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Assessing the spatial distribution of organic matter and total nitrogen in soil is

essential for management and optimum utilization of fertilizers. Therefore, the

present field experiment was conducted to evaluate the impact of different

planting pattern arrangements on the spatial distribution of soil total nitrogen

and organic matter content under a maize/soybean strip relay intercropping

system. The planting was arranged in amanner such that soil sampling could be

done from continuous maize/soybean relay strip intercropping (MS1), maize/

soybean relay strip intercropping in rotation (MS2), traditional maize/soybean

intercropping (MS3), sole maize (M), sole soybean (S), and fallow land (FL) from

2018 to 2020. The results showed significant variations for soil organic matter

and total nitrogen content under different planting pattern arrangements of

maize and soybean in the strip relay intercropping system. Across all systems,

the highest soil organic matter (29.19 g/kg) and total nitrogen (10.19 g/kg) were

recorded in MS2. In contrast, the lowest soil organic matter (1.69 g/kg) and total

nitrogen (0.64 g/kg) were observed in FL. Soil organic matter and total nitrogen

in MS2 increased by 186.45% and 164.06%, respectively, when compared with

FL. Soil organic matter and total nitrogen in MS2 increased by 186.45% and

164.06%, respectively, when compared with FL. Furthermore, under MS2, the

spatial distribution of soil organic matter was higher in both maize and soybean

crop rows as compared with other cropping patterns, whereas the soil total

nitrogen was higher under soybean rows as compared with maize in all other

treatment. However, correlation analysis of the treatments showed variations in

organic matter content. It can be concluded that different planting patterns can

have varying effects on soil organic matter and total nitrogen distribution under

the strip relay intercropping system. Moreover, it is recommended from this
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study that MS2 is a better planting pattern for the strip relay intercropping

system, which can increase the spatial distribution of soil organic matter and

total nitrogen, thereby improving soil fertility, C:N ratio, and crop production.

This study will serve as a foundation towards the scientific usage of chemical

fertilizers in agricultural sector.
KEYWORDS

intercropping, soil organic matter and total nitrogen, spatial distribution, maize
(Zea mays L.), soybean
1 Introduction

Soil organic matter and total nitrogen content are important

indexes to evaluate soil fertility and soil quality. These indexes

are essential sources and sinks of the global carbon cycle and

have become one of the research hotspots in soil and

environmental sciences (Johannes et al., 2020; Roberta et al.,

2020; Wu et al., 2021). Although soil organic matter and total

nitrogen content only account for a small part of the total soil

volume, they play a vital role in balancing soil fertility,

environmental protection, and sustainable agricultural

production (Struijk et al., 2020). China feeds approximately

20% of the world’s population, with less than 9% of the

world’s arable land area (Guo et al., 2010). The world’s

population is increasing rapidly; therefore, it must produce

more from the limited arable land to meet the needs of the

growing population (Altieri, 1999; Fan et al., 2012).

Strengthening the utilization of chemical fertilizers is an

essential step in obtaining bumper crop yields (Hassanein

et al., 2019; Mohamed et al., 2020); nevertheless, the

indiscriminate use of fertilizers has led to increased soil

nutrient imbalance in various regions of the world, notably

many Asian countries (Zhou et al., 2017; Wang et al., 2020).

In economically developed areas of China, a markedly

disproportionate dose of fertilizers is being administered, i.e.,

averaging 339 kg/hm2, which is 1.29 times higher than the

national average of 262 kg/hm2; however, in underdeveloped

areas, the fertilization rate is only 178 kg/hm2 (Cho, 2007; Zhang

and Zhang, 2008; Zhang et al., 2013).

Regarding the limited utilization of fertilizer resources, China

adopted the concept of ecological agriculture in the last century

(Shao et al., 2019; Tourn et al., 2019). In this regard, a lot of

research on soil nutrient status has been carried out, and

intercropping of different crops was one of the priorities.

