteration of guard cell ion

transport regulates stomatal opening that reduces water loss (Kim

et al., 2010). Upon exposure to drought stress, ABA is synthesized in

roots and translocated to leaves wherein mesophyll cells are the

predominant location of ABA synthesis (McAdam and Brodribb,

2018). Biosynthesis of ABA triggers drought adaptation mechanisms

in the plants such as growth retardation, stomata closure and

activation of several drought-responsive genes (Qi et al., 2018;

Wilkinson and Davies, 2010). ABA regulates turgor by decreasing

transpiration as well as by increasing water influx into roots (. Root-

specific ABA signaling helps in balanced root growth toward soil

exploration which regulates the transpiration and increases water

influx into roots (Glinka and Reinhold, 1971, Duan et al., 2013).

Considering the molecular activities of the phytohormone, in drought

tolerant transgenic Arabidopsis overexpression of IbARF5 gene up-

regulates the ABA biosynthetic genes (IbZEP, IbNCED, and IbABA2)

was reported (Kang et al., 2018). Various transcription factors such as

DREB2A/2B, AREB1, RD22BP1, and MYC/MYB are known to be the

regulator of the ABA-responsive gene expression (Tuteja, 2007).

SAPK2 ((Stress-Activated Protein Kinase) of SnRK2s (Sucrose

nonfermenting1–Related protein Kinase 2) family which is an

important ABA regulator, upregulates the expression of several

drought responsive genes, including OsLEA3, OsOREB1,

OsRab16b, OsRab21, and OsbZIP23 (Lou et al., 2017). From the

aforesaid reported studies, it has been clear about the roles of

endogenous ABA regulator genes and their role in the drought

alleviation. Similarly, the exogenous application of ABA during

drought in maize seedlings can also play role in activating

antioxidant enzymes which in molecular basis regulates expression

of ASR1, and endogenous ABA level, as well as reduce oxidative

damage (Yao et al., 2019).
TABLE 4 Impact of auxin-linked gene on stress response.

Crop Gene Physiological impact Reference

Transgenic
rice

Expression of auxin-coding genes OsIAA6 Tillering behavior Jung et al.,
2015

Transgenic
poplar and
potato

Overexpression of YUC6 Faster shoot growth and retarded main root development
with enhanced root hair formation, reduced levels of ROS
production, higher photosystem II efficiency, and less
membrane permeability

Ke et al.,
2015

Tomatoes Auxin-responsive genes (WRKY108715, MYB14, DREB4, and bZIP 107) Increased root density and growth, maintained chlorophyll
content, and increased soluble sugar content

Bouzroud
et al., 2018;
Zhang et al.,
2020

White
clover

Up-regulated auxin responsive genes (GH3.1, GH3.9, IAA8), drought stress-
responsive genes (bZIP11, DREB2, MYB14, MYB48, WRKY2, WRKY56,
WRKY108715 and RD22), and down-regulated leaf senescence genes
(SAG101 and SAG102)

Increased stem dry weight, chlorophyll content, delayed
senescence

Zhang et al.,
2020

Arabidopsis Expression of auxin responsive IAA5/6/19 Maintained level of glucosinolates (GLS), regulation of
stomatal closure and ROS production

Salehin
et al., 2019

Wheat TAA family gene TaTAR2.1-3A overexpression Increased grain yield under various nitrogen supply levels,
high lateral root branching

Shao et al.,
2017

Sorghum IAA-amido synthetase gene GH3.5 Stay green Rama Reddy
et al., 2014

Tobacco
seedlings

Initial elevated DR5: GUS gene expression levels and later decreased
expression levels

Lateral root branching Wang et al.,
2018a
f
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Similar to drought, salt-responsive genes’ expression is also

known to be regulated by both endogenous and exogenous ABA-

mediated signaling when the soil is affected by salinity (Wang et al.,

2001, Narusaka et al., 2003). Zhang et al. (2006) found a

proportionate link between plants’ exposure to salinity and their

ABA content. Both endogenous ABA and its exogenous application

demonstrate a critical role in preserving ionic balance in plants, as

shown by their ability to prevent chloride toxicity in citrus leaves,

avoid Na+ and Cl-, and maintain K+/Na+ ratio response in rice, K+

and Ca + homeostasis (Gomez et al., 2002; Bohra et al., 1995; Gurmani

et al., 2013). In addition to stomatal regulations, this phytohormone

also aids in the osmoprotectants like proline (Iqbal et al., 2014) and

dehydrins in response to ROS production during salinity-induced

dehydration (Szabados and Savoure, 2009; Kim andWang 2010; Hara

2010; Gurmani et al. 2013). Sripinyowanich et al. (2013) reported that,

the expression of the OsP5CS1 gene increased proline accumulation

and increased the survival rate (20%) of Indica rice seedlings by

exogenous application of 100 M ABA. Shi and Zhu (2002) noted that

ABA induced AtNHX1 expression in barley in response to salt stress.

Keskin et al. (2010) stated that, ABA treatment caused quicker

expression of MAPK4-like genes (TIP1 and GLP1) in wheat crops

under salinity. Apart from drought and salinity, the exogenous

application of abscisic acid (ABA) and ethylene also plays role in

controlling other abiotic stresses. In green under greenhouse

conditions the above hormones inhibit the suppression of

photosynthesis in waterlogging by rejuvenating several factors like

photosynthetic rate, transpiration rate, stomatal conductance,

chlorophyll content and leaf water potential (Ahmed et al., 2002).

In case of cold stress, the effect of ABA application was studied on

bermudagrass at 4 0C with application of 100 mMABA which showed

increased levels of chlorophyll content, maintained cell membrane

stability, improved the performance of photosystem II, and altered

expression of ABA or cold-related genes, including ABF1, CBF1, and

LEA developing cold resistance in the grass (Huang et al., 2017).

