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Salinity is one of the most concerning ecological restrictions influencing plant

growth, which poses a devastating threat to global agriculture. Surplus quantities

of ROS generated under stress conditions have negative effects on plants’ growth

and survival by damaging cellular components, including nucleic acids, lipids,

proteins and carbohydrates. However, low levels of ROS are also necessary

because of their role as signalling molecules in various development-related

pathways. Plants possess sophisticated antioxidant systems for scavenging as

well as regulating ROS levels to protect cells from damage. Proline is one such

crucial non-enzymatic osmolyte of antioxidant machinery that functions in the

reduction of stress. There has been extensive research on improving the tolerance,

effectiveness, and protection of plants against stress, and to date, various

substances have been used to mitigate the adverse effects of salt. In the present

study Zinc (Zn) was applied to elucidate its effect on prolinemetabolism and stress-

responsive mechanisms in proso millet. The results of our study indicate the

negative impact on growth and development with increasing treatments of NaCl.

However, the low doses of exogenous Zn proved beneficial in mitigating the

effects of NaCl by improving morphological and biochemical features. In salt-

treated plants, the low doses of Zn (1 mg/L, 2 mg/L) rescued the negative impact of

salt (150mM) as evidenced by increase in shoot length (SL) by 7.26% and 25.5%, root

length (RL) by 21.84% and 39.07% and membrane stability index (MSI) by 132.57%

and 151.58% respectively.The proline content improved at all concentrations with

maximum increase of 66.65% at 2 mg/L Zn. Similarly, the low doses of Zn also

rescued the salt induced stress at 200mM NaCl. The enzymes related to proline

biosynthesis were also improved at lower doses of Zn. In salt treated plants
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(150mM), Zn (1 mg/L, 2 mg/L) increased the activity of P5CS by 19.344% and 21%.

The P5CR and OAT activities were also improved with maximum increase of

21.66% and 21.84% at 2 mg/L Zn respectively. Similarly, the low doses of Zn also

increased the activities of P5CS, P5CR and OAT at 200mM NaCl. Whereas P5CDH

enzyme activity showed a decrease of 82.5% at 2mg/L Zn+150mMNaCl and 56.7%

at 2mg/L Zn+200mMNaCl. These results strongly imply themodulatory role of Zn

in maintaining of proline pool during NaCl stress.
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Introduction

Plants are impacted by both biotic and abiotic stress conditions

which inhibit the uptake of water and nutrients, compromise

membrane permeability and hamper development (Arif et al.,

2020). These alterations also affect the metabolism of hormones,

and the exchange of gasses and result in the production of ROS at a

faster rate. The salinity stress reduces primary photochemistry of

photosystem and reduced photosynthetic pigments, exhibited

enhanced chorophylll degradation and leakage of electrolyts

(Siddiqui et al., 2019; Akhter et al., 2021). Continuous exposure to

such conditions finally causes plant senescence and death (EL Sabagh

et al., 2021). Salt stress in plants is one of the most significant

ecological restrictions influencing plant growth and development

which poses a devastating threat to global agriculture (Mushtaq

et al., 2021). Worldwide, the rate of salinity is high which affects

approximately 20% of the world’s land and it has been steadily

increasing for a few decades (Khan et al., 2022). The overuse of

fertilizers and outdated irrigation practices are primarily to blame for

excessive salt levels in agricultural lands (Ladeiro, 2012). An excessive

amount of salt causes hyperosmotic and hyperionic conditions,

accumulation of Na+ and Cl- ions and the generation of ROS

(Rahman et al., 2016). The increased ROS quantities impact the

plants negatively by damaging cellular components, including nucleic

acids, lipids, proteins, and carbohydrates (Das and Roychoudhury,

2014; Saleem et al., 2021). However, moderate levels of ROS are

necessary as they function as a signalling molecule (Mittler, 2017;

Marcec and Tanaka, 2021). On the other hand, plants have a

sophisticated antioxidant system that scavenges and regulates the

levels of ROS to protect cells from damage (Kapoor et al., 2019).

Proline is one such crucial non-enzymatic osmolyte that plays a

function in stress reduction (Alamri et al., 2019; Iqbal et al., 2021).

Besides its role in plant improvement, proline is also involved in

flowering, pollen, embryos, and leaf growth. As a response to stress,

proline is typically boosted in the cytosol to regulate the osmotic

environment (Meena et al., 2019). Apart from its function as an

osmolyte, it also works as a metal chelator and antioxidant molecule

during stressful situations (Hayat et al., 2012). Proline accumulation

enhances heavy metal tolerance, and improved resistance to drought

or salinity stress in plants and algae (Hmida-Sayari et al., 2005; Zhao
02
et al., 2022). There has been extensive research on improving the

tolerance, effectiveness, and protection of plants against stress, and to

date, various substances have been used to mitigate the adverse effects

of salt. Microelements are thought to help plants cope with salt stress

(Abideen et al., 2022) and throughout their life cycle, plants require

these elements to survive in contrasting environmental conditions.

Deficiencies of these elements can significantly affect a plant’s growth,

development, and survival. In the context of requirement, certain

elements may not be required by all the plants, but are advantageous

to particular plant species, and are therefore called beneficial

elements. Beneficial elements consist of zinc (Zn), cobalt (Co),

selenium (Se) and silicon (Si) (Kaur et al., 2016). Research indicates

that these elements are beneficial to plant growth and development in

both optimal and stressful environments. In order to enable plants to

cope with stress adversities and survive, beneficial elements regulate

essential acclimation responses through molecular, physiological, and

biochemical mechanisms (Kumari et al., 2022). They increase abiotic

stress tolerance in plants by an intricate crosstalk with other plant

growth regulators such as phytohormones, ROS and other signalling

molecules (Tiwari et al., 2017; Khan et al., 2021). However, their

beneficiary and essentiality is debatable, with little evidence indicating

necessity. In the era of climate change, a restored understanding of

beneficial elements may also be beneficial to improving stress

tolerance, plant health, plant nutritional value and crop

productivity. As a result, the principles behind the impacts of

beneficial components in plants need to be explored, and the field

provides a chance to gain more insights that might aid in achieving

sustainable agricultural yield and plant adaptation to abiotic stress

conditions. Micronutrients such as boron (B), chloride (Cl), copper

(Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni),

and zinc (Zn) are required in much lesser amounts by the plant

(Thapa et al., 2021). It is difficult to specify the precise numbers of

micronutrients since certain elements are still not clearly classified as

essential or beneficial. 17 of the 92 natural elements found in plants

are considered essential nutrients. Among these 17 elements, 8 are

micronutrients which include iron (Fe), zinc (Zn), copper (Cu),

manganese (Mn), molybdenum (Mo), chlorine (Cl), boron (B), and

nickel (Ni) (Mondal and Bose, 2019). Micronutrients are involved in

almost all metabolic and cellular activities, including primary and

secondary metabolism, energy metabolism, cell defense, gene
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regulation, hormone sensing, signal transduction, and reproduction.

Micro nutrients also play vital roles in plant growth, development and

food grain production, enhancing tolerance to abiotic stress,

maintaining water potential, provide protection against

environmental extremities and pathogen (Tripathi et al., 2015;

Chrysargyris et al., 2022).

Zinc is one of the cardinal micronutrients which mitigates stress

in plants (Dimkpa et al., 2019; Venugopalan et al., 2022). Studies

reported that the use of Zn has improved plant growth, pigment

content, carbohydrates, proteins, antioxidants, and the plant defence

system (Noreen et al., 2021; Shah et al., 2022; Wei et al., 2022). It aids

in membrane stability, hormone production, starch and sucrose

turnover, RNA and DNA structure stabilization, gene expression,

auxin formation, photosynthesis, and protection against drought,

cold, salt, and pathogens (Umair Hassan et al., 2020; Hassanein

et al., 2021; Rai-Kalal and Jajoo, 2021). Zinc deficiency in rice was

reported to mediate the induction of CAZymes (Carbohydrate-Active

enZymes) involved in starch synthesis/transport via up-regulation of

genes encoding these CAZymes (Suzuki et al., 2012). These enzymes

mainly belong to CAZy classes glycoside hydrolase (GH) and

glycosyltransferases (GT) (Diricks et al., 2015; Stam et al., 2006)

(http://www.cazy.org). Interestingly, the ability of rice plants to

withstand the low level of Zn in their cells is prompted by the

accumulation of starch mediated by certain CAZymes of the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway “Sucrose and

Starch Metabolism” (map00500). These CAZymes include 4-alpha-

glucanotransferase (EC 2.4.1.25) and 1,4-alpha-glucan branching

enzyme (EC 2.4.1.18) that act on the transfer of a-1,4-glucosidic
bond, respectively, from maltose to amylose, and eventually to starch

(https://www.brenda-enzymes.org/) (Lombard et al., 2014).

