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Cotton is a major fiber crop grown worldwide. Nitrogen (N) is an essential

nutrient for cotton production and supports efficient crop production.

It is a crucial nutrient that is required more than any other. Nitrogen

management is a daunting task for plants; thus, various strategies, individually

and collectively, have been adopted to improve its efficacy. The negative

environmental impacts of excessive N application on cotton production have

become harmful to consumers and growers. The 4R’s of nutrient stewardship

(right product, right rate, right time, and right place) is a newly developed

agronomic practice that provides a solid foundation for achieving nitrogen use

efficiency (NUE) in cotton production. Cropping systems are equally crucial

for increasing production, profitability, environmental growth protection, and

sustainability. This concept incorporates the right fertilizer source at the

right rate, time, and place. In addition to agronomic practices, molecular

approaches are equally important for improving cotton NUE. This could be

achieved by increasing the efficacy of metabolic pathways at the cellular,

organ, and structural levels and NUE-regulating enzymes and genes. This is

a potential method to improve the role of N transporters in plants, resulting

in better utilization and remobilization of N in cotton plants. Therefore, we

suggest effective methods for accelerating NUE in cotton. This review aims to
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provide a detailed overview of agronomic and molecular approaches for

improving NUE in cotton production, which benefits both the environment

and growers.

KEYWORDS

nitrogen use efficiency, cotton, nitrogen metabolism, molecular approaches,
physiological approach

Introduction

Source of nitrogen and plant soil
interaction

Nitrogen (N) is the key component of plant chlorophyll,
nucleic acids, and amino acids, and, compared to other
elements, plants acquire N in large amounts from the soil
(Shafreen et al., 2021). It is important for plant growth, leaf area,
biomass, and crop yield (Kumar et al., 2020). Approximately
78% of the atmospheric N is dinitrogen gas (N2), which
is converted into various forms of NH4

+ and NO3
− by

microorganisms. Undisturbed soil organic matter comprises
almost 95% N (Walworth, 2013). From an agricultural
perspective, certain N sources are major sources of available N
in crop production. These are natural and organic N sources,
some of which have been artificially developed. The conversion
of N from one form to another greatly influences nitrogen use
efficiency (NUE). At earlier stages, nitrate (NO3

−) is essential,
but it is not commonly used as a fertilizer alone, and the
other forms are released into the atmosphere through the
denitrification process. Although urea is the most widely used
N fertilizer source, it is rapidly nitrified after its conversion to
ammonium (NH4

+) (Robinson et al., 2011). The application of
urea to the soil results in NO3

− and NH4
+. However, urea’s

uptake process and the plants’ metabolic changes are not yet
clear (Witte, 2011). Soil N availability in the soil is an indicator to
examine the N efficiency in crop fields (Cui et al., 2008). Various
field studies of N-labeled fertilizers have shown that N uptake is
primarily obtained from the soil (Franco et al., 2011).

Mineralization and bacterial N fixation are natural sources
of available N in the soil (Iqbal et al., 2020c; Gu et al., 2022).
NH4

+ and NO3
− are the available forms of N for plant uptake.

Nitrite (NO2
−), nitrous oxide (NO), and atmospheric N are not

readily available to plants unless they are converted into NH4
+

and NO3
− (Ma et al., 2015; Su et al., 2022). Microorganisms

also degrade N, which is naturally available in the soil. When
plants die, they decompose and deposit N into the soil. Legume
crops contribute more N than other field crops (Hocking and
Reynolds, 2012). Legumes are grown during crop rotation,
help fix atmospheric N, and deposit it into the uppermost
layers of the soil. Animal bones and bone meals are also an

important source of higher levels of N than chemical ones
(Sharma and Bali, 2017). A summary of N sources and their
conversion, availability to plants, final harvested product, and
losses within and outside of the soil are presented in Figure 1.

One N and three hydrogens (H) form anhydrous ammonia
(NH3), an easily available and relatively cheap N fertilizer.
However, it is explosive, caustic, and toxic. The use of this
fertilizer is strictly regulated in the United States [Occupational
Safety and Health Administration (OSHA), 2017]. Urea is
another source of N and is widely used in crop production. It
is readily available in a granular form and is better to use in
windy conditions. It is degraded into NH4

+ and carbon dioxide
(CO2). It is an excellent source of N with appropriate attention
for better crop production. Ammonium nitrate (NH4NO3) is
chemically composed of NO3

− and NH4
+ cations. N uptake

by plants is in the form of NH4
+ and NO3

−, and NH4NO3 is
simply a mixture of both and is applied as a source of N. It has
a low pH and is better for us in low wind conditions because of
its structure (Kaiwen et al., 2015). One of the first N fertilizers
produced 150 years ago was ammonium sulfate [(NH4)2SO4],
which contains 21% N and 24% sulfur (S), which is most easiest
to manage. (NH4)2SO4 is an important source of N and S, which
are crucial for various plant functions, such as protein synthesis.
(NH4)2SO4 is a well-known N fertilizer that lowers soil pH and
enhances soil S. It is an excellent source of S in soil for better
crop production (Khan et al., 2017b).