When wheat was exposed to low temperatures (0°C, −10°C, −20°C,

and −25°C) application of exogenous ABA decreases the amount of

H2O2 and relative conductivity (Jing et al., 2020). ABA was found to

enhance cold tolerance in both leaves and rhizomes at −10°C and

−20°C by increasing ROS production (Jing et al., 2020). In the same

way, the ABA application was studied for its effect on heat tolerance

in two rice germplasm lines. Li et al. (2020) used rice germplasm lines

having flat leaves called wild type (WT) and others having rolling

leaves with high-temperature sensitivity (hts) lines exposed to high

temperature. The high-temperature lines showed a higher respiration

rate with high tissue temperature and lower transpiration rate and

stomatal conductivity but the WT line showed increased

carbohydrate content, dry matter increased production of heat

shock proteins (HSP71.1 and HSP24.5) under high-temperature

stress. Through ABA application in these two lines, it was observed

that thermo-tolerance was increased in the wild type but tolerance

was reduced in hts plants (Li et al., 2020).
5.3 Effect of cytokinins on stress

Many drought-related processes are mediated by the stress

hormone (ABA) as well as cytokinins (CKs). When plants are
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under drought stress, their CK content falls, and this increase in

ABA responses causes the stomata to close and impede

photosynthesis (Rivero et al., 2010). Stomatal conductance and

transpiration are increased by CKs’ ability to keep the stomata open

(Lechowski, 1997). These CKs and ABA alterations brought on by

stress encourage early leaf senescence and hormonal adjustments that

cause leaf abscission, which results in a smaller canopy and less water

loss. Pospisilova et al. (2000) observed that the expression of a

cytokinins biosynthetic gene isopentenyltransferase (IPT), catalyzes

the rate-limiting step in CK synthesis. Overexpression of IPT

enhances the antioxidant system activity and increases drought

tolerance by improving root growth in plant (Xu et al., 2016).

Hormones like cytokinin enhance primary root growth in

Arabidopsis by giving positive signaling to plant (Naulin et al.,

2020). I In transgenic barley (Hordeum vulgare) and in tobacco it

was observed that root specific reduction of cytolinin led to the

enlarged root system under stress situations (Werner et al., 2010;

Pospıśǐlová et al., 2016). It has also been shown that the increased

transcriptional level of CKX genes and/or CKX activity was due to the

exogenous application of cytokinin. It was observed that due to

oxidase/dehydrogenase (CKX) which catalyzes CK and the

overexpression and breakdown of CKX in Arabidopsis carried out

as a result endogenous CK contents is decreased in plant (Werner

et al., 2010). The abnormal expression of CKX in barley via maize b-
glucosidase, amild root-specific promoter has also been found to alter

root architecture leading to lignification of the root tissue as well as

activation offlavonoids biosynthesis (Vojta et al., 2016). Plant shows a

higher level of accumulation of CK in root tissues due to a decrease in

the activity of CKX, during drought stress (Havlova et al., 2008). The

plant growth rate was slow down and elevate the content of protective

compounds due to overexpression of CKX, which finally gives rise to

increased drought tolerance in Arabidopsis, tobacco, and barley

(Macková et al., 2013; Nishiyama et al., 2011; Pospıśǐlová et al., 2016).

Salt-sensitive plants’ development was negatively impacted by

salinity by lowering CK levels, indicating genotypic specificity (Kuiper

et al., 1989). After being exposed to salinity, the amounts of CKs such

as zeatin (Z), zeatin riboside (ZR), and isopentenyl adenine (iP) in the

shoots and roots of barley cultivars drastically decreased (Kuiper

et al., 1990). The negative effects of salt on plant growth are also

known to be mitigated by CKs (Barciszewski et al., 2000; Fahad et al.,

2014). Plant resistance to salt stress was reported to enhance with seed

primingB with CKs (Iqbal et al., 2006). Iqbal et al. (2006) reported

that CKs operate as ABA antagonists and IAA antagonists/synergists

in a variety of plant processes and assist reduce salinity stress (Iqbal

et al., 2014). Under exogenous application of CKs, it enhanced salt

resistance via increased proline levels in brinjal (Wu et al., 2013).

Plant hormones, particularly CKs, control the expression of a large

number of stress-induced genes. Merchan et al. (2007) reported that

the changes in osmotic circumstances also affect the expression of

CKs receptor genes, showing that these receptors may have a similar

function in the osmotic stress response despite the lack of a

clear mechanism.

In waxy corn, exogenous application of 6-benzyl adenine (BA) in

water logging conditions noted that not-treated plants showed

chlorosis and necrosis in leaves, inhibiting growth and leading to

the accumulation of O2, H2O2, and MDA-like reactive oxygen species

(ROS) but in treated plants, the reduction of ROS accumulation and
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increase of enzyme activities like ascorbate peroxidase, glutathione

reductase, dehydroascorbate reductase, and monodehydroascorbate

reductase (Wang et al., 2021). Hence, the application of exogenous BA

can alleviate water-logging-induced damage and improve water

logging tolerance in waxy corn via the activation of the AsA-GSH

cycle system and the elimination of ROS. The application of BA in

waterlogged maize crops showed enhanced grain filling by improving

grain weight and volume, which was beneficial to yield increase as

compared to the untreated plant (Baizhao et al., 2019). It was

recorded that the application of exogenous BA alleviated

endogenous hormone levels of IAA, zeatin, and GA3, and at the

same time, ABA content was decreased during grain-filling periods of

waterlogged summer maize. The foliar application of CK and GA3

under waterlogged conditions revealed that growth and biomass were

enhanced, which was associated with increased levels of

photosynthetic rate and pigments in the plant (Islam et al., 2022). It

was reported that the accumulation of ROS and malondialdehyde

levels is reduced during the water logging condition by application of

CK and GA3. Therefore, a better osmotic adjustment was carried out

through proline and TSS level improvement in plants. Both CK and

GA3 were effective in water-stressed plants, however, CK was

considered more effective than GA3 (Islam et al., 2022). Prerostova

et al. (2021) identified two genes which to be associated with

cytokinin metabolism in plant, i.e., CK biosynthetic gene

isopentenyl transferase (DEX: IPT) and CK degradation gene

HvCKX2 (DEX: CKX). They observed that plants containing the

DEX: IPT gene showed better stress tolerance with increased

production of CK and SA levels in shoots and also auxin in the

apex. At the same time plant containing the DEX: CKX gene and

control plants showed weaker stress tolerance with lowered levels of

CKs and auxins in cold conditions.
5.4 Effect of ethylene on stress

Ethylene (ET) has a significant role in fruit softening along with a

vital role in mitigating the harmful impact of stress conditions due to

abiotic factors (Pech et al., 2018; Wang et al., 2020). In diverse range

of abiotic and biotic stress condition it was found that ET has a major

role in nodule formation and nodule signaling (Khalid et al., 2017).