The normal concentration of Zn in most plants is between 25 to

150 ppm, however, this small amount of Zn plays a key role in more

than 300 enzymes, such as alkaline phosphatase, carbonic anhydrase,

alcohol dehydrogenase, and Cu-Zn superoxide dismutase (Malik

et al., 2011; Solanki, 2021). It also has a structural role in the

stabilization of proteins such as Zn cluster, Zn finger and RING

finger domains/motifs. In crop plants, zinc is transported directly

from the soil either in Zn2+ form and get accumulated in the roots of

plants before being translocated to the shoots and leaves via xylem

(Vatansever et al., 2017). In plants, Zn homeostasis is maintained by

ZIP (Zn, iron-permease family/ZRT, IRT proteins) family uptake

transporters in a coordinated regulation mechanism. Other proteins

involved in the translocation of Zn are the heavy metal ATPase

(HMA) family and the metal tolerant proteins (MTP) family (Olsen

and Palmgren, 2014). ZIP family participates in the Zn influx into cell

cytosol, while HMA mediates Zn efflux into the apoplast. Zn

sequestration into the vacuoles and endoplasmic reticulum are

facilitated by the MTP family (Gupta et al., 2016).

We hypothesized that a stressor (NaCl) and a mitigant (Zn)

would have an impact on the proline biosynthesis which would reflect

as a response on plant fitness. Thus to understand this process

we aimed to visualize the merit of using Zn as a mitigant against

salt stress (NaCl) and to understand the role of Zn in regulating

proline pathway under salt stress in proso millet. Thus we studied

proline metabolism, proline accumulation and enzyme activities

related to proline biosynthesis. We also elucidated plant growth

parametrs after the application of zinc (zinc sulfate).
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Material and methods

Plant growth and treatments

The seeds of proso millet (Panicum miliaceum L.) were collected

and identified at the Centre for Biodiversity and Taxonomy,

University of Kashmir. The seeds were sterilized using 70% (v/v)

ethanol for 1 minute and washed with sterile distilled water. Surface

sterilization of seeds was performed using 10% sodium hypochlorite

solution for 10 min followed by rinsing with sterilized distilled water.

The seeds were sown in pots, 20 cm in diameter and containing

autoclaved sand. Each pot of specific diameter contained 900grams of

sand and 1gram of seeds (approx. 500 seeds). A controlled

environment with a 26 ± 1°C temperature and a 16-h photoperiod

was maintained (Khalid et al., 2008; Desoky et al., 2019). Three sets of

plants were grown with three replicates each and the treatments viz.,

0, 150 and 200 mM of NaCl were given to the pots as per (Shah et al.,

2020) and the Zinc (Zn) treatments 1 to 5 mg/L were provided in the

form of zinc sulfate (ZnSO4). The Hoagland’s nutrient medium (pH

6.5) containing all macro and micro nutrients was used as a nutrient

source for the growth of plants. Till 14th day of sowing, plants were

nourished with Hoagland’s nutrient medium and afterwards both salt

and Zinc were applied with nutrient solution. For maintaining

concentrations of treatments throughout the stress period,

treatments were repeated every third day till harvesting. The

experiment was performed in a complete randomized design and

each treatment was replicated three times (Supplementary Table 1).

The plants were harvested after 22 days of sowing for morphological

(Shoot length, root length, total length, leaf height and area),

physiological and biochemical analysis.
Determination of plant growth parameters
and tolerance index

Following the experiment, 10 plants were taken at random from

each treatment and gently cleansed four times with deionized water to

remove adherent sand from the root surfaces. Following this, the

morphological parameters were examined (Singh et al., 2008; Kausar

et al., 2012; Dikobe et al., 2021). To evaluate the capacity of plants to

thrive under high saline environments, the tolerance index (TI) was

calculated by the equation given by Wilkin (Wilkins, 1957):

Tolerance Index(TI  % ) = MLT=MLC � 100

MLT = Mean length (root, shoot) of the longest root/shoot in

treated plants, MLC =Mean length (root, shoot) of longest root/shoot

in control.
Fresh weight/dry weight/relative
water content

The biomass accumulation (BA) of 10 plants was determined by

drying in an incubator at 70°C for 48 hours. To calculate relative

water content (RWC), the fresh weight (FW) of leaves was taken.

Following this, the dry weights (DW) of leaves were taken by drying
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in an oven at 70°C for 48 h (Afzal and Mansoor, 2012). RWC was

analyzed using the formula:

RWC ( % )  = FW − DW=FW � 100
The membrane stability index and
electrolyte leakage

The membrane stability index (MSI) and Electrolyte leakage (EL)

was determined by the method of Singh (Singh et al., 2008). Leaves

were sterilized 3 times with distilled water before being chopped into

small pieces and put in vials containing 10 mL of double distilled

water. For the initial electrical conductivity of the solution (EC1), the

vials were placed in a water bath at 40°C for 30 minutes. To obtain the

final electrical conductivity (EC2), the vials were subjected to boiling

temperature in a water bath for 10 minutes and then allowed to cool

before taking EC2 readings. The EL and MSI were measured by using

the following formulae;

EL ( % ) = (EC1=EC2)� 100

MSI ( % ) = ½1 −  (EC1=EC2)� � 100
Photosynthetic pigments and chlorophyll
stability index

0.2g of leaf sample was homogenized in 10ml of 80% acetone

under dark conditions. Total chlorophyll, chlorophyll a and

chlorophyll b were measured following the standard methods

(Lichtenthaler, 1987; Hou et al., 2018);. For calculating

anthocyanin, the pre-frozen leaf samples (0.1g) were homogenized

in 10 ml of acidified methanol (methanol, double distilled water and

concentrated HCl in the ratio of 80:20:1) in dark conditions

(Benazzouk et al., 2020). Carotenoids, total phenolics and total

flavonoid content were calculated as per Golkar and Taghizadeh

and Benazzouk et al. (Golkar and Taghizadeh, 2018; Benazzouk et al.,

2020). The stability of chlorophyll was measured by the chlorophyll

stability index (CSI) as per Sairam et al. (Sairam et al., 1997) by the

following formula;

CSI = (Total Chl :  under stress=Total Chl :  under control)� 100
2, 2-Diphenyl-1-Picrylhydrazyl activity

The DPPH-radical scavenging activity was calculated using the

method given by Sethi et al. (Sethi et al., 2020). To measure the radical

scavenging activity of the methanolic extract, 0.1 ml of extract was

allowed to inhibit 3.9 ml of DPPH. UV-VIS spectrophotometer was

used to measure the absorbance of the reaction mixture at 517 nm and

the percentage of DPPH radical scavenging activity was calculated by

the following equation:

The percentage inhibition (IP) of absorbance was determined

using the following equation:
Frontiers in Plant Science 04
IP ( % ) = ½Acontrol −  Asample=Acontrol� � 100

Where, Acontrol is the absorbance of the control reaction and

Asample is the absorbance in the presence of a methanolic sample.
Ferric reducing antioxidant power

The antioxidant capacity of the samples was determined

spectrophotometrically using the method of Rajurkar and Hande

with some modifications (Rajurkar and Hande, 2011). At low pH the

electron donating antioxidants reduction of Fe3+ TPTZ complex

(colourless complex) to Fe2+ -tripyridyltriazine (blue coloured

complex) takes place which was read at 593 nm after 4 minutes.

The sample (10 μl) was added to a 300 μl FRAP reaction mixture

containing 300 mM acetate buffer, 10 ml TPTZ in 40 mMHCl and 20

mM FeCl3 in the proportion of 10:1:1 at 37°C. Ferrous ammonium

sulphate was used as a standard for calculating FRAP activity.
Proline content estimation

The ninhydrin method was used to assess the proline content of

the leaves as per Zhu et al. (Zhu et al., 2020) with some modifications.