Intercropping is a cropping pattern in which two or more crops

are cultivated simultaneously on the same piece of farmland

(Godfray et al., 2010), which proves to be economically,

ecologically, and socially profitable (Du et al., 2018; Gitari et al.,

2020). According to statistics, the universal intercropping area is
02
more than 1,109 hm2, which is about 3% of the total cultivated

area (Li et al., 2007; Gautam et al., 2014). Common intercropping

patterns principally comprise intercropping or relay strip

intercropping, and strip intercropping refers to growing two or

more crops in strips within a specific width, allowing alternate

planting of different crops. The main difference between

intercropping and strip intercropping lies in the fact that, in

strip intercropping, different kinds of crops are not grown in a

single row, but two or more rows of the same crop are grown

together; one crop is formed in a “strip” and the interval is

cultivated with another “strip” of crop, having a relatively fixed

line number, line spacing, and strip width. Strip intercropping can

make full use of limited land resources, improve the nutrient

absorption and utilization efficiency of crops, and enhance soil

fertility as well as soil quality (Zhang et al., 2019; Ahmed

et al., 2020).

Under intercropping, soil organic matter and total nitrogen

content, like other soil characteristics, have high spatial

variabilities in various regions. Similarly, in China, there are

significant differences in soil organic matter and nitrogen

contents at different spatial locations at the same time (Liu

et al., 2011; Yao et al., 2019). The changes in soil organic matter

and total nitrogen content are dependent on farming practices

such as fertilization, incorporation of crop residues, crop

rotations, soil utilization, and tillage method (Huang et al.,

2007). The tillage method has a great influence on soil organic

matter and total nitrogen content. It was reported that

intercropping could enhance the distribution and content of

soil organic matter and total nitrogen (Leonard et al., 2012).

Cereal/legume intercropping is widely recognized as a

sustainable agricultural production system, as it can improve

the symbiotic nitrogen fixation of legumes and reduce the input

of chemical fertilizers (Yao et al., 2019). Intercropping of maize

and soybean represents a new cereal/legume pattern, which

farmers are rapidly adopting in Southwest China (Yao et al.,

2019). However, there is no available literature on soil organic

matter and total nitrogen spatial distribution in the maize/

soybean strip relay intercropping system so far. Therefore, the

objectives of the present study were to identify better
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management practices that could optimize land use efficiency; to

understand the mechanism underlying the increased soil fertility

under maize/soybean relay strip intercropping systems,

especially Southwest China and similar areas; and, to quantify

the relationship between soil organic matter, total nitrogen

content, and planting patterns in a maize/soybean strip relay

intercropping system. The results will serve as a foundation for

the scientific usage of chemical fertilizers in the maize/soybean

relay strip intercropping system.
2 Materials and methods

2.1 Experimental location

Field experiments were conducted from 2018 to 2020 at the

research farm of Sichuan Agricultural University in Ya’an city

located in Southwest Sichuan Province of China (101°56′26″E,
28°51′10″N). This region comprised of a hilly and mountainous

topography (Figure 1). The climate was humid subtropical

monsoon, with an average annual temperature of 16.2°C, an

average annual rainfall of 1,250 to 1,750 mm, an average annual

sunshine duration of 1,005 hours, and an average annual frost-

free period of 300 days. The soil type was gley soils according to

FAO-UNESCO 1988 (Rolf and Eddy de, 2011) with pH 6.6,

organic matter 29.8 g·kg−1, total nitrogen 1.6 g·kg−1, total

phosphorus 1.28 g·kg−1, and total potassium 14.28 g·kg−1.
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2.2 Experimental design and treatments

The experimental design was a randomized block design with

three replications (Figure 2). In this experiment, maize variety

Denghai-605 and soybean variety Nandou-12 were used.

Treatments were arranged MS1 = Continuous maize/soybean

relay strip intercropping, MS2 = maize/soybean relay strip

intercropping in rotations, MS3 = Traditional maize/soybean

intercropping (MS3: A conventional planting method in

Southwest of China), M = Sole maize, S = Sole soybean, or FL =

Fallow land. The size of the experimental plots under MS1, MS2,

MS3, M, and S was 6 × 6 (36 m2), whereas the plot size for FL was

2 × 6 (12 m2). The total width of MS1 and MS2 was “160 cm +

40 cm”, i.e., the relay intercropping combination of two crop strips

with a total width of 200 cm, consisting of two rows of maize and

two rows of soybean with a 40-cm row width for maize and

soybean, and 60-cm spacing between the adjacent rows of maize

and soybean. MS3 had a total width of 100 cm with a 1:1 row ratio,

and distance between maize/soybean rows was 50 cm. In sole

planting of maize and soybean, the distance between two rows was

100 cm for maize and 50 cm for soybean. (Note: The difference

between MS2 treatment and MS1 treatment was that the maize belt

and soybean belt were rotated in MS2, i.e., maize belts turned into

soybean and soybean belts turned into maize each year.)