Furthermore, it also enhances root emergence from nodal region

which leads to retardation in development of nodal root and

ultimately give rise to a negative effect on root-lodging resistance in

Zea mays (Shi et al., 2019). Drought induces ethylene synthesis in

shoots, by up-regulating the synthesis and xylem transport from roots

to shoots of the ethylene precursor ACCs (Sobeih et al., 2004). It was

found from research that adventitious root initiation sites in

Arabidopsis hypocotyls are controlled by ethylene (Rasmussen et al.,

2017). The overexpression of ethylene response factor such as

GmERF3 of AP2/ERF gene family, leads to improvement in proline

content, soluble sugar, and decreases in the accumulation of

malondialdehyde to improve drought tolerance in the tobacco plant

(Zhai et al., 2017). Further, SlERF5 of the aforesaid transcription

family in over-expressing transgenic tomato plants resulted in high

tolerance against drought (Pan et al., 2012). It was also found that

gene 269 AP2/EREBP in cotton showed water stress response in plant

(Liu and Zhang, 2017). Ethylene application response was also
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studied under water logging stress in soybean. It was noted that

after the application of ETP (ETP; donor source of ethylene) in

soyabean under water logging stress, the chlorophyll content

significantly enhanced, and also cellular gibberellic acid is increased

in the treated plant as compared to untreated plants (Yoonha et al.,

2018). The amino acid content was also found appreciably higher in

ETP-applied soybean plants than in the control. Several adventitious

roots were induced in the plant after ETP application which enhance

the root surface area and considerably amplified the expressions of

glutathione transferases which that control ROS under water stress

(Yoonha et al., 2018).

In the case of Arabidopsis thaliana, it was observed that freezing

tolerance decreases by the introduction of the ethylene overproducer1

gene and by the application of the ethylene precursor 1-

aminocyclopropane-1-carboxylic acid but the freezing tolerance

enhanced when ethylene biosynthesis inhibitor amino-

ethoxyvinylglycine was applied (Shi et al., 2012). Shi et al. (2020)

thus suggested from their research that ethylene can negatively

regulates cold signaling through the direct transcriptional control of

cold-regulated CBFs and type-A ARR genes. Sun et al. (2016) found a

positive correlation between ethylene (ET) and cold stress was studied

in grapevine. The treatment of exogenous 1-aminocyclopropane-1-

carboxylate a form of ethylene was able to mitigate the cold stress in

crops compared to the application of ET biosynthesis inhibitor

amino-ethoxyvinylglycine which reduced the cold tolerance of

grapevine. It was also observed that overexpression of gene

‘VaERF057’ enhances cold tolerance in Arabidopsis and ethylene is

associated with the signaling of this gene. Thus, the research

concluded that ET positively regulates cold tolerance in grapevine

by regulating the expression of VaERF057 gene associated with cold

tolerance (Sun et al., 2016). Wang et al. (2021) reported in case of

apple seedlings, when treated with 1-aminocyclopropane-1-

carboxylate (an ethylene precursor) and amino-ethoxyvinylglycine

(an ethylene biosynthesis inhibitor), it was observed that the cold

tolerance was increased and decreased respectively in the crop. They

reported that during low-temperature treatment, ethylene level

enhanced which leads to the over expression of MdERF1B

significantly, increasing the cold tolerance of apple planting

materials (seedlings and calli) as well as in Arabidopsis seedlings by

mediating ethylene signaling pathway. Furthermore, molecular

analysis proved that MdERF1B interacted with the promoters of

two ethylene biosynthesis genes, i.e., MdACO1 and MdERF3. Wang

et al. (2021) result thus concludes that MdERF1B–MdCIbHLH1 is a

potential regulatory pathway that integrates the cold and ethylene

signaling pathways in apples by up-regulating ethylene production

under cold stress. While under high-temperature stress or heat stress

ethylene is found to affect the pollen viability and sterility in plants

similar to the auxins. In research conducted by Jegadeesan et al.

(2018), it was observed that tomato pollen sterility can be overcome

by the application of ethylene hormone (ethephon) during heat stress

conditions. A protein analysis conducted during the study showed

pollen development was hampered during heat stress due to the

degradation of some proteins responsible for pollen development,

pollen tube germination, and tube growth under the pistil surface.

Jegadeesan et al. (2021) reported that ethylene hormone had a positive

impact on pollen viability and germination, and the ability to increase

the overproduction of heat tolerance genes like SlHSP17, SlHSP101,
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SlMBF1 in tomatoes, when applied exogenously reducing the harmful

effects of heat stress in due course. Another study in wheat showed

ethylene again plays a vital role by regulating the biosynthesis of

proline and modifying the antioxidative mechanism under heat stress.

Application of 200 µL of ethephon and 50mM of proline showed

improved tolerance of wheat in heat stress by activation of defense

mechanism and protecting the photosynthetic pigment by enhancing

the photosynthetic gene expression in crops (Sehar et al., 2022).
5.5 Effect of gibberellins on stress

On drought stress conditions, down regulation of GA could be a

major target in making drought-tolerant plants. Nir et al. (2014)

reported that the transgenic plants with the lower GA level tend to

produce high stomatal intensity, lower stomatal conductance, and

smaller leaves, which reduces the transpiration rate in stress. Further,

the overexpression of SlDREB of the AP2/ERF family down-regulates

GA biosynthetic genes in tomatoes. In tomato internode elongation

and leaf expansion is reduced as a result of lower GA level in plant

which ultimately create drought tolerance mechanism in plant (Li

et al., 2012). Further studies confirmed water deficiency leads to

downregulation of GA biosynthesis genes GA20 oxidase1 (GA20ox1)

and GA20ox2 and induce the GA deactivating gene GA2ox7 in guard

cells and leaf tissue, resulting in reduced levels of bioactive Gas in

tomato (Shohat et al., 2021). Moreover, the over-expression of

another transcription factor PtGA2ox1 decreases the GA level in

the roots, stems, and leaves of the tobacco plant to promote drought

tolerance (Zhong et al., 2014). In addition to maintaining protein and

RNA levels, higher water level was also credited with GA’s beneficial

effects under salinity stress (Yamaguchi 2008). Maggio et al. (2010)

reported that the application of GA to tomato plants reduced stomatal

resistance and increased plant water usage effectiveness at lower

salinity levels. Under salinity, the root and leaf cell nitrogen and

magnesium are increased due to GA application (Tuna et al., 2008).

Multiple factors, including an increase in reducing protein synthesis,

activity of enzymatic antioxidants, sugars, and decreased activity of

ribonuclease and polyphenol oxidase, contributed to GA3’s beneficial

effects on salt-stressed mung bean seedlings (Mohammed, 2007).

Modulation of ions absorption and partitioning (inside shoots and

roots) as well as hormonal homeostasis brought on by GA3 priming

under salinity (Fahad et al., 2014). Through changed GA levels, the

seed germination rate is enhanced due to the salt-inducible DDF1

gene (dwarf and delayed flowering 1) in high saline stress condition.