Leaves (0.5 g) collected were extracted in 3 percent (w/v) sulfosalicylic

acid. The leaves were weighed and finely grounded using liquid

nitrogen. The mixture was kept as such for a few minutes and was

centrifuged at 12,000 g for 10 min. The supernatant obtained after

centrifuge was used to estimate proline content. The supernatant was

combined with 2 ml of acid ninhydrin and 2 ml of glacial acetic acid

and placed in a 100°C water bath for 1 hour. The reaction was stopped

by immersing the test tubes in an ice bath. Further 4 ml toluene was

added to the mixture and the absorbance at 520 nm was measured

with a spectrophotometer. The content of proline was measured using

a proline standard curve made with different concentrations.
Enzyme extraction and assays

To find out the activity of proline metabolism enzymes, the leaf

samples was homogenized in an extraction buffer containing 100 mM

Tris-HCl, 1 mM EDTA, 10 mMMgCl2, 10 mM b-mercaptoethanol, 2

mM PMSF, 4 mMDTT, and 2% PVPP (pH 7.5). The homogenate was

centrifuged at 4°C at 10,000 g for 20 min. The supernatant was stored

at -80°C for enzyme assays. Pyrroline-5-carboxylate synthase (P5CS),

D-pyrroline-5-carboxylate reductase (P5CR), d-ornithine amino

transferase (OAT), D-pyrroline-5-carboxylate dehydrogenase

(P5CDH) and proline dehydrogenase (ProDH) assays were

performed following standard protocols with some modifications

(Parida et al., 2008; Spoljarevic et al., 2011; Da Rocha et al., 2012;

Koenigshofer and Loeppert, 2019; Zhu et al., 2020)
Pyrroline-5-carboxylate synthase activity

This study determined the P5CS activity based on the utilization

of NADPH during the reaction catalyzed by the enzyme. At 25°C, the
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P5CS activity was performed in a final volume of 2 mL of 100mM

Tris-HCl buffer (pH 7.5) containing 25mM MgCl2, 75mM Na-

glutamate, 10mM ATP, 0.4mM NADPH, and the enzyme extract.

Using UV–Vis spectrometer, NADPH consumption was monitored

as a decrease in absorption at 340 nm as a function of time.
D-pyrroline-5-carboxylate reductase activity

P5CR activity was determined by measuring the proline-

dependent reduction of NAD+ (the reverse reaction). At 25°C, the

reaction was performed in a final volume of 2 mL of 200mM sodium

glycinate buffer (pH 10.3), 20mM proline, 15mM NAD+ (pH 5-7),

and the enzyme extract. To measure the formation of NADH,

absorbance at 340 nm was monitored by using UV-Vis spectrometer.
Ornithine amino transferase activity

To determine the activity of d-OAT, pyrroline 5-carbuxylate

(P5C) was measured for 30 minutes using the ninhydrin method.

In a final volume of 1 mL, the reaction mixture contained 100 mM

Tris-HCl (pH 8.0), 20 mM a-ketoglutarate, 50 mM L-ornithine, and

the enzyme extract. The mixture was incubated for 30 min at 37°C.

Using 0.2 mL of 2% (w/v) ninhydrin and 3 N perchloric acids the

reaction was stopped. After incubating at 100°C for 5 min and

centrifugation at 12,000g for 10 min, the precipitation was dissolved

in 1.5 mL of ethanol. Now, the mixture was incubated at 100°C for 5

minutes. Following this, 10 minutes of centrifugation at 12,000g was

carried out and the precipitate obtained was dissolved in 1.5 mL of

ethanol. The clear supernatant was read at 510nm using UV-VIS

spectrophotometer. One unit of d-OAT activity was represented as

the micromoles of P5C formed per mg of protein per hour.
D-pyrroline-5-carboxylate
dehydrogenase activity

A mixture of 50 mM Tris–HCl buffer (pH 7.0), 0.1 mM NAD+,

and 0.3 mM P5C was used in the P5CDH reaction. An enzymatic

extract of 0.2 mL was added to a final volume of 2.0 mL to start the

reaction. An enzyme extract-free blank was prepared from the

reaction mixture. A linear decrease in absorbance at 340 nm was

observed after mixing for 5 minutes, and enzyme activity was

measured after 2 minutes at 30°C. The molar extinction coefficient

of NAD(P)H was used to quantify P5CDH activity and expressed as

nmol NADH formed mg−1 protein min−1.
Proline dehydrogenase activity

ProDH enzyme extract was incubated at 28°C in a reaction buffer

containing 100 mM Na2CO3-NaHCO3 (pH 10.3), 20 mM L-proline,

and 10 mM NAD+ to determine its activity, and then ProDH

dependent NAD+ reduction was measured at 340 nm. The quantity

of enzyme catalyzing the synthesis of 1 mmol of NADH per minute is

defined as one unit of ProDH activity.
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Protein estimation

The protein content of the plants was determined according to

Bradford (Bradford, 1976), using Bovine serum albumin (BSA) as

a standard.
Statistical analysis

All experiments were conducted in triplicates (n = 3), except for

FM, BA, and RWC where 10 replicates were used. Using GraphPad

Prism 8, two-way ANOVA was carried out and the results in the

graphs were given as arithmetic mean ± standard error (SE). Tukey’s

post-hoc test was employed for identifying statistical differences at the

0.05 probability level.
Results

Growth and tolerance index of salt-stressed
and Zn treated plants

Morphological parameters were measured after 22 days of

sowing, and it was observed that the shoot length (SL) decreased

significantly under salt stress in a dose-dependent manner. As can be

seen from Figure 1A maximum decrease in SL was reported at

200mM NaCl (28.84%), while as a decrease of 7.43% in SL was

observed at 150mM NaCl in comparison to control. However, the

exogenous application of Zn was not only seen to alleviate the

negative effects of salt on SL, but also increase the SL under normal

conditions. In comparison to control the low doses of Zn (1 mg/L and

2mg/L) were seen to be more efficient in terms of salt stress alleviation

by showing an increase in SL by 10.44% and 32.38% respectively.

However, the higher doses of Zn (3, 4, 5 mg/L) were seen to be toxic as

evidenced by a decrease in SL by 1.59%, 1.76%, and 18.4%,

respectively. In salt-treated plants, the low doses of Zn rescued the

negative impact as the SL increased by 7.26% and 25.5% in treatments

150 mM NaCl +1 mg/L Zn and 150 mM NaCl +2 mg/L Zn treated

plants respectively in comparison to plants treated only with 150 mM

NaCl. Similarly, the treatments 200 mM NaCl, + 1 mg/L Zn, 2mg/L

were also reported to be effective in rescuing salt damage on

SL (Figure 1A).

The root length (RL) also decreased at 200mM NaCl (28.66%),

while as a decrease of 22.47% in RL was observed at 150mM NaCl in

comparison to control (no salt/Zn treatment). However, the

exogenous application of Zn alleviated the negative effects of salt on

RL. We report an 8.79%, 32.24% and 24.1% increase in RL at 1 mg/L,

2mg/L and 3mg/L Zn respectively in comparison to control plants.

The higher doses of Zn (4, 5 mg/L) were seen to be toxic as there was a

decrease in RL at these concentrations by 6.1% and 1.6% respectively

in comparison to control. In salt-treated plants, Zn rescued the

negative impact of salt on RL, and we observed an increase of

21.84%, 39.07%, 10.5% and 5.88% in 150 mM NaCl+1 mg/L, 150

mM NaCl +2mg/L, 150 mM NaCl+3 mg/L and 150 mM NaCl+4 mg/

L treated plants respectively in comparison to plants treated only with

150 mM NaCl. However, RL decreased by 5.4% in plants treated with

150 mM NaCl +4 mg/L treated plants as compared to 150 mM NaCl.
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Similarly, at 200 mMNaCl, a low dose (1 mg/L, 2mg/L, and 3mg/L) of

Zn was found to be effective in rescuing salt damage. An increasing in

RL by 17.8%, 17.8% and 6.84% at 1 mg/L, 2mg/L, and 3mg/L was

observed however application of 4 mg/L and 5 mg/L Zn decreased RL

when compared to plants treated with 200mM salt (Figure 1B).