Different basal fertilizers, including urea (CH4N2O, including

46% N), calcium superphosphate [Ca(H2PO4)2H2O, including

14% P2O5], and potassium chloride (KCl, including 52% K2O)
FIGURE 1

Location of the research site aerial photo. Note: MS1, MS2, MS3, M, S, FL represent the Continuous planting of maize/soybean relay strip
intercropping, Planting of maize/soybean relay strip inter-cropping in rotation, Traditional maize/soybean inter-cropping, Sole maize planting,
Sole soybean planting, Fallow land, respectively.
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were used for maize and soybean. Maize was fertilized with pure

nitrogen at 120 kg/ha, P2O5 at 105 kg/ha, and K2O at 135 kg/ha,

and soybean was fertilized with pure nitrogen at 60 kg/ha, P2O5 at

63 kg/ha, and K2O at 52.5 kg/ha in 2018, 2019, and 2020. Maize

crop was sown on 24 March, 23 March, and 29 March, in 2018,
Frontiers in Plant Science 04
2019, and 2020, respectively, and harvested on 25 July, 6 August,

and 8 August in 2018, 2019, and 2020, respectively. Soybean was

sown on 7 June, 8 June, and 13 June, in 2018, 2019, and 2020,

respectively, and harvested on 30 October, 23 October, and 22

October 22 in 2018, 2019, and 2020, respectively.
FIGURE 2

Spatial layout of different planting patterns.
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2.3 Sample collection and measurement

In this experiment, soil samples from all the cropping

patterns were collected after soybean harvesting. For soil

sampling, the fixed-point sampling procedure was adopted to

collect the soil sample from 0 to 20 cm soil layer (Figure 3). To

collect the sample, a soil core was inserted vertically into the

ground. All the collected soil samples were mixed, and

approximately 1 kg of soil was taken for further analysis.

Undisturbed soil samples were placed in a tray and stored in a

clean indoor ventilation area for natural air drying. After drying,

samples were put into a sample bag for the determination of soil

organic matter and total nitrogen. All sample bags were labeled
Frontiers in Plant Science 05
with a number, sampling place, soil type, sampling depth,

sampling date, and time.
2.3.1 Soil organic matter and total nitrogen
content determination

The soil organic matter (SOM) was determined by the

potassium dichromate volumetric method – external heating

method (Geng and Wei, 2020).

SOM = c
ðv0-vÞ � 0:003� 10724� 1:1

m� k
� 100% (1);

where c (mol/L) is the molar concentration of consuming

ferrous sulfate, V0 is the volume (ml) of consuming ferrous
A B

D

E

C

FIGURE 3

Spatial distribution of soil sample sites in different cropping patterns. (A) Maize/soybean relay strip intercropping (continuous and rotation
cropping), (B) traditional maize/soybean intercropping, (C) maize monoculture, (D) soybean monoculture, and (E) fallow land. M, sole maize
planting; S, sole soybean planting; ●, for the soil sample collection point.
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sulfate in a blank test, V is the volume (ml) of consuming ferrous

sulfate in the titrating soil sample, 0.003 is ¼ mmol/g of carbon,

10,724 is the conversion coefficient from soil organic carbon to

organic matter, 1.1 is a correction factor (the oxidation rate in

this method is 90%), m (g) is the air dry soil quality, and k is the

coefficient of drying soil to drying soil.

The total nitrogen content (TN) was determined by the

Kjeldahl method (Wu, 2004).

TN =
ðv0-vÞ � c� 14� 10-3

w
� 103 (2);

Where V0 is the volume (ml) of standard acid used for

titrating the sample, V is the volume (ml) of normal acid used for

titrating the blank, C is the normal acid concentration (mol/L),

14 is the molar mass of N (g/mol), and W is the sample

weight (g).