The applications of gibberellins in soybean plants found to reduce

chlorophyll damage and also enhance the endogenous level of GA1 and

GA4, and jasmonic acid in the plant along with the reduced level of ABA

under flooding conditions (Muhammad et al., 2018). The research

reveals that exogenous application of GAs during short-term

waterlogging could enhance the transcriptional pathways and

biochemicals which are majorly needed for maintaining plant growth

during stress. Calvin et al. (2019) reported that the application of GA3

(200 ppm) in combination with salicylic acid (150ppm) on the soybean

plant provides better mitigation effects by improving the number of pod

and seed, chlorophyll content in waterlogged conditions. Gibberellins

were found to be extremely sensitive towards cold stress and several GA
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metabolic genes, GA3ox1, GA20ox1, and GA2ox1 were found to be

activated during cold temperatures (Ding et al., 2015). GA3 treatment has

also improved fruit storage under low temperatures by decreasing

malondialdehyde content and electrolyte leakage, increasing proline

content and improving antioxidant enzyme activities as compared to

untreated conditions (Ding et al., 2015). Shashibhusan et al. (2021)

observed that pre-treatment of plants with 1gm, 2gm, and 3 gm of GA3

promotes plant growth and other yield-attributing traits in cold stress

conditions in rice. Whereas, GA3 was found to have no direct role in heat

tolerance but rather be associated with cell expansion gene activation and

also positively affect the test weight of the seed in wheat (Nagar et al.,

2021). They also noted that the application of paclobutrazol showed a

thermo-tolerance effect rather than GA3 biosynthesis inhibition in wheat.

Guo et al. (2022) suggested that gibberellins can mitigate the effects of

heat stress response in plants by providing evidence obtained in

tomatoes. They concluded from the result that exogenous application

of gibberellic acid (GA3) of 75mg/L canmitigate heat stress by improving

the plant growth, morphology, and physiological characteristics

of tomatoes.
5.6 Effect of brassinosteroids on stress

Under stress condition, BRs increase Rubisco and the water usage

efficiency of leaves hence improving CO2 assimilation and leaf water

economy (Farooq et al., 2009). Several studies have also revealed that

brassinosteroids s play a beneficial function in drought-stressed

Brassica napus, wheat and Arabidopsis (Kagale et al., 2007).

Exogenous 24-epibrassinolide treatment raises BRs content while

lowering ABA and ROS levels, which further aids in increasing

stomatal hole for water stress resistance (Nie et al., 2019; Tanveer

et al., 2019). Unraveling the molecular basis of BRs control, three

WRKY transcription factors—WRKY46, WRKY54, and WRKY70—

have been identified as crucial signaling components that play

oppositely positive and negative roles in BRs-regulated growth and

drought responses (Chen et al., 2017). It was reported that the

overexpression of a BRs biosynthetic gene AtDWF4, isolated from

Arabidopsis in applied in transgenic Brassica napus results in

improved drought tolerance (Sahni et al., 2016). BRs along with

ABA showed a major role in drought stress in plants.

The negative effects of salt on plant growth performance are also

known to be mitigated by BRs (Zhu 2002; Krishna 2003; Zhang et al.,

2007; Kartal et al., 2009; Wang et al., 2011). By restoring pigment levels

and elevating nitrate reductase activity, application of BRs through

exogenous application reduced the negative effects of salt stress on root

elongation, seed germination, and subsequent growth of rice

(Anuradha and Rao 2001). Krishna (2003) found that barley leaf

segments pre-incubating with BRs prior to exposure to salinity was

successful in minimizing the cells’ ultra-structures, such as their

nucleus and chloroplasts. Under salinity, treatment of seed with BL

considerably improved the accumulation of drymatter and antioxidant

enzyme activity in lucerne (Zhang et al., 2007). In rice, Arabidopsis,

and brassica, treatment with 24-epibrassinolide significantly increased

seed germination, seedling growth, antioxidant system, and proline

content, while reducing lipid peroxidation under salinity stress

(Ozdemir et al., 2004, Kagale et al., 2007, Divi et al., 2010).
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5.7 Effect of jasmonate on stress

Jasmonic acid (JA) encourages plant water uptake and methyl JA

encourages increased osmoprotectant and compatible solute

accumulation to increase chlorophyll content, antioxidant activity,

and leaf gas exchange to trigger stomatal closure and improved water

usage efficiency (S’anchez-Romera et al., 2014). There were negative

impacts during drought stress; it also modifies polyamine and

endogenous phytohormones (Xiong et al., 2020). It has been shown

that exogenous administration of 0.5 mM methyl JA can preserve

wheat growth and output during water deficit stress (Anjum et al.,

2016). The application of 10 M methyl JA to sugar beet decreases the

negative impacts of severe drought (Fugate et al., 2018). Kang et al.

(2005) reported the comparison of salt-sensitive and tolerant rice

cultivars and observed that salt-tolerant rice cultivars have a much

higher concentration of JA. A critical component of the barley

response to salt was thought to be the induction of JA-responsive

genes (Walia et al., 2006). Endogenous JA contents in barley leaf

segments that were subjected to sorbitol or mannitol osmotic stress

increased significantly (Kramell et al., 2000).

JA is considered to have a major role in alleviating heat and light

stress damage in the plant. A study conducted in the Arabidopsis crop

showed a combination of high light and high heat (HL+HS) stress

causing major damage to photosynthetic pigments and reducing the

D1 protein level in plants with the same time accumulation of

jasmonic acid that may provide tolerance in plant (Balfagón et al.,

2019). They found that the plant deficient in jasmonic acid is highly

sensitive to heat and light stress. Convergent study was conducted in

Ryegrass; a temperate grass is sensitive to high temperatures. In this

study impact of jasmonic acid on ryegrass was studied, it was

observed that methyl jasmonic acid (MeJA) has a positive effect on

augmenting tolerance in plants to a high temperature by altering the

antioxidant defense mechanism, decreasing chlorophyll loss due to

heat, maintaining good water balance in plant and lowering

electrolyte leakage in the crop (Su et al., 2021). Along with that also

the plant oxidize activity was enhanced by exogenous MeJA treatment

which can increase the scavenging ability of ROS produced during

heat stress and leads to alleviating the oxidative damage caused by

heat stress and production of more heat shock proteins may be

expressed in the plant during heat stress condition. (Su et al., 2021).
5.8 Effect of salicylates on stress