The total length (TL) in proso millet under salt stress decreased by

12.72% at 150mM NaCl and by 28.78% at 200 mMNaCl. We report a

9.86%, 32.33% and 7.45% increase in TL at 1 mg/L, 2mg/L and 3mg/L

Zn respectively in comparison to control plants. The higher doses of

Zn (4, 5 mg/L) were seen to be toxic as there was a decrease in TL at

these concentrations by 3.32% and 12.5% respectively in comparison

to control. In salt-treated plants, Zn mitigated the negative impact of

salt on TL, and we observed an increase of 11.82% and 29.7% in 150

mM NaCl+1 mg/L, 150 mM NaCl+ 2mg/L treated plants respectively

in comparison to plants treated only with 150 mM NaCl. However,
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TL decreased by 5.9%, 6% and 17.6% in plants treated with 150 mM

NaCl+3 mg/L, 150 mM NaCl+4 mg/L and 150 mM NaCl +5 mg/L

respectively as compared to 150 mM NaCl. Similarly, at 200 mM

NaCl, low doses (1 mg/L, 2mg/L, and 3mg/L) of Zn were found to be

effective in rescuing salt damage. An increase in TL by 23.5%, 20.6%

and 3.22% at 200 mM NaCl+1 mg/L, 200 mM NaCl+2mg/L, and 200

mM NaCl +3mg/L was observed however application of 200 mM

NaCl+4 mg/L and 200 mM NaCl+5 mg/L Zn decreased TL when

compared to plants treated with 200 mM NaCl (Figure 1C).

The leaf height (LH) in proso millet under salt stress decreased by

1.57% at 150mMNaCl and by 11.02% at 200 mMNaCl. However, the

application of 1 mg/L Zn does not affect LH. We found 13.39%,

9.45%, 8.66% and 7.09% increase in LH at 2mg/L, 3mg/L, 4 mg/L and

5 mg/L Zn respectively in comparison to control plants. In salt-

treated plants, Zn mitigated the negative impact of salt on LH, and we
A B

D

E F

G H

C

FIGURE 1

Effects of Nacl and Zn on morphological parameters: (A) Shoot length (B) Root length (C) Total length (D) Leaf height (E) Leaf width (F) Leaf area
(G) Fresh weight and (H) dry weight. The different letters on bars represent the significant differences (a, significant; b, non-significant compared to
control; c, significant; d, non-significant compared to 150 mM NaCl and e, significant; f, non-significant compared to 200 mM at p ≤ 0.05.
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observed an increase of 4%, 16%, 0.8%, 5.6% and 8% in 150 mMNaCl

+1 mg/L, 150 mM NaCl+2mg/L, 150 mM NaCl+3mg/L, 150 mM

NaCl+4mg/L and 150 mMNaCl+5mg/L treated plants respectively in

comparison to plants treated only with 150 mM NaCl. Similarly, at

200 mM NaCl, (1 mg/L, 2mg/L, and 3mg/L) of Zn were found to be

effective in rescuing salt damage. An increasing in LH by 3.54%,

11.5% and 4.42% at 1 mg/L, 2mg/L, and 3mg/L when compared to

plants treated with 200 mM NaCl (Figure 1D).

The leaf width (LW) in proso millet under salt stress decreased by

32% at 150mMNaCl and by 36% at 200mMNaCl. However, after the

application Zn we found 4%, 20%, 12% and 12% and 8% increase in

LW at 1mg/L, 2mg/L, 3mg/L, 4 mg/L and 5 mg/L Zn respectively in

comparison to control plants. In salt-treated plants, Zn mitigated the

negative impact of salt on LW, and we observed an increase of 50%,

70.5%, 52.9%, 58.8% and 23.58% in 150 mM NaCl+1 mg/L, 150 mM

NaCl+2mg/L, 150 mM NaCl+3mg/L, 150 mM NaCl +4mg/L and 150

mMNaCl+ 5mg/L treated plants respectively in comparison to plants

treated only with 150 mM NaCl. Similarly, at 200 mM NaCl, low

levels of Zn (1 mg/L and 2mg/L) were found to be effective in rescuing

salt damage. An increasing in LW by 37.5% and 56.25% was found at

1 mg/L and 2mg/L, whereas at 3mg/L no change in LW was observed

when compared to plants treated with 200 mM NaCl. However,

higher concentrations (4 mg/L and 5mg/L) of Zn showed a toxic effect

and decreased LW (Figure 1E).

The leaf area (LA) in proso millet under salt stress decreased by

32.66% at 150mM NaCl and by 43.3% at 200mM NaCl. However,

after the application of Zn we found 4%, 35.9%, 22% and 21% and

15.35% increase in LA at 1mg/L, 2mg/L, 3mg/L, 4 mg/L and 5 mg/L

Zn respectively in comparison to control plants. In salt-treated plants,

Zn mitigated the negative impact of salt on LA, and we observed an
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increase of 54.76%, 96.44.5%, 53.08%, 66.91% and 32.52% in 150 mM

NaCl+1 mg/L, 150 mM NaCl+2mg/L, 150 mM NaCl+3mg/L, 150

mM NaCl+4mg/L and 150 mM NaCl+5mg/L treated plants

respectively in comparison to plants treated only with 150 mM

NaCl. Similarly, at 200 mM NaCl, low levels of Zn (1 mg/L, 2mg/L

and 3mg/L) were found to be effective in rescuing salt damage. An

increase in LA by 42.8%, 74.47% and 4.77% was found at 200 mM

NaCl+1 mg/L, 200 mM NaCl + 2mg/L and 200 mM NaCl +3mg/L

when compared to plants treated with 200 mM NaCl. However,

higher concentrations (4 mg/L and 5mg/L) of Zn showed a toxic effect

by decreasing LA (Figure 1F).

Tolerance index (TI) improved in the plants treated with Zn in

comparison to NaCl treatments only. The TI in shoots decreased by

4.91% at 150 mM NaCl and 19.12% at 200 mM NaCl concerning

control. However, after the application of Zn we found 8.19% and

37.7% increase in TI at 1mg/L and 2mg/L, respectively in comparison

to control plants. It was also seen that higher doses of Zn proved toxic

as they decreased TI. In salt-treated plants, Zn mitigated the negative

impact of NaCl, and we observed an increase of 8.04% and 24.7% in

150 mM NaCl +1 mg/L and 150 mM NaCl + 2mg/L respectively in

comparison to plants treated only with 150 mM NaCl. The higher

doses (150 mM NaCl+3mg/L, 150 mM NaCl+4mg/L and 150 mM

NaCl+5mg/L) proved toxic as they decreased TI by 12%, 0.5% and

14.9% respectively in comparison to plants treated only with 150 mM

NaCl. Similarly, at 200 mM NaCl, low levels of Zn (1 mg/L and 2mg/

L) were found to be effective in rescuing salt damage. An increase in

TI by 22.9% and 5.4% were found at 200 mM NaCl+1 mg/L and 200

mMNaCl+2mg/L when compared to plants treated with 200mM salt.

However, higher concentrations of Zn showed toxic effect by

decreasing TI (Table 1).
TABLE 1 Effect of Zn and collective effect of salt and Zn on root tolerance index (root TI %), shoot tolerance index (shoot TI %) and RWC of proso millet
(PM).