What is nitrogen use efficiency and the
common factors contributing to low
nitrogen use efficiency?

Nitrogen, a structural component of proteins and DNA, is
essential for life and considered the most important crop-yield
limiting nutrient (Mueller et al., 2012). Therefore, most farmers
rely on N fertilizers to increase crop yields and economic
returns (McLellan et al., 2018). However, N is prone to different
types of losses, including ammonia (NH3) volatilization, nitrate
(NO3

−) leaching, denitrification losses as dinitrogen (N2) gas
emissions, and nitrous oxide (N2O) emissions, which lead
to environmental pollution and contribute to climate change
(Fowler et al., 2013). Recent studies have reported that the
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FIGURE 1

Summary of nitrogen sources and their conversion, availability to plant along with final harvested product and losses within/outside of soil. The
figure created with Biorender (https://biorender.com/). BNF, biological nitrogen fixation.

agricultural sector is a major source of N loss to the environment
(Ahmar and Gruszka, 2022). The rapid increase in population
and ever-increasing food demand will further increase the
demand for N fertilizers in the future, which may consequently
increase N losses unless significant improvements are made
in the whole food production-consumption chain, and more
appropriate N management strategies are developed (Chen et al.,
2020a).

Nitrogen uptake, translocation, assimilation, and
remobilization are complex processes referred to as nitrogen
use efficiency (NUE). It also shows the extent of cotton lint
and seed yield in response to N application (Shafreen et al.,
2021). Cotton NUE results from N uptake efficiency (UpE) and
utilization efficiency (UtE). Cotton NUE was represented by lint
yield recorded after N application. UpE is defined as the total
N uptake by plants recorded after N application, and UtE is the
cotton yield ratio divided by total plant N. Under N deficiency,
plant N UpE is more important than UtE (Witcombe et al.,
2008). In addition, N is a mobile nutrient in the soil and is more
prone to leaching than other soil nutrients (Shimono et al.,
2009; Tariq et al., 2019). Leaching, runoff, and volatilization
result in more N loss, and crop plants take up less N (Cavigelli
et al., 2012). Therefore, sustainable crop production requires an
improvement in NUE by reducing N loss (Khan et al., 2017a).

Improvement in NUE is associated with several agronomic
practices, such as improved irrigation methods, improved
fertilizer application considering the 4Rs, and using hybrids
with greater potential yields and lower N inputs (Venterea
et al., 2012). Efficient management, that is, N source, rate, time,
and placement, increases NUE in cropping systems (Snyder
et al., 2014). N inhibitors, split application of N, irrigation
time, and correct placement method of fertilizer that considers
soil and crop type improve overall NUE (Afridi et al., 2014;

Halvorson et al., 2014). Recently, Tang et al. (2012a) reported
an increase in N accumulation during the boll-setting stage
with late N application (Tang et al., 2012a). Moreover, NUE
is considered an important factor for fertilizer inputs to any
agricultural system, as it maintains the N balance between
inputs and outputs without any economic or environmental
loss (McAllister et al., 2012). Application of N fertilizer at the
first bloom stage is another way to improve NUE because
cotton plants utilize N more efficiently for reproduction
(Ali, 2015).

Factors contributing to low
nitrogen use efficiency

Nitrogen losses

Half of the applied N is usually lost through NO3
−

leaching, denitrification, or ammonia volatilization (Anthony
and Armytage, 2008). Being negatively charged and highly
soluble, NO3

− is prone to leaching when the soil becomes
saturated after heavy rains or flood irrigation. Anoxic conditions
develop and denitrifying microorganisms start using nitrate
as an alternate e−acceptor, reducing NO3

− N to N2 (Shabbir
et al., 2022). Weather conditions, irrigation patterns, and
fertilizers also influence leaching (Follett, 2001; Riley et al.,
2001). Bock and Kissel (1988) stated that alkaline soils resulting
from NH3 volatilization lead to greater N loss because they
have higher NH4

+ concentrations on the soil surface. Various
environmental factors, primarily higher temperature and wind
speed, increase the risk of NH3 volatilization, which is a
chemical process (Bock and Kissel, 1988). Soil characteristics,
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pH, cation exchange capacity (CEC), and moisture content also
affect the volatilization rate (Jones, 2006).

Temperature and soil characteristics

The nitrification process increases with an increase in soil
temperature, resulting in N loss and consequently influencing
NUE (Engel et al., 2011). The availability and loss of N in the
soil depend on the soil type (Chen et al., 2010). The higher the
CEC, the higher the soil buffering capacity and the rate of NH4

+

absorption will be greater than the loss rate. Soils with lower
anion capacity lose negatively charged molecules, such as NO3

−

(Ferguson et al., 1984). Soil pH affects the activity of nitrifying
and denitrifying bacteria (Ali et al., 2022a,c). The optimum
pH for efficient N cycling is approximately 7 (Cameron et al.,
2013). NUE is affected by the soil moisture content, which
affects NO3

− leaching and the nitrification or denitrification
rates (Darwish et al., 2006). NUE is positively correlated with
the efficiency of irrigation systems (Bronson, 2008).