A phytohormone called SA is produced by chloroplasts (Dempsey

and Klessig, 2017). According to reports, SA treatments sustain the cell’s

turgor pressure by increase the amount of osmolyte and proline in the

root and shoot without affecting the other metabolic processes. Further,

when SA is applied exogenously to canola, it increases the number of

pods and seed output and is also involved in cell division and expansion

(Keshavarz and Sanavy, 2018). Additionally, its use on marigolds under

drought stress boosts bioproduction, enhances a number of physiological

processes, and lessens the detrimental effects of water stress (Abbas et al.,

2019). When crop plants under drought stress, such as wheat, saffron,

and Brassica rapa, are exposed to it, SA activates nonenzymatic defensive
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mechanisms like sugar accumulation for energy saving and

osmoregulation and lowers their malondialdehyde and free radical

contents (Chavoushi et al., 2019; Ilyas et al., 2017). Through redox

homeostasis and proline metabolism in agricultural plants, SA treatment

increases drought-stress resistance (Chavoushi et al., 2019; Ilyas et al.,

2017); La et al., 2019). By accumulating endogenous SA, the Arabidopsis

loss of function lines cpr5 and acd6 demonstrated a drought tolerance

mechanism (Miura et al., 2013). It has been revealed that in Arabidopsis,

the SIZ1-mediated buildup of endogenous SA improves drought

tolerance and encourages stomatal closure (Miura et al., 2013). It was

observed that the osmolyte content in the vegetative phase of barley,

safflower and corn has been increased by triggering multiple defense

mechanisms, along with the antioxidant system through exogenous

administration of SA which improve drought tolerance in those plants

(Abdelaal et al., 2020; Chavoushi et al., 2019). Thus, a potential transgenic

strategy for making plants resistant to drought would be to target genes

involved in triggering the effect of drought resistance in response to the

exogenous administration of SA.

SA’s salt-ameliorating effects have also been widely reported in

various crops including bean (Azooz 2009), wheat (Sakhabutdinova

et al., 2003), barley (El-Tayeb, 2005), and mung bean (Khan et al., 2010;

Syeed et al., 2011). Another study indicated that SA treatment of salt-

stressed maize and mustard increased their ability to tolerate salt by

speeding their photosynthesis and carbohydrate metabolism (Khodary,

2004; Nazar et al., 2011). Bastam et al. (2013) applied an exogenous

treatment of SA to enhance the salt tolerance of pistachio seedlings.

Palma et al. (2009) reported that under salinity stress, SA activates the

antioxidant systems and is also attributed to the buildup of suitable

solutes like proline and glycine betaine (Nazar et al., 2011). In addition,

plants treated with SA showed reduced levels of membrane

permeability and lipid peroxidation, which were otherwise rather

significant under salinity (Horvath et al., 2007). Salicylic acid (SA)

application was studied under waterlogging conditions in wheat crops

revealing that lateral roots development was enhanced along with the

emergence of surface adventitious roots which originate from the basal

stem nodes of wheat, but root elongation was hindered, leading to the

development of a shallow root system able to survive in water logging

condition. (E scholar encyclopedia, 2022). The effects of salicylic acid

become more apparent in plants under stress conditions. In maize

crops, application of 0.5mM of salicylic acid improves the growth rate

of plant under hydroponic conditions under cold stress (Janda et al.,

1997; Janda et al., 1999). It was observed that SA application reduced

electrolyte leakage and improves CAT activity with a level of

enhancement in the activities of glutathione reductase and guaiacol

peroxidase. Application of SA in normal conditions may cause

deleterious effects on plants but in stress conditions, it can act

positively (Waraich et al., 2011). Likewise in the wheat crop that

treatment with salicylic acid at the rate of 0.5 mM can mitigate heat

stress damage by increasing the production of proline and reducing the

activities of proline oxidase (PROX) which finally leads to maintaining

osmotic potential and photosynthetic activities in the plant (Khan et al.,

2013). From the result, it was observed that plant tolerance was created

SA through interacting with proline activity and ethylene formation

and eventually leads to alleviating the photosynthetic damage caused by

heat stress in wheat.
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6 Nutrients and their effect on
abiotic stress

Nitrogen is a major component of all cellular and metabolic activities

in crop plant as it is a major element of proteins, chlorophyll, nucleic

acids, amino acids, plant hormones, enzymes, and osmolytes, all of which

are involved in plant abiotic stress tolerance mechanisms through

different pathways (Arghavani et al., 2017; Singh et al., 2019). The

application of N enhances the plasticity and water extraction capacity

of plant roots from the soil, which helps to maintain optimal relative leaf

water content and increase water use efficiency in environments with

limited moisture (Yang et al., 2012; Tran et al., 2014). Nitrogen

supplementation was able in alleviating NaCl-induced toxicity in

tomato seedlings which up-regulate the AsA–GSH cycle, K+, and K+/

Na+ ratio, which resulted in better growth performance (Nazar et al.,

2011). In Brassicas it was found that application of N may improves a lot

of cellular activities and also prove to bemitigate the ill effects of salt stress

in plant. Under the salinity stress condition application of N can improve

growth attributes, physio-biochemical parameters, nutritional

enrichment, and yield attributes in brassicas (Siddiqui et al., 2010).

Application of nitrogen fertilizer to crops promotes antioxidative

defense mechanisms and reduces leaf senescence. These processes

include carbon partitioning, carbohydrate buildup, cellular membrane

stability, and osmoregulation (Saneoka et al., 2004; Saud et al., 2017), cell

synthesis and expansion of plant cells (Li et al, 2012), increased

photosynthetic capacity (Gessler et al., 2017). N can boost the root

system in crops including rice, wheat, rapeseed, and pearl millet as well as

improve xylem transport, photosynthetic enzyme activity, antioxidant

defense, delay cell senescence, control stomata, increase proline

accumulation, and encourage profuse branching (Rostamza et al., 2011;

Albert et al., 2012; Tran et al., 2014; Abid et al., 2016.). Under drought

conditions, phosphorus promotes root architecture and proliferation in

the soil, which increases root volume and hydraulic conductivity (Jin

et al., 2015). Application of phosphorous during the early stages of the

wheat crop boosted root growth and establishment (Ahmed et al., 2018).

The application of P reduces the formation of ROS caused by drought by

energizing enzymatic antioxidants as POD, CAT, APX, SOD, and

monodehydroascorbate reductase (MDHAR), which consequently

increases resistance to stress (Meng et al., 2021). Sardans and Penuelas

(2012), P treatment has also been linked to the remodeling of nitrogenous

compounds in terms of buildup and absorption of NH4 + and NO3 in

water-stressed agricultural plants. Phosphorus fertilization significantly

increased all growth parameters, chlorophyll content, nucleic acid

content and minerals content of the common bean plants under

salinity stress (Mohamed et al., 2021). Protective effect of potassium

application on salt stress in two tomato genotypes (Nasir and Skyland-II)

more dry biomass production, shoot K+ concentration, chlorophyll

contents, stomatal conductance, and K+/Na+ ratio under saline

condition (7.5 dSm−1) (Muhammad et al., 2020). Exogenous K

fertilizer treatment of 160 kg/ha under water stress enhances grain

yield, harvest index, and other physiological indicators in rice (Zain

et al., 2014). K can increase the photosynthetic process and glucose

metabolism in a stressed cotton crop (Zahoor et al., 2017). In order to

reduce abiotic stress in plants, secondary nutrient like calcium is also

necessary for food uptake, enzymatic and hormonal up-regulations, and
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stabilization of cell membranes (Rahman et al., 2015), improves the

ability to preserve water (Shao et al., 2008). Ca2+ alters the plasma

membrane’s level of hydration, which enhances the cohesiveness of the

cell walls and raises the viscosity of the protoplasm, enhancing the

resistance of cells to dehydration (Ma et al., 2009). Xu et al. (2013)

reported that the application of 10 mM Ca in drought conditions caused

the production of more root and shoot biomass and dry weight.