Parameter

Treatments

C 1mg/L Zn 2mg/L Zn 3mg/L

Zn

4mg/L Zn 5mg/L

Zn

150mM NaCl 150mM NaCl

+1mg/L Zn

150mM NaCl

+2mg/L Zn

TI %

(Root)

99.5 ± 0.7 103.9 ± 1.34a 129.7 ±

0.98a
135.63

± 0.90a
97.02 ±

0.041a
95.53 ±

0.8a
74.05 ± 0.64a 104.94 ± 1.33c 111.87 ± 1.23c

TI %

(Shoot)

100 ± 0 107.59 ± 0.84a 136.85 ±

1.2a
94.54 ±

0.76a
99.5 ± 0.70a 89.53 ±

0.7a
94.54 ± 0.76a 101.86 ± 1.22c 118.03 ± 0.76c

RWC (%) 96.4 ± 0.008 96.47 ± 0.097a 96.56364 ±

0.2a
96.63 ±

0.32a
96.6 ± 0.28a 96.6 ±

0.27a
93 ± 0a 93.16 ± 0.23d 93.33 ± 0.46c

Parameter Treatments

150mM NaCl+3mg/L Zn 150mM NaCl

+4mg/L Zn

150mM NaCl

+5mg/L Zn

200mM

NaCl

200

mM

NaCl

+1mg/

L Zn

200 mM

NaCl+2mg/

L Zn

200 mM NaCl+3

mg/L Zn

200 mM NaCl

+4mg/L Zn

200 mM NaCl

+5mg/L Zn

TI %

(Root)

83.90 ± 0.57c 86.13 ± 0.19c 65.83 ± 1.17c 62.37 ±

0.52a,c
93.55

±

0.79c

75.24 ±

0.34c
78.11 ± 0.44c 67.83 ± 1.15c 55.44 ± 0.62c

TI %

(Shoot)

83.05 ± 0.78c 94.01 ± 0.73c 80.43 ± 0.61c 80.43 ±

0.61a,c
98.72

±

1.02c

85.12 ±

0.17c
74.97 ± 1.38c 69.19 ± 0.28c 72.33 ± 0.47c

RWC (%) 92.04 ± 1.35c 91.95 ± 1.47c 94.4 ± 3c 91.3 ±

0.003a
91.55

±

0.35f

91.890.83e 90.11 ± 1.6e 90.02 ± 1.8e 89.88 ± 2.00e
Values represent the % change with respect to control. The different letters on bars represent the significane.
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The TI in roots also decreased by 25.49% at 150mM NaCl and

37.25% at 200mM NaCl with respect to control. However, after the

application of Zn we found 4.9%, 30.3% and 36.27% increase in TI of

root at 1mg/L, 2mg/L and 3mg/L Zn, respectively in comparison to

control plants. However higher doses of Zn proved toxic as they

decreased TI. In salt-treated plants, Zn mitigated the negative impact

of NaCl, and we observed an increase of 42.1%, 51.3%, 13.15% and

15.78% in 150 mM NaCl+1 mg/L, 150 mM NaCl+2mg/L, 150 mM

NaCl+3mg/L and 150 mM NaCl+4mg/L respectively in comparison

to plants treated only with 150 mM NaCl. The higher doses (150 mM

NaCl+5mg/L) proved toxic as they decreased TI by 10.52%

respectively in comparison to plants treated only with 150 mM

NaCl. An increasing in TI by 50%, 20.31%, 25% and 9.37 were

found at 200 mM NaCl+1 mg/L, 200 mM NaCl+2mg/L, 200 mM

NaCl +3mg/L and 200 mM NaCl+4mg/L when compared to plants

treated with 200 mM NaCl. However, higher concentrations of Zn

showed a toxic effect by decreasing TI (Table 1).

The fresh weight (FW) of proso millet decreased by 55.15% at

150mM NaCl and 65% at 200 mM NaCl with respect to control.

However, after the application of Zn we found a 16.5%, 23.3% and

14.34% increase in FW at 1mg/L, 2mg/L and 3mg/L Zn, respectively

in comparison to control plants. However higher doses of Zn

(4mg/L and 5mg/L Zn) increased it by 12.1% each. In NaCl treated

plants, Zn mitigated the negative impact of NaCl, and we observed an

increase of 20% and 42% in 150 mM NaCl+1 mg/L and 2mg/L+150

mM NaCl treated plants respectively in comparison to plants treated

only with 150 mM NaCl. An increasing in FW by 51.5%, 65.2% and

12.04% were found at 1 mg/L+200 mM NaCl, 2mg/L+200 mM NaCl

and 3mg/L+200 mM NaCl treated plants in comparison to 200 mM

NaCl. However higher doses prove toxic (Figure 1G).

A similar trend was observed in the case of dry weight (DW) of

proso millet, as DW decreased by 12.5% at 150 mM NaCl and 12.5%

at 200 mM NaCl with respect to control. However, after the

application of Zn, we found a 12.5% increase in DW at 1mg/L and

2mg/L Zn, respectively in comparison to control plants. It was seen

that higher doses of Zn did not affect DW. In salt-treated plants, Zn

mitigated the negative impact of NaCl, and we observed that all doses

applied, increased DW with a maximum increase of 42.85% in 4mg/L

+150 mM NaCl treated plants in comparison to plants treated only

with 150 mM NaCl. All the doses of Zn increased DW and maximum

increasing of 42.8% was found in 1mg/L+200 mM NaCl to 3mg/L

+200 mM NaCl treated plants in comparison to 200mM

salt (Figure 1H).

RWC decreased noticeably as NaCl treatments increased. In

proso millet, the decrease in RWC was 3.52–5.3% at 150–200 mM

with respect to control. However, after the application Zn we found

that all the doses increased RWC with a maximum increase of 0.48%

at 3mg/L Zn with respect to control plants. In NaCl-treated plants, Zn

mitigated the negative impact of salt, and we observed that increased

RWC of 0.35% and 0.711% at 1mg/L+150 mM NaCl and 2mg/L+150

mM NaCl treated plants in comparison to plants treated only with

150 mMNaCl. Higher doses (3mg/L+150 mMNaCl, 4mg/L+150 mM

NaCl, and 5mg/L+150 mM NaCl) showed toxic effect as they reduced

RWC in comparison to plants treated only with 150 mM NaCl. An

increase in RWC by 0.55% and 1.29% at 1 mg/L+200 mM NaCl and

2mg/L+200 mM NaCl was observed in comparison to plants treated

with 200mM salt (Table 1).
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Effect on membrane stability index and
electrolyte leakage

The MSI is an important feature that measures the influence of

stress on cell membrane electrolyte conductivity. In general, a higher

MSI indicates greater tolerance to salt stress. Figure 2D shows that

with the increase in salt stress, MSI reduces considerably. The

decrease in MSI from 61.5% to 65.04% at 150–200 mM NaCl was

observed with respect to control. However, after the application Zn

we found that MSI increased. The MSI after the application Zn were

increased by 1.38% and 0.34% at 1mg/L and 2mg/L, Zn respectively in

comparison to control plants. The higher doses of Zn (3mg/L, 4 mg/L

and 5 mg/L) were toxic as they decreased MSI by 17.99%, 24.4% and

26.9% with respect to control plants. In salt treated plants, Zn

mitigated the negative impact of salt as it increased MSI by

132.57%, 151.58%, 129.56%, 95.47% and 51.6% in 1 mg/L+150 mM

NaCl, 2mg/L+150 mMNaCl, 3mg/L+150 mMNaCl, 4mg/L+150 mM

NaCl and 5mg/L+150 mM NaCl treated plants respectively in

comparison to plants treated only with 150 mM NaCl. Similarly, an

increase in MSI by all the doses of Zn was found when compared to

plants treated with 200mM salt. The maximum increase of 141.98% in

MSI was at 2 mg/L +200NaCl.

EL is dependent on MSI and is inversely proportional to it, so an

increase in salt stress increased the EL. The increase in EL from

271.94% to 287.29% at 150–200 mM NaCl was observed with respect

to control. However, after the application Zn we found that EL

decreased. The EL after the application of Zn were decreased by

6.1% and 1.51% at 1mg/L and 2mg/L, Zn respectively in comparison

to control plants. The higher doses of Zn (3mg/L, 4 mg/L and 5 mg/L)

were toxic as they increased EL by 79.4%, 107.84% and 118.97% with

respect to control plants. In salt-treated plants, Zn mitigated the

negative impact of salt as it decreased EL by 60.6%, 69.16%, 59.12%,

43.56% and 23.54% in 1 mg/L+150 mMNaCl, 2mg/L+150 mMNaCl,

3mg/L+150 mM NaCl, 4mg/L+150 mM NaCl and 5mg/L+150 mM

NaCl treated plants respectively in comparison to plants treated only

with 150 mM NaCl. Similarly, a decrease in EL by all the doses of Zn

was found when compared to plants treated with 200mM salt. The

maximum decrease of 56.6% in EL was at 2 mg/L +200

NaCl (Figure 2C).
Biochemical effects of salinity and zinc on
total chlorophyll, chlorophyll a and
chlorophyll b