2.3.2 Soil organic matter and total nitrogen
reference standards

At present, there are many soil nutrient grading standards in

China (Geng and Wei, 2020). The results of this experiment

mainly refer to the national soil nutrient classification standard

(Table 1). The Chinese soil nutrient classification standard

divides soil organic matter and soil nutrient into six grades

from 1 to 6. Soil organic matter and soil nutrient are the highest

in grade 1 and the lowest in grade 6 (Wu, 2004). Furthermore,

the spatial variation of soil organic matter and nutrient

availability in China is relatively high. For example, soil

organic matter in China can be as high as 200 g/kg or more,

and as low as 5 g/kg or less, and the total nitrogen content can be

as high as 35 g/kg and as low as 5 g/kg (Zhang et al., 2008).

Therefore, further refinement of the soil organic matter and soil

nutrient grade is needed to compare differences in soil nutrient

grading in China (Yan et al., 2017).

The classification of coefficient of variation: coefficient of

variation is considered weak under <10%, moderate between

10% and 100%, and strong when it is >100% (Duan, 2000; Zhang

et al., 2003).
Frontiers in Plant Science 06
2.4 Data statistics and analysis

All theexperimentaldataweremanaged inMicrosoftExcel 2016,

and the figures were constructed with Origin Pro 2018. Differences

between intercropping systems and soil organic matter and total

nitrogen content were identified by analyzing variance (ANOVA)

using SPSS 22.0 software (SPSS Inc., Chicago, IL, USA). The mean

values were compared with a least significant difference (LSD) test at

the p<0.01 significance level. Linear regression techniqueswere used

to describe the relationships between soil organic matter and total

nitrogen content. The effectiveness of cropping patterns was

determined by regression analysis with p-values (Tukey’s test) and

the coefficient of determination (R2).
3 Results

3.1 Soil organic matter content and
spatial distribution

The different planting patterns showed significant (p < 0.01)

variations for soil organic matter content in bothmaize and soybean

at all sampling times across the 3 years of this experiment (Table 2

andFigure 4).During the 3 years, the average SOMof each treatment

order was MS2 > MS1 > MS3 > S > M > FL (Table 2 and Figure 4).

Furthermore, it was observed that the maximum soil organic matter

(39.72 g kg−1) was recorded in MS2, whereas the minimum soil

organic matter (8.71 g kg−1) was recorded in FL per system. The soil

organic matter content in MS2 increased by 186.45% when

compared with FL (Table 2 and Figure 4). At the same time, the

spatial distribution of organicmatter inmaize and soybean rowswas

most dense in MS2. The obtained results were also graded by the

coefficient of variation,wherewe found thatMS1,MS2,MS3,M, and

S demonstrated moderate variations when compared, while FL

showed weak variation, and overall MS2 showed the most

significant variations (Table 2).
3.2 Total soil nitrogen content and
spatial distribution

Across all treatments, MS2 exhibited the most significant

variation in total soil nitrogen content (Table 3 and Figure 5). On

average, theorderofdifferent treatmentswasMS2>MS1>MS3>S>

M> FL, which revealed that theminimum soil nitrogen content was

under FL (0.64g/kg), and the maximum soil nitrogen content was

recorded under MS2 (1.69 g/kg) (Table 3 and Figure 5). However,

under MS2, the spatial distribution of soil total nitrogen in soybean

rows was higher when compared with maize rows (Table 3 and

Figure 5). The results showed that the maximum total soil nitrogen

content (2.47 g kg−1) was recorded inMS2, while theminimum total

soil nitrogen content (0.55 g kg−1) was recorded in S or FL, and total

nitrogen inMS2 increased by 164.06% in contrast with FL (Table 3).
TABLE 1 National soil nutrient standard grade.