Magnesium can produce photosynthetic pigments, accumulate higher

proline content in mungbean, and encourage better root proliferation in

rice (Thalooth and Tawfik Mohamed, 2006; Ding and Xu, 2011). Min

et al. (2016) reported that Sulfur helps to nullify the oxidative stress

produced due to drought stress by increasing the activities of ROS

scavengers like CAT, SOD, and APX; higher H2S and soluble sugar

contents along with reducing H2O2. Boron promotes the resistance of

crop plants by improving hormone synthesis, lipid metabolism, pollen

formation, sugar transport, photosynthetic efficiency, seed germination,

flower retention, and seed yield during drought stress (Michael et al.,

2016). Under water scarce conditions, B improved water uptake, and

nutritional status from the rhizospheric soil by enhancing the growth of

more root hairs and mycorrhizae, ROS detoxification process in

chloroplasts preventing photooxidative damage hence establishes

membrane integrity and improves drought tolerance in plants

(Venugopalan et al., 2021). Zn as an important micronutrient has been

observed to improve the synthesis of IAA and gibberellic acid (GA3) like

plant hormones under moisture stress conditions and thereby improving

plumule length and increase shoot dry weight under drought stress. Zn

application also helps in a significant expansion in leaf surface area,

stomatal conductance, relative leaf water content, and improvement in

chlorophyll and accumulation of osmolyte, thus resulting in enhancing

cellular growth, plant harvest and prevention the destructive impacts on

leaf cell due to moisture deficiencies (Hassan et al., 2020). Spraying with

Fe reduces oxidative stress by depleting H2O2 content along with

breakdown of lipid peroxidation activities by accelerating the

enzymatic antioxidant mechanisms (CAT, SOD, and GPX) under

water scarce situations and also showed a major impact in triggering

the quality and resistance of protein under drought stress (Baghizadeh

and Shahbazi, 2013; Afshar et al., 2013). While going for role of copper

under drought condition, Copper chlorophyllin (Cu-chl) has been

proved to be an important modified water-soluble and semi-synthetic

bio-stimulant that helps to improve the antioxidative capacity which

leads to decreased oxidative stress in plant (Kamat et al., 2000). Cobalt

imparts drought tolerance in plants by increasing water use efficiency by

reducing the rate of transpiration, further it activates the antioxidant

defense mechanisms in plants (Banerjee et al., 2021).

Among the other nutrients, there are several elucidations of the

alleviation effects of Si in salt-induced osmotic stress (Zhu et al., 2015)

and oxidative stress (Yin et al., 2019). Si-mediated up-regulation of

aquaporin gene expression and osmotic adjustment play important roles

in alleviating salinity-induced osmotic stress (Zhu et al., 2019). Further

foliar application of micronutrients could be useful for improving the

nutrient status, root features, and physiological performance of wheat

plants (Fouly et al., 2011). Nutrients in combination with

phytohormones, it was noted that many plant nutrients can also

alleviate water-logging stress and temperature stress. For example, it is

reported that application of boron can improves the activity of the
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antioxidant system significantly and which leads to nullify the toxic

effects of ROS produced by heat stress (Waraich et al., 2011). Similarly,

selenium (Se) is known for its major role in synthesis of glutathione

peroxidase (GPX) and ultimately prevents the plants from the negative

impact of ROS (Lobanov et al., 2008). Also, Zn micronutrients can be

used to maintain the permeability of cellular membrane and the

optimum dose of Zn can mitigate plants from the devastating impacts

of heat stress (Peck et al., 2010). Tables 5–7 highlighted the nutrient

application in the alleviation of abiotic stresses in plant systems.
7 Crosstalk with abiotic stress,
phytohormones and nutrients

Crosstalk among and between the phytohormones and nutrients has

been reported to have important role in abiotic stress alleviation. Auxin

being an important phytohormone enhances drought resistance by

interacting with other phytohormones. During drought stress, auxin

regulates various members of the ACS (1-aminocyclopropane-1-

carboxylate synthase) gene family, which is a rate-limiting enzyme in

ethylene biosynthesis further increasing resistance against the stress in

plants (Colebrook et al., 2014). It was reported that the exogenous
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application of IAA can enhance ABA and JA content and it can

promote the up-regulation of over expression of drought stress-

responsive genes (WRKY2, WRKY56, bZIP11, MYB14, DREB2,

MYB48, WRKY108715, and RD22), auxin-responsive genes (GH3.9,

GH3.1, IAA8) and down-regulation of leaf senescence genes (SAG101

and SAG102) and auxin responding genes (GH3.3, GH3.6, IAA27)

which ultimately improves the plant tolerance towards drought stress

in white clover (Zhang et al., 2020). Further, during drought ABA

accumulation maintains maize primary root elongation by restricting

the production of ethylene (Spollen et al., 2000). Furthermore, in drought

stress endogenous CK level reduction in the roots also leads to higher

concentrations of macro- and micro-elements, such as manganese (Mn),

phosphorous (P), or zinc (Zn) (Ramireddy et al., 2018; Nehnevajova

et al., 2019). ABA-activated type-A ARR5 magnifies the ABA-mediated

response to stress e. Simultaneously, restricts plant growth by repressing

CK signaling via a negative feedback loop in Arabidopsis (Huang et al.,

2018). Further osmotic stress trigger synthesis of CK which down-

regulate the genes of ABA synthesis and ABA-mediated responses,

which reduces the damage caused by ROS and lipid peroxidation,

reduce the senescence ability of leaves and thus improves the abiotic

stress tolerance ability of plant and plant growth (Gujjar and

Supaibulwatana, 2019). Further, ABI1 and ABI2 which negatively
TABLE 5 Reports of nutrients involved in mitigating stress in plant.

Types of
nutrients Crop Impact on plant References

Nitrogen

Winter
rapeseed
(Brassica
napus L.)