The total chlorophyll content (TCC), chlorophyll a (Chl a) and

chlorophyll b (Chl b) concentrations were affected by Zn, NaCl and

Zn with NaCl treatments (Figure 3). The levels of total chlorophyll,

chlorophyll a, chlorophyll b in the proso millet leaves were

significantly reduced with the rising salinity levels. The TCC

decreased at 200 mM NaCl (27.56%), while, a decrease of 26.6%

was observed at 150 mM NaCl in comparison to control (no salt/Zn

treatment). However, the exogenous application of Zn alleviated the

negative effects of salt. We report a 1.9%, 13.7% and 20.0% increase in

TCC at 1 mg/L, 2mg/L and 4mg/L Zn respectively in comparison to

control plants. The higher doses of Zn (5 mg/L) were seen to be toxic

as there was a decrease in TCC by 20.06% in comparison to the
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control. In NaCl-treated plants, Zn mitigated the negative impact of

NaCl on TCC, and we observed an increase of TCC at all Zn

concentrations with maximum increases of 91.93% at 4 mg/L+150

mM NaCl treated plants in comparison to plants treated only with

150 mM NaCl. Similarly, all the doses of Zn increased TCC at 200

mM NaCl and the maximum increase of 37.2% at 4 mg/L was

observed in comparison to plants treated with 200 mM NaCl. The

Chl a decreased at 150mM NaCl (10.4%) and 200mM NaCl (12.55%)

and in comparison to control (no salt/Zn treatment). However, the

exogenous application of Zn alleviated the negative effects of salt. We

report a 13% and 99% increase in Chl a at 1 mg/L and 2 mg/L Zn

respectively in comparison to control plants. The higher doses of Zn

decreased Chl a in comparison to the control. In NaCl-treated plants,

Zn mitigated the negative impact of NaCl on Chl a, and we observed

an increase of Chl a at 1 mg/L, 2mg/L Zn, 3 mg/L and 5mg/L Zn

concentrations with maximum increases of 114.85% at 150 mM NaCl

+2 mg/L treated plants in comparison to plants treated only with 150

mM NaCl. Similarly, all the doses of Zn increased Chl a at 200mM

level and the maximum increase of 35.5% at 2 mg/L was observed in

comparison to plants treated with 200 mMNaCl. The Chl b decreased

at 150mM NaCl (35.36%) and 200mM NaCl (34.9%) in comparison

to control (no salt/Zn treatment). We report a 40.5% increase in Chl b

at 4mg/L Zn respectively in comparison to control plants. In salt-

treated plants, Zn mitigated the negative impact of salt on Chl b, and

we observed an increase of Chl b at all the concentrations with

maximum increases of 163.86% at 4 mg/L+150 mM NaCl treated

plants in comparison to plants treated only with 150 mM NaCl.

Similarly, all the doses of Zn increased Chl b at 200 mM level and the
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maximum increase of 44.42% at 4 mg/L was observed in comparison

to plants treated with 200 mM NaCl (Figure 3C).
Effects of salinity and zinc on carotenoids,
anthocyanin, total phenolic content,
flavonoids and chlorophyll stability index

Like chlorophyll, carotenoid concentration was also reduced

following salt treatments, with a drop of 9.5-21.19%. at 150–200

mM NaCl with reference to control. The supplementation of 3 mg/L

and 4 mg/L Zn increased carotenoids by 60.75% and 1.33%

respectively with reference to control. Furthermore, when Zn was

administered with NaCl treatments, carotenoid concentration

improved with a maximum increase of 136.10% at 4 mg/L Zn with

reference to 150 mM NaCl and an increase of 72.50% at 4 mg/L Zn

with reference to 200 mM NaCl treated plants (Figure 3H).

Anthocyanin content was also reduced following salt treatments,

with a drop of 44.06-42.88% at 150–200 mM NaCl respectively with

reference to control. However, the supplementation of Zn alone

decreased anthocyanin content with reference to control. Moreover,

when Zn was administered with NaCl treatments, anthocyanin

concentration improved by 36.17% only at 4 mg/L Zn with

reference to 150 mM NaCl and an increase of 52.06% at 5 mg/L Zn

with reference to 200 mM NaCl treated plants (Figure 3G).

Total phenolic content (TPC) was also reduced following NaCl

treatments, with a drop of 10.14-14.49% at 150–200 mM NaCl

respectively with reference to control. However, the supplementation
A B

DC

FIGURE 2

Effects of Nacl and Zn on membrane stability and antioxidant potential: (A) FRAP (B) DPPH (C) Electrolyte leakage (D) Membrane stability index.
Thedifferent letters on bars represent the significant differences (a, significant; b, non-significant compared to control; c, significant; d, non-
significantcompared to 150 mM NaCl and e, significant; f, non-significant compared to 200 mM at p ≤ 0.05.
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of Zn increased TPC content by 22.46% and 39.13% at 1 mg/L and 2

mg/L Zn with reference to control. However higher doses of Zn proved

toxic and reduced TPC with reference to control. When Zn was

administered with salt treatments, TPC improved at all concentrations

and the maximum increase of 27.4% at 2 mg/L Zn with reference to 150

mM NaCl and of 51.6% at 2 mg/L Zn with reference to 200 mM NaCl

treated plants (Figure 3E).

Flavonoid content (FC) also reduced following salt treatments,

with a drop of 13.6-25.5% at 150–200 mM NaCl respectively with

reference to control. However, the supplementation of Zn increased

FC content by 2% and 14% at 1 mg/L and 2 mg/L Zn with reference to

control. However higher doses of Zn proved toxic and reduced FC

with reference to control. When Zn was administered with salt

treatments, FC improved at all concentrations and the maximum

increase of 21.26% at 2 mg/L Zn with reference to 150 mM NaCl and
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4.02% at 4 mg/L Zn with reference to 200 mM NaCl treated

plants (Figure 3F).

The chlorophyll stability index (CSI) is a cardinal aspect that

determines the photosynthetic ability of a plant. Figure 3D that with

the increase in salt CSI reduces considerably. The decrease in CSI

from 26.6% to 27.56% at 150–200 mM NaCl was observed with

respect to control. However, after the application Zn we found that

CSI increased. The CSI after the application of Zn were increased by

2% and 13.7% at 1mg/L and 2mg/L Zn respectively in comparison to

control plants. The higher doses of Zn (3mg/L, 4 mg/L and 5 mg/L)

were toxic as they decreased CSI. In salt treated plants, Zn mitigated

the negative impact of salt as it increased CSI by 54.6%, 59.24%,

13.22%, 92% and 11.06% in 1 mg/L+150 mM NaCl, 2mg/L+150 mM

NaCl, 3mg/L+150 mM NaCl, 4mg/L+150 mM NaCl and 5mg/L+150

mM NaCl treated plants respectively in comparison to plants treated
A B
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FIGURE 3

Effects of Nacl and Zn on photosynthetic pigments, chlorophyll stability index and total phenolic contents: (A) Total chlorophyll (B) Chlorophyll a (C)
Chlorophyll b (D) Chlorophyll stability index (E) Total phenolic content (F) Flavonoids (G) Anthocyanin (H) Caroteniods. The different letters on bars
represent the significant differences (a, significant; b, non-significant compared to control; c, significant, d = non-significant compared to 150 mM NaCl
and e, significant; f, non-significant compared to 200 mM at p ≤ 0.05.
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only with 150 mM NaCl. Similarly, an increase in CSI by all the doses

of Zn was found when compared to plants treated with 200 mMNaCl.

The maximum increase of 37.2% in CSI was at 4 mg/L +200 NaCl.
DPPH and FRAP activities in response to
salinity and zinc

In response to salinity, the DPPH antioxidant capacity of leaf

extracts, increased by 2.05% at 150mM NaCl and by 24.76% at 200

mM NaCl with reference to control plants. All the doses of Zn

increased DPPH activity and the maximum increase of 26.5% was

observed at 2 mg/L Zn with reference to control plants. However,

when Zn was administered with salt treatments, it increased DPPH

activity and a maximum increase of 9.65% at 2 mg/L Zn with

reference to 150 mM NaCl. An increasing in DPPH activity by

0.62% was found at 2 mg/L+200 mM NaCl treated plants in

comparison to 200 mM NaCl. However higher doses prove

toxic (Figure 2B).

Similar results were observed for FRAP antioxidant capacity.