Standard gradea Nutrient elements

Organic matter
(g/kg)

Total nitrogen
(g/kg)

1 >40.0 >2.00

2 30.1–40.0 1.51–2.00

3 20.1–30.0 1.01–1.50

4 10.1–20.0 0.76–1.00

5 6.0–10.0 0.50–0.75

6 <6.0 <0.50
a1, 2, 3, 4, 5, and 6 represent the first standard, second standard, third standard, fourth
standard, fifth standard, sixth standard, respectively.
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Under all planting patterns, the spatial distribution of soil total

nitrogen content in maize rows was lower as compared with

soybean rows; however, the average maximum and minimum total

nitrogen and organic matter content was almost identical under

various planting patterns. Therefore, it could be speculated that

organic matter and total nitrogen had a strong correlation with each

other. The results showed that the MS2 planting pattern was most

beneficial for soil total nitrogen accumulation.

The correlation analysis revealed that there was moderate

variation in soil total nitrogen under MS1, MS2, MS3, M, and S,

and weak variation in FL; the most significant variation was

observed under MS2 (R2 = 0.96).
3.3 Correlation between soil organic
matter and total nitrogen

Based on the results of soil organic matter and total nitrogen

content in the six treated soils, the correlation equation and

coefficient of determination between them could be obtained

from Table 4 and Figure 6. The relationship between soil organic

matter (x) and total nitrogen (y) was unevenly linear. Six linear

regression equations for soil organic matter and total nitrogen, and

their coefficient of determinations were obtained (Table 4). The

regression equation of the entire test area was y = 0.06x − 0.08, and

the coefficient of determination was R2 = 0.87 (Table 4).
Frontiers in Plant Science 07
Furthermore, the correlation between all treatments (planting

patterns) for soil organic matter and total nitrogen was

significant, where MS1, MS2, MS3, and FL were closer to 1. At

the same time, the soil C:N ratio was significantly different among

all treatments (p < 0.01), and the highest C:N ratio (25.22) was

recorded in MS2 (Table 4). These results indicated that the

correlation between soil organic matter and total nitrogen in

different planting methods was significant and positively correlated.
4 Discussion

4.1 Variations in soil organic
matter content

The soil organic matter content is mainly influenced by land-

use management (Demir and Ersoy, 2020; Mishra et al., 2020; Zhao

et al., 2020), especially themanagement of different vegetation in the

soil (Welegedara et al., 2020). The percentage of organic matter in

shrub soil, grassland, and forest soil, within 1 m depth, was 33%,

42%, and 50%, respectively, which were significantly correlated with

the type of vegetation (Eghdami et al., 2019; Yeasmin et al., 2020).

Similarly, in this study, there were differences in soil organic matter

content between maize and soybean planting patterns. During the 3

years, the average SOM of each treatment order was MS2 > MS1 >

MS3 > S >M > FL (Table 2 and Figure 4). This phenomenon might
FIGURE 4

Spatial distribution of soil organic matter under different planting patterns of maize and soybean. MS1, MS2, MS3, M, S, and FL represent the
continuous planting of maize/soybean relay strip intercropping, planting of maize/soybean relay strip intercropping in rotation, traditional maize/
soybean intercropping, sole maize planting, sole soybean planting, and fallow land, respectively.
TABLE 2 Soil organic matter content under different planting patterns of maize and soybean in 2018–2020.

Treatmenta Number of samples Content range (g/kg) Average (g/kg) Coefficient of variation (%)

MS1 45 15.33–36.54 27.02 ± 7.98abb 29.53

MS2 45 15.51–39.72 29.19 ± 9.36a 32.06

MS3 27 14.79–34.19 25.07 ± 5.74abc 22.91

M 18 17.68–24.65 20.42 ± 2.45c 12.02

S 18 14.79–27.89 22.07 ± 3.95bc 17.90

FL 9 8.71–11.46 10.19 ± 0.71d 6.97
aMS1, MS2, MS3, M, S, and FL represent the continuous planting of maize/soybean relay strip intercropping, planting of maize/soybean relay strip intercropping in rotation, traditional
maize/soybean intercropping, sole maize planting, sole soybean planting, and fallow land, respectively.
bValues followed by a different letter within the same column are significantly different at p < 0.01.
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be associated with different planting patterns and crop residues of

maize and soybean in the field, thereby contributing toward

enhanced soil organic matter accumulation in MS2. Different

land-use patterns lead to different soil cultivation, soil physical or

chemical properties, and soil fertility. These variations directly affect

the decomposition and transformation of soil organic matter in

different soils (Lai et al., 2016; Segura et al., 2019; Liu et al., 2020).