Cropping systems, and C-N balance

The selection of cropping systems is crucial for balancing
N input and output by improving N uptake and lowering the
risk of N loss from the soil (Herridge et al., 2008). Several
cropping systems tend to have a steady state of organic and
inorganic soil N pools, with a slight change. Fast alteration in N
pools in new soil management systems can influence the C-N
balance as the soil organic matter remains constant. Overall,
NUE in these cropping systems should incorporate changes in
organic and inorganic soil N pools and N recovery efficiency
(Lawlor, 2002). The C-N balance is an important factor unless
adequate C is present, which improves the ability of plants to
take up and utilize more N. Nitrogen levels can significantly
affect C fixation and can be compromised (Castro et al., 1994).
Photosynthetic rate and C level regulate N mineralization,
uptake, assimilation, and immobilization. Hence, higher NUE
can be attained through a higher photosynthetic rate (Lawlor,
2002).

Nitrogen fertilizer type

Several N fertilizers are used without considering the
soil type, crop genetics, and fertilizer chemistry, whereas an
appropriate type of fertilizer reduces the percentage losses of N
(Spicer, 2002). NH3 (82% N) is gradually converted to NO3

−,
with a minimal risk of N loss due to leaching or denitrification,
while urea (46% N) rapidly transformed to NO3

−. Wet or
compact soils have serious denitrification issues, while coarse or
no-till soils have higher leaching or volatilization. (NH4)2SO4

(21% N) applications have less or no volatilization losses.
NH4NO3 (34% N) contains 50% NH4

+ and 50% NO3
− when

applied to the soil, and NH4
+ N rapidly transforms into

NO3
− N. NH4NO3 should not be used in soils subjected to

leaching and denitrification; however, it is more suitable for
surface applications (Nielsen, 2006).

Nitrogen rates

The cotton crop requires almost 250–300 kg N ha−1 but
utilizes only half to attain the maximum yield. Several studies
have suggested that cotton uses N already available in the soil
compared to applied N. On average, the cotton crop recuperates
33% of the applied N (Xu et al., 2012). In contrast, 25% of N
remains in the soil until the maturity stage, with approximately
42% loss from the system (Tang et al., 2012b). Excessive N and N
deficiency negatively affect plant growth and productivity (Liu
et al., 2010; Yasmin et al., 2020). Moreover, extra N gradually
leaches through underground water runoff, contaminating the
groundwater with NO3

−. Optimization of the N application rate
depends on the soil type, climatic conditions, and several other
soil and crop factors for better cotton production (Manghwar
et al., 2021). However, the N rate for maximum economic yield
depends on the N fertilizer cost and the commodity’s market
price (Wajid et al., 2007). Owing to the complex chemical
changes in N cycling that influence N loss, it is difficult to
accurately predict the amount of N required. However, soil N
availability, crop needs, and management practices should be
considered to achieve greater NUE.

Nitrogen timing

The application of N had a significant effect on the overall
NUE. Generally, N is applied during three growth stages: pre-
plant, first bloom, and peak bloom. The pre-planting application
provides sufficient time for N conversion into plant-available
forms. However, it is subject to higher risks of N losses, especially
due to young seedlings’ lower requirement of N. N remains
exposed to heavy rains for more than 60 days and is more
prone to leaching losses (Halkier and Gershenzon, 2006; Ayaz
et al., 2021). Moreover, nitrification and urease inhibitors are
recommended for delaying nitrification and urea hydrolysis
for fall-applied anhydrous ammonia and early applied urea,
respectively (Lasisi et al., 2020).

Approaches for improving
nitrogen use efficiency

Improving NUE and guarding environmental quality are the
two challenges cotton plant nutritionists face. NUE is described
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by several complicated interconnected factors that require close
observation for improvement. Several field studies have revealed
that site-specific N management tends to be more profitable and
is considered sustainable. Several agronomic practices are also
considered major factors influencing NUE.

Spatial variation

Different pedological processes and management practices
lead to spatial variability within the field (Bouma and Finke,
1993). These spatial variations can be horizontal along the
horizons or vertically across depth. Variations in horizons have
made it difficult to determine the boundaries of the soil types,
while vertical variation is an indicator of the layers in soil
classification (Mulla and McBratney, 2002; Kong et al., 2021b).
Several studies have revealed that soil spatial variability is usually
the main factor causing variation in soil properties and crop
yield (Ping et al., 2005) and spatial and temporal variability in
cotton yield (Ward and Cox, 2000). Cotton yield was found to
be spatially correlated with a range of 23–40 m, fiber quality
measurement was found to be spatially correlated with a range
of 15–106 m, and cotton quality measurements were found to be
spatially correlated (Johnson and Bradow, 2000; Bronson et al.,
2003).

Ping et al. (2007) reported that soil NO3
− N highly depends

on spatial variation. The spatial variability of soil properties
suggests that site-specific cotton management is an appropriate