FRAP activity increased by 5.4% at 150 mM NaCl and by 2.54% at

200 mM NaCl with reference to control plants. All the doses of Zn

increased FRAP activity and the maximum increase of 6.12% was

observed at 5 mg/L Zn with reference to control plants. However,

when Zn was administered with salt treatments, it increased FRAP

activity and a maximum increase of 3.43% at 2mg/L and 3mg/L Zn

with reference to 150 mM NaCl. All the concentrations of Zn

increased FRAP activity and the maximum increase of 4.21% was

found at 3mg/L+200 mM NaCl treated plants in comparison to 200

mM NaCl (Figure 2A).
Effects of salinity and zinc on proline and
enzymes of proline pathway

The proline content (PC) in proso millet under salt stress

increased by 71.65% at 150 mM NaCl and 141.73% at 200 mM

NaCl. However, the supplementation of Zn further increased PC

content by 1.18% and 5.54% at 1 mg/L and 2 mg/L Zn with reference

to control. However higher doses of Zn proved toxic and reduced PC

with reference to control. When Zn was administered with salt

treatments, PC improved at all concentrations and the maximum

increase of 66.65% at 2 mg/L Zn with reference to 150 mM NaCl and

27.5% at 2 mg/L Zn with reference to 200 mM NaCl treated

plants (Figure 4A).

P5CS activity in proso millet under salt stress increased by 30% at

150 mM NaCl and increased by 66.6% at 200 mM NaCl. The

application of Zn (1 mg/L and 2 mg/L) had a positive impact on

the activity of P5CS as it increased by 4.66% and 26.96%, whereas the

application of higher doses of Zn (3 mg/L, 4 mg/L and 5 mg/L)

decreased it in comparison to control. In salt treated plants, a lower

concentration of Zn further increased the activity of P5CS by 19.344%

and 21% at 150 mM NaCl+1 mg/Land 2mg/L+150 mM NaCl treated

plants respectively in comparison to plants treated only with 150 mM

NaCl. However higher doses of Zn (3 mg/L, 4 mg/L and 5 mg/L)

decreased it in comparison to 150 mM NaCl. An increase in P5CS

activity by 0.64% and 3% were found at 1 mg/L+200 mM NaCl and
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2mg/L+200 mM NaCl treated plants respectively in comparison to

200 mM NaCl. However higher doses prove toxic in comparison to

200 mM NaCl (Figure 4B).

Similar results were observed for P5CR activity. P5CR activity in

under salt stress increased by 29.5% at 150 mM NaCl and 91.3% at

200 mM NaCl. However, the supplementation of Zn increased P5CR

activity by 2.01%, 5.86 and 2.42% at 1 mg/L, 2 mg/L and 3 mg/L Zn

respectively with reference to control. It was seen that higher doses of

Zn proved toxic and reduced P5CR activity with reference to control.

When Zn was administered with salt treatments, P5CR activity

improved at lower concentrations (1 mg/L and 2 mg/L) and the

maximum increase of 21.66% at 2 mg/L Zn with reference to 150 mM

NaCl and 4% at 2 mg/L Zn with reference to 200 mM NaCl treated

plants was observed. However higher doses of Zn proved toxic and

reduced P5CR activity (Figure 4C).

The activity of OAT also increased under salt stress by 27.85% at

150mMNaCl and 32% at 200 mMNaCl. However, all the doses of Zn

increased OAT activity and the maximum increase of 13.65% was

observed at 1 mg/L Zn with reference to control. When Zn was

administered with salt treatments, OAT activity improved at lower

concentrations (1 mg/L and 2 mg/L) and the maximum increase of

21.84% at 2 mg/L Zn with reference to 150 mM NaCl and 11.73% at 1

mg/L Zn with reference to 200 mMNaCl treated plants was observed.

However higher doses of Zn reduced OAT activity (Figure 4D).

The activity of PDH activity decreased under salt stress by 33.5%

at 150 mMNaCl and 58.48% at 200 mMNaCl. However, all the doses

of Zn decreased PDH activity and the maximum decrease of 70.38%

was observed at 1 mg/L Zn with reference to control. When Zn was

administered with salt treatments, PDH activity further decreased at

all concentrations and the maximum decrease of 67.09% at 2 mg/L Zn

with reference to 150 mM NaCl and 62.51% at 5 mg/L Zn with

reference to 200 mMNaCl treated plants was observed. The activity of

P5CDH activity decreased under salt stress by 52.65% at 150mM

NaCl and 60.68% at 200mM NaCl. However, all the doses of Zn

decreased P5CDH activity and the maximum decrease of 61% was

observed at 2 mg/L Zn with reference to control. When Zn was

applied with salt, it decreased the activity of P5CDH by 57.5% and

82.5% at 1 mg/L and 2 mg/L Zn respectively in comparison to 150

mM NaCl. The decrease in P5CDH activity by 33.7% and 56.7% at 1

mg/L and 2mg/L was observed, however application of 3 mg/L, 4 mg/

L and 5 mg/L Zn increased P5CDH when compared to plants treated

with 200 mM NaCl (Figures 4E, F).
Discussion

Salt stress has negative consequences on plant growth and plants

respond to this by accumulating wide range of metabolic products,

principally, amino acids accumulate in plants, which are fundamental

to plant developmental processes. There is an optimistic relationship

between proline amassing and stress in plants which points towards its

role in stress mitigation by osmotic adjustments. The present study

aimed to study the role of Zn in stimulating proline metabolism and

stress-responsive elements. To assess plant salt tolerance in proso

millet, the morphological features were studied. The results of our

study indicate that NaCl (150mM, 200mMNaCl) has a negative impact

on growth and development in proso millet and the maximum damage
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was observed at higher salt levels. The results were in agreement with

previous studies which indicated that salinity decreases growth, SL, RL,

DW, FW, LW, and LA as observed in millets viz., Pennisetum glaucum

L., Eleusine coracana L., Setaria italica L. and Paspalum scrobiculatum

L. (Khushdil et al., 2019; Kothai and Roselin Roobavathi, 2020; Mukami

et al., 2020; Rathinapriya et al., 2020; Mahmoud and Abdelhameed,

2021) and other plants Lactuca sativa L. Tetragonia tetragonoides,

Portulaca oleracea L., Oenanthe javanica and Tetragonia decumbens

(Hnilickova et al., 2019; Kumar et al., 2021; Sogoni et al., 2021). In the

present study exogenous Zn was applied for mitigation of NaCl stress in

Panicum miliaceum L. and it was observed that low doses of Zn have a

beneficial effect on overall plant performances (morphological and

biochemical features) which is in concurrence with earlier reports
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wherein application of Zn mitigated salt stress in Oryza sativa L.,

Vigna radiata L., Pistacia vera L. Ocimum basilicum L. and Pisum

sativum L. (Said-Al Ahl and Mahmoud, 2010; Tavallali et al., 2010;

Nadeem et al., 2020; Al-Zahrani et al., 2021; Elshoky et al., 2021).

Furthermore, there was a dose-dependent decrease in RWC and MSI

due to salt stress and the addition of low doses of Zn significantly

improved these parameters in stressed plants. In previous studies, Zn

also improved RWC and MSI when applied to stress plants like

Solanum melongena L., Zea mays L., Oryza sativa L. and

Abelmoschus esculentus (Tufail et al., 2018; Nadeem et al., 2020; Ali

et al., 2021; Raza et al., 2021; Semida et al., 2021b). An increase in

growth and pigments by foliar application of Zn may be attributed to

the crucial role of zinc on the biological and metabolism activity of
A B

D

E F

C

FIGURE 4

Effects of Nacl and Zn on total proline content and enzymes activities related to proline biosynthetic pathway: (A) Proline content (B) P5CS activity
(C) P5CR activity (D) OAT activity (E) P5CDH activity (F) ProDH activity The different letters on bars represent the significant differences (a. significant;
b. non-significant compared to control; c, significant; d, non-significant compared to 150 mM NaCl and e, significant; f, non-significant compared to 200
mM at p ≤ 0.05.
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plants. Besides, salinity stress can also negatively affect the plants by