Furthermore, increased organic matter contents under different

treatments in this study indicated that soil organic matter played a

vital role in soil fertility under the strip relay intercropping system.

Our results are consistent with the study of King et al. (2020).
4.2 Variations in soil total
nitrogen content

The soil total nitrogen content reflects the soil potential capacity

to provide nutrients for vegetation, which, together with soil organic

matter and its dynamic balance, constitutes an essential index of soil

fertility (Marco et al., 2011; Alhaj et al., 2019; Dai et al., 2020; Li

et al., 2020; Meng, 2020). Nitrogen is considered to be blood for

crop growth and development because its absorption and utilization

can promote crop growth and increase the crop yield (Hua et al.,

2020). Nitrogen competition is significantly higher among crop

species; however, in the cereal/legumes intercropping system, it was

decreased due to the nitrogen fixation mechanism of legumes,
Frontiers in Plant Science 08
contributing toward increased nitrogen availability for absorption

and utilization by cereals. Ta and Faris (1987) found that clover

increased nitrogen absorption and utilization by 25% in cereals

under intercropping. Broadbent (1981) reported that white clover

improved the nitrogen absorption and utilization by 80% in

ryegrass under intercropping. Du et al. (2019) and Raza et al.

(2019) found that in the maize and soybean intercropping system,

the nitrogen uptake of maize was increased by 17%–21%, which was

mainly attributed to soybean nitrogen fixation. Similarly, this study

demonstrated that soil total nitrogen content in maize/soybean strip

intercropping was higher than sole cropping (Table 3 and Figure 5).

This might be related to soybean nitrogen fixation and increased

total organic matter. It was found that soil nitrogen content and

spatial distribution were significantly different between

intercropping and monoculture, p < 0.01. The content and spatial

distribution of soil nitrogen in the contour maps were reflected by

the grading color, and the difference was obvious. Soil total nitrogen

was the highest (2.47 g·kg−1) in MS2 treatment and the lowest (0.55

g·kg−1) in S and FL treatment (Table 3 and Figure 5). Furthermore,

this study showed that when legumes and non-legumes were

intercropped, legumes’ nitrogen fixation could benefit the

nitrogen absorption and uptake in non-legumes, thus promoting

the growth and development of non-leguminous crops. However,

the amount of nitrogen fixation depends on the different legume

and non-legume intercropping combinations and different crop

varieties, planting patterns, and growth habits of various crops
FIGURE 5

Spatial distribution of soil total nitrogen content under different planting patterns of maize and soybean. MS1, MS2, MS3, M, S, and FL represent
the continuous planting of maize/soybean relay strip intercropping, planting of maize/soybean relay strip intercropping in rotation, traditional
maize/soybean intercropping, sole maize planting, sole soybean planting, and fallow land, respectively.
TABLE 3 Total nitrogen content under different planting arrangements of maize and soybean in 2018–2020.

Treatmenta Number of samples Content range (g/kg) Average (g/kg) Coefficient of variation (%)

MS1 45 0.96–2.46 1.48 ± 0.37ab 25.05

MS2 45 0.87–2.47 1.69 ± 0.53a 31.35

MS3 27 0.69–1.81 1.23 ± 0.29b 23.73

M 18 0.62–0.99 0.78 ± 0.13cd 16.07

S 18 0.55–1.21 0.98 ± 0.17c 17.21

FL 9 0.55–0.71 0.64 ± 0.04e 6.35
aMS1, MS2, MS3, M, S, and FL represent the continuous planting of maize/soybean relay strip intercropping, planting of maize/soybean relay strip intercropping in rotation, traditional
maize/soybean intercropping, sole maize planting, sole soybean planting, and fallow land, respectively.
bValues followed by a different letter within the same column are significantly different at p < 0.01.
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(Gabriela et al., 2021). The biological nitrogen fixation of legumes

can not only improve the nitrogen absorption and utilization of

non-legumes, but can also promote growth and development,

reduce crop dependence on non-renewable resources, and

increase land equivalent ratio and land interest rate (Zhou et al.,

2017; Chen et al., 2019). Similarly, this study demonstrated that

maize/soybean relay strip intercropping has a positive effect on soil

total nitrogen contents.
4.3 Relationship between soil organic
matter and soil total nitrogen content