Application of nitrogen in winter rapeseed in water logging can avoid the degradation of photosynthetic pigments
and ultimately the dry matter accumulation is enhanced

Men et al.,
2020

calcium nitrate,
potassium nitrate,
and tricyclazole

Canola
Application of calcium nitrate, potassium nitrate, and tricyclazole in water logging conditions can enhance the
dry weight of plants along with the length of shoots and roots were increased

Habibzadeh
et al., 2013

Phosphorus Wheat
The application of phosphorus in a waterlogged condition is able to increase root establishment and growth
under water stress conditions.

Ahmed et al.,
2018

Potash

Cotton
(Gossypium
hirsutum L.)

Application of potash in water logging conditions in plants can show improved growth of plants, enhanced
photosynthetic pigments, and photosynthetic capacity. It also enhances the uptalking capacity of nutrients in
waterlogged plants

Ashraf et al.,
2011

Rice
In water logging, condition higher concentration of K showed improved photosynthetic pigments, non-structural
carbohydrates (NSC) contents, and higher activities of antioxidant as well as reduces the activity of lipid
peroxidation in waterlogged rice.

Hasanuzzaman
et al., 2018

CR urea Wheat
According to one research in Australia, it was revealed that the application of Controlled Released urea can avoid
waterlogging effects of wheat, and grain yield is increased by approximately 20%

Manik et al.,
2019

FYM
Application of farmyard manure in waterlogging conditions can enhance grain Fe, Zn, and Cu concentration of
paddy which is essential to prevent water stress in plant

Masunaga and
Marques Fong,
2018

Boron Maize
According to research, it was found that Foliar application of boron can able to improve plant growth and
mitigate the deleterious effect of maize under waterlogging

Sayed, 1998

Calcium
Rice-Rape
rotation field

In Waterlogging condition of rice–rapeseed rotation field production of rapeseed was particularly reduced and it
can be mitigated by the application of Calcium peroxide which after reacting with water releases oxygen, which
can serve as an excellent supply of oxygen in redox zone.

Wang et al.,
2022

Sulphur Peach
Application of Hydrogen Sulfide (sulfur source) in waterlogging conditions can reduce the damage occured in
Peach Seedlings by improving the activities of antioxidation and reducing Ethylene Synthesis

Xiao et al.,
2020

Calcium Pepper
Application of Ca2+ in pepper plants improve the photosynthetic capacity, and root growth, and ultimately the
biomass is increased in water logging condition along with enhanced antioxidant enzyme and alcohol
dehydrogenase activities.

Yang et al.,
2016
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regulate ABA signaling interact with BIN2 and regulate BRs signaling,

which ultimately shows stress responses in Arabidopsis (Wang et al.,

2018a; Wang et al., 2018b).

The crosstalk is also having an important place in dealing with

salinity resistance in plants. The effect of salt stress can be nullified by

seed priming with IAA on wheat seed germination and growth via

regulation the biosynthesis of free salicylic acid induced by auxin and

maintaining ionic homeostasis in leaves (Iqbal and Ashraf 2007). Fahad

and Bano (2012) observed that during salinity stress plant can produce

significant amount of IAA and reduce the synthesis of ABA in maize

plants; however, the application of salicylic acid can significantly increase

the IAA. Application of auxin restricts the nodes of tiller in rice by

biosynthesis of cytokinin in nodes along with down-regulating OsIPT

expression (Liu et al., 2011) during salinity stress. CKs play an important

role by acting as a bridge in showing the protective role of epibrassinolide
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and methyl jasmonate in wheat under salinity (Shakirova et al., 2010).

Iqbal and Ashraf (2013a) reported a non-consistent effect of GA3 priming

(150 mg L-1) on auxin concentration in wheat genotypes under salinity

stress. GA improved the growth of soybean by regulating the level of

other phytohormones under salinity (Hamayun et al., 2010), and

increased levels of bioactive GA1 and GA4 showed a concurrent

decrease in the level of ABA and SA. In brassica, the application of

GA in conjunction with nitrogen was helpful in alleviating salinity stress

(Siddiqui et al., 2010). Moreover, BRs-mediated stress tolerance in

Arabidopsis was linked with ABA, SA, and ETHY pathways (Divi

et al., 2010). The BRs act as synergists to GA and IAA during the

hypocotyl elongation of Arabidopsis (Tanaka et al., 2003). ABA acts as an

antagonist as it repressed the BR-enhanced expression (BEE1, BEE2, and

BEE3) proteins (Friedrichsen et al., 2002). Exogenous application of

jasmonates (JA) may change the endogenous ABA, which provides a
TABLE 7 Reports of nutrients involved in mitigating heat stress in plant.

Types of
nutrients Crops Effect References

Magnesium
maize and
wheat

Application of Magnesium during heat stress of wheat and maize plants can nullify the damage effect by decreasing
oxidative cellular damage caused by ROS.

Mengutay et al.,
2013

Nitrogen

Spinach
It was observed in spinach both the photosynthetic activity and the light collection ability of the plant is reduced due
to low nitrogen content.

Verhoeven et al.,
1997.

Bean nitrate-grown bean plants had higher tolerance to photodamage than ammonium-grown ones. Zhu et al., 2000

Tomato
plant with ammonium application show better tolerance to heat stress than nitrate-applied plants due to the assembly
of proline and quaternary ammonium compounds in tomato plant

Rivero et al., 2004

K+Zn+B Cotton
In cotton increased ability of TNBPP, NSBPP, TSP, RWC, fiber length, fiber strength and fiber fineness were observed
due to foliar application of K and Zn followed by B.

Sarwar et al., 2022

Mg

Bean The antioxidant activities and antioxidant molecules are increased in bean due to the application of Mg
Cakmak and
Marschner, 1992

Maize The antioxidant activities and antioxidant molecules are increased in maize due to the application of Mg Tewari et al., 2004

Pepper The antioxidant activities and antioxidant molecules are increased in peach due to the application of Mg Anza et al., 2005

Mulberry The antioxidant activities and antioxidant molecules are increased in mulberry due to the application of Mg Tewari et al., 2006
TABLE 6 Reports of nutrients involved in mitigating cold stress in plant.

Types of
nutrients Crops Effect References

Hydrogen
Sulfide

Cucumber
Application of sodium hydrosulfide (NaHS, an H2S donor) develops cold stress tolerance of cucumber seedlings also the
level of auxin is enhanced in the crop.

Zhang et al.,
2021

Potash

Carnation
Application of K in high concentrations with irrigation water prevents plant stem damage during low night temperatures in
carnation plants.

Kafkafi, 1990

Potato
In potato plants, during cold stress decreased yield and increased leaf damage were found which can be mitigated by the
application of potash in plants.