reducing the amount of photosynthetic pigments (flavinoids, total

phenolics, chlorophyll, carotenoid, and anthocyanin) which has been

previously observed in many plants including citrus, rice, cucumber,

melon, wheat (Dionisio-Sese and Tobita, 2000; López Climent et al.,

2008) (Pour et al., 2017; Hawrylak et al., 2019) (Sairam and Srivastava,

2002). The decrease in pigments contents under salt stress may be due

tomembrane deterioration, changes in size and number of chloroplasts,

damage and injury to grana and thylakoids. The decrease of these

pigments may be caused by their deterioration due to the ROS

generated during salt stress (Subramanyam et al., 2019). In our study,

the applications of Zn improved the photosynthetic pigments which is

in accordance with several studies on wheat, tomato, rice and maize

(Mathpal et al., 2015; Liu et al., 2016; Faizan et al., 2021; Rai-Kalal and

Jajoo, 2021). Furthermore, it is also eveidenced in other studies that the

foliar application of zinc proved positive by decreasing the injurious

effect of salinity on pigments in okra plants, wheat, mungbean and rice

(Tufail et al., 2018; Abou-Zeid et al., 2021; Al-Zahrani et al., 2021; Zafar

et al., 2021). Similarly, Our findings revealed that applications of Zn

improved the flavionod, anthocyanin, total phenolic content. Similar

results were reported in many plants like Brassica juncea, Hordeum

vulgare and Capsicum annuum in which zinc improved these

parametrs. These pigments are essential for photosynthesis and

protection of cells and the enhanced flavonoids content is directly

related to better photosynthetic efficiency, superoxide radical

scavenging and works as chelators in salt-stressed plants (Ahmad

et al., 2017; Garcıá-López et al., 2018; Ali et al., 2022). The CSI is

cardinal aspect that determines the photosynthetic ability of a plant and

a higher CSI indicates greater tolerance to salt stress. In our study CSI

decreased at 150–200 mM NaCl, as observed previously under various

stresses in rice, mulberry and wheat (Mohan et al., 2000; Kumar et al.,

2003; Babu et al., 2007; Abou-Zeid and Ismail, 2018). The application of

Zn improved the CSI in accordance with previous studies on Senna

occidentalis, Solanum melongena L.and Triticum aestivum L. (Farghali,

1997; Abou-Zeid and Ismail, 2018; Semida et al., 2021a). In response to

salinity, the DPPH antioxidant capacity of leaf extracts, increased at

150mM NaCl and 200 mM NaCl with reference to control plants.

Lower doses of Zn was found to further increased DPPH activity when

given along with salt. Similar results were observed for FRAP

antioxidant capacity as its activity also increased at 150mM NaCl and

200 mM NaCl with reference to control plants. Similarly, in many

plants it was observed that salt increased both DPPH and FRAP activity

in many plants like Carthamus tinctorius L., Gossypium hirsutum L.,

Salsola baryosma, Trianthema triquetra, Zygophyllum simplex, Oryza

sativa L., Nicotiana tubaccum L.,Crocus sativus L. and Triticum

aestivum L. (Xie et al., 2008; Daiponmak et al., 2010; Sharma and

Ramawat, 2014; Golkar and Taghizadeh, 2018) (Mazaheri-Tirani and

Dayani, 2020; Rahaiee et al., 2020; Thakur et al., 2021). For

osmoprotection, plants accumulate compatible solutes such as proline

under salinity stress. Proline promotes osmotic regulation by balancing

cellular structures, removing free radicals and protecting cellular redox

potential. In reaction to stress, proline boosting usually take places in

cytosol as it adds to the osmotic adjustment. A higher accumulation of

proline in plants improves their drought and salinity resistance

(Surekha et al., 2014). The reducing equivalent NADPH causes
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reduction of glutamate to P5C, which is converted to proline. In this

process NADP+ is generated, which is employed as an electron

acceptor, inhibiting singlet oxygen and ROS formation under stress

circumstances. Furthermore, NADP+ generated by proline biosynthesis

may restore depleted NADP+ pools caused by Calvin cycle suppression

under stress (Szabados and Savouré, 2010). In our study, PC increased

under salt stress at both 150mM and 200mM NaCl. The Zn

supplementation at low concentrations further increased PC content

with reference to control. When Zn was administered along with salt

treatments, PC improved at all concentrations which is verified by

similar results obtained in Mangifera indica L, Triticale and Triticum

aestivum L.(Arough et al., 2016; Elsheery et al., 2020; Faizan et al.,

2021). Increased proline results in neutralization of the detrimental

effect of stress (Hossain et al., 2010; Sofy et al., 2020) which may be due

to increased activity of proline biosynthetic genes (P5CS, P5CR and

OAT) and decreased activity of catabolic enzymes (ProDH and

P5CDH). The P5CS enzyme, one of two main enzymes involved in

proline biosynthesis from glutamate precursors, has been shown to play

an important role in proline accumulation. P5CS activity in proso

millet under salt stress increased at 150mM and 200mM NaCl. These

findings corroborate with observations in cactus pear, carrot, rape seed,

sugarcane and mustard (Han and Hwang, 2003; Silva-Ortega et al.,

2008; Guerzoni et al., 2014; Kubala et al., 2015; Chandra et al., 2018).

The application of low doses of Zn (1 mg/L and 2 mg/L) had a positive

impact on the activity of P5CS as it increased further in comparison to

control which is in accordance with various studies (Qiao et al., 2015;

Luo et al., 2019; Sadati et al., 2022). Similarly, P5CR activity increased

under salt stress at 150mM and 200mM NaCl as reported earlier in

green gram, lentil, rice and wheat under salt stress (Misra and Gupta,

2005; Nounjan et al., 2012; Tavakoli et al., 2016), However the

supplementation of Zn at lower doses further increased the P5CR

activity, but the higher doses of Zn proved toxic and reduced P5CR

activity. Besides, when Zn was administered with salt treatments, P5CR

activity improved at lower concentrations (1 mg/L and 2 mg/L) which

are in agreement with studies on exogenous application of different

mitigants (Misra and Gupta, 2005; Farhadi and Ghassemi-Golezani,

2020; Zhang et al., 2020). The activity of OAT also increased under salt

stress at 150mM and 200mM NaCl, besides all the doses of Zn

increased OAT activity as reported previously (Da Rocha et al., 2012;

Gao et al., 2019).When Zn was administered with salt treatments, OAT

activity improved at lower concentrations (1 mg/L and 2 mg/L) as

observed in Arabidopsis thaliana plantlets which showed enhanced

proline content, P5CS mRNA and OAT (Roosens et al., 1998). Over

expression of Arabidopsis dOAT gene in tobacco and rice had amplified

proline content and increased stress tolerance (Roosens et al., 2002).

The role of P5CDH and ProDH in catalyzing the degradation of proline

is well known and in our study as expected the activities of PDH and

P5CDH decreased under salt stress at 150mM and 200mM NaCl.

However, Zn also helped to decreased ProDH and P5CDH activities

and with combined treatment of NaCl and Zn the enzyme activities

decreased further. The decreased activities leads to reduced catabolism

of proline and hence accumulation of proline under stressful conditions

which is in accordance with studies on chinese cabbage, rice, sweet

potato and cucumber (Lopez-Carrion et al., 2008; Liu et al., 2014;

Benitez et al., 2016; Naliwajski and Skłodowska, 2021).
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Conclusions

Salt stress significantly limited growth resulting in lowering of

shoot length, root length, leaf area, leaf width, lead to imbalances in

photosynthetic parameters, chlorophyll, membrane stability and

impacted biochemical parameters related to proline biosynthesis in

proso millet. Based on current research, it is evident that Zn in lower

doses is very effective which provided remedial effect to salt-stressed

proso millet by improving osmotic substances, antioxidant activities,

photosynthetic pigments and salt stress-responsive elements.

Moreover, Zn also protected proso millet through the amelioration

of proline biosynthesis. The activities of enzymes governing the

synthesis of proline were increased whereas the activities of the

enzyme responsible for the breakdown of proline were decreased.

The results proved low doses of zinc were beneficial in alleviating salt

stress in proso millet and an approach like this might boost the

growth and yield of plants grown under saline conditions. However,

there are still many questions to be answered regarding zinc’s ability

to alleviate the adverse effects of salt stress in plants. Thus deeper

studies are required to answer the mechanistic role of Zn in plants and

to understand the system/s governing salt stress tolerance by proline

and its enzymes.
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