The soil C:N ratio not only plays a vital role in soil organic

matter decomposition but is also an essential factor of soil quality

evaluation, as it determines the organic matter effectiveness that
Frontiers in Plant Science 09
improves the soil structure, enhances the carbon fixation, and

increases the soil potential as a “source/sink” of atmospheric CO2

and nitrogen regulation (Bewket and Stroosnijder, 2003; Hagedorn

et al., 2010). It is generally believed that during the initial stage of

mineralization, organic matter having a C:N ratio > 30 cannot

produce nitrogen. If organic matter has a C:N ratio < 15 at the

beginning of mineralization, the amount of adequate nitrogen will

exceed microorganism assimilation in the soil, thereby making it

possible for plants to obtain adequate nitrogen from organic matter

mineralization (Sun et al., 2020; Veronika et al., 2020).

Our results showed that the variation coefficient of organic

matter and total nitrogen content in each treatment was moderate

(Table 4). This might be due to the difference between organic

matter and total nitrogen content. Furthermore, this could also be

influenced by (1) the contrast of parent material and soil texture at

the experimental site; (2) the particularity of remote terrain in the
TABLE 4 Soil organic matter and total nitrogen correlation.

Treatmenta Sample number Linear regression Coefficient of determination (R2) Significanceb C:N

Whole test area 162 y = 0.06x−0.08 0.87 p < 0.01 19.21 ± 0.95c

MS1 45 y = 0.05x+0.25 0.96 p < 0.01 21.75 ± 1.07b

MS2 45 y = 0.06x+0.07 0.96 p < 0.01 25.22 ± 0.88a

MS3 27 y = 0.05x−0.01 0.94 p < 0.01 19.48 ± 1.00c

M 18 y = 0.04x−0.01 0.58 p < 0.01 17.30 ± 1.04d

S 18 y = 0.03x+0.25 0.60 p < 0.01 16.19 ± 0.87d

FL 9 y = 0.06x+0.07 0.97 p < 0.01 15.30 ± 0.94d
fro
aWhole test area, MS1, MS2, MS3, M, S, and FL represent the various experiment treatments (MS1+MS2+MS3+M+S+ FL), continuous planting of maize/soybean relay strip intercropping,
planting of maize/soybean relay strip intercropping in rotation, traditional maize/soybean intercropping, sole maize planting, sole soybean planting, and fallow land, respectively.
bContent followed by a different letter within the same column are significantly different at p < 0.01.
FIGURE 6

Soil organic matter (x) and soil total nitrogen (y) relationship.
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field; (3) impact of crop vegetation; and (4) climatic factors.

Meanwhile, the contents of organic matter and total nitrogen in

soil samples were compared, and it was found that the spatial

difference of organic matter and total nitrogen was significant, and

there was a significant positive correlation between organic matter

and total nitrogen (Table 4). The results of the present study will

serve as a guideline for rational fertilization in agricultural

production, thereby contributing toward appropriate fertilizer

usage, improved utilization rate of nutrients, and enhanced crop

yield from low and medium soils.
5 Conclusions

Taken together, the findings of the current study elucidated

the effect of different planting pattern arrangements on soil

organic matter and soil nitrogen content under the maize/

soybean strip relay intercropping system. It was found that

different planting patterns of maize and soybean strip relay

intercropping significantly affected soil organic matter and total

nitrogen content in soil. The findings revealed that the highest soil

organic matter and total nitrogen content was recorded in MS2,

while the lowest soil organic matter and total nitrogen content was

recorded in FL. Furthermore, under MS2, the spatial distribution

of soil organic matter was higher in both maize and soybean crop

rows as compared with other cropping patterns, whereas the soil

total nitrogen was higher in soybean rows as compared with maize

in all other treatments. However, correlation analysis of the

treatments showed variations in organic matter content.

Moreover, it is recommended that MS2 is a better planting

pattern for the strip relay intercropping system, which can

increase the spatial distribution of soil organic matter and total

nitrogen, thereby improving the soil fertility, C:N ratio, and

crop production.
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