Grewal and
Singh, 1980

Tomato,
Pepper, and
Brinjal

Through the application of K, it was observed that total plant yield was increased by 2.4-fold in tomato, 1.9-fold in pepper,
and 1.7-fold in brinjal.

Hakerlerler
et al., 1997

Phosphorous
Lowland
rice

Application of exogenous phosphorus can alleviate low-temperature stress along with p deficiency also it was helpful in
shortening day to heading in early and intermediated transplanting crop of rice

Andrianary
et al., 2021

Boron
cucumber,
cassava,
sunflower

Application of boron during cold stress can alleviate the effect of chilling-induced reduction in, membrane fluidity,
plasmalemma hydraulic conductivity, root pressure, and water channel activity which leads to a improving in hydrolic
conductance of root, uptake of water and nutrient in plant

Huang et al.,
2005

Magnesium Tomato
During low temperatures and high concentrations of K, the risk of Mg deficiency in tomatoes is high. So, the application of
magnesium can achieve the normal growth of plants during cold-stress conditions.

Li et al., 2018
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significant hint for understanding the protection mechanisms against salt

stress (Kang et al., 2005). Furthermore, foliar application of N fertilizers at

the reproductive stage, particularly in leguminous crops, significantly

slows the synthesis of abscisic acid with an enhance synthesis of cytokinin

production, which promotes cell elongation, nodulation, shoot

development, apical dominance, photosynthetic activity, and

assimilates translocation to the sink organs under drought conditions

(Vries et al., 2016). Likewise, the synergistic regulation of H2S with

phytohormones such as abscisic acid, ethylene, and salicylic acid can able

to regulate the plant stress response (Zhang et al., 2021). It was observed

that a balanced application of nutrients can be useful to mitigate cold

stress by protecting the cell against freeze-dry death for a limited period

of time (Huixia et al., 2018). The plant supplemented with potassium and

magnesium provides better protection during a cold injury in the plant.

The application of potassium can regulate the closing of stomatal cells,

improves water balance, and prevents uncontrolled water loss through

the leaves (Danilova et al., 2016m). Also, Magnesium promotes root

growth up to a deeper zone of soil and therefore helps ensure that plants

can still absorb water from deeper soil layers via a well-developed root

system, even when the soil is slightly frozen (Danilova et al., 2016m).

Whereas, Auxin a plant growth that promotes its synthetic pathway can

create thermo-tolerance in crops. During heat and moisture stress

conditions, soil cobalt application combined with foliar K and B sprays

manifested immense potential to achieve higher black gram production

(Banerjee et al., 2021). A similar study was also carried out in Lathyrus

sativus by the authors that showed the combined application of N, P, and

K with Mo improved growth, physiological efficiency, nutrients uptake,

and yield ameliorate heat and moisture stress (Banerjee et al., 2021).

Combined application of Zn, B, and Si increased plant height, shoot dry

weight, number of stems per plant, leaf relative water content, leaf

photosynthetic rate, leaf stomatal conductance, chlorophyll content,

and tuber yield in potato during salinity stress condition (Mahmoud

et al., 2020). Co-application with other plant nutrients like N, P, K, Zn, Si,

etc. can be proven beneficial in alleviating salinity, heat, and moisture

stress in plants (Akeel et al., 2020). Application of nutrients like K and Ca

improves root growth and improve the uptake of water which leads to

regulating the stomatal cell and maintaining the plant body temperature

during heat stress. The application of micronutrients like B, Mn, and Se

can alter the physical, biochemical and metabolic processes in plants in a

positive direction to alleviate the adverse effects of heat stress. Combine

application of Selenium (Se) and Salicylic acid (SA) can improve

tolerance in crops by activating antioxidant production which can

eliminate the ROS and make the plant free from membrane damage

(Kumari et al., 2022). It was concluded that hormonal balance and their

cross-talk with themselves and the nutrients are critical regarding signal

perception, transduction, and mediation of stress response in plants.
8 Conclusion

In this current review highlighted the comprehensive information

on the response of phytohormones, nutrients application and their

interaction in crops grown under various abiotic stress conditions.

Majority of phytohormones control and sustain the homeostasis

inside the cell by detoxifying the ROS and enhancing the

antioxidant activities during varied abiotic stress and can enhance

tolerance in plants. In drought condition, application of IAA can
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trigger the activation of other stress-responsive hormones as well as

the production of ROS. Enhanced level of ABA in drought condition

can alter the guard cell ion transport and stomatal opening which

leads to reduced water loss. Cytokinin application increases

transcriptional level of CKX genes leads to enhanced CKX activity

in many plants. Proline activity is enhanced by applying CKs to create

salt resistance in plant. It was also concluded that endogenous

hormone levels of IAA, zeatin, and GA3 is enhanced by application

of that exogenous application of BA. In water logging condition, the

accumulation of ROS and malondialdehyde levels is reduced by

application of CK and GA3. The overexpression of ethylene

response factor such as GmERF3 of AP2/ERF gene family, leads to

improvement in proline content, soluble sugar, and decreases in the

accumulation of malondialdehyde to improve drought tolerance in

plant. During heat stress, the pollen sterility is the major cause of yield

loss, which can be overcome by application of application of ethylene

hormone (ethephon) during heat stress conditions. In saline

condition by altering the GA levels can enhance seed germination

by overproduction of the salt-inducible DDF1 gene (dwarf and

delayed flowering 1). It was estimated that application of GA3 (200

ppm) in combination with salicylic acid (150ppm) on the soybean

plant provides better mitigation effects by improving the number of

pod and seed, chlorophyll content in waterlogged conditions. Also, it

was observed that methyl jasmonic acid (MeJA) has a positive effect

on augmenting tolerance in plants to a high temperature by altering

the antioxidant defense mechanism, decreasing chlorophyll loss due

to heat, maintaining good water balance in plant and lowering

electrolyte leakage in the crop. It was also revealed that application

of 0.5mM of salicylic acid improves the growth rate of plant under

hydroponic conditions under cold stress condition. Besides, the

application of plant nutrients like N, K, Ca, and Mg are also found

to reduce the ROS activities through elevating antioxidants quantity

that can scavenge the ROS effect and finally leading to the reduction

in cell membrane leakage and increase the photosynthetic ability in

the plant by recuperating the chlorophyll cells. Hence, it is concluded

that the crosstalk with phytohormones and nutrients can complement

each other streamlining the antioxidant activities or ROS signaling

pathway in cells and improving the tolerance of crop plants. More

amalgamated and detailed research is needed with the combined

application of hormones and nutrients to precisely understand the

mechanism involved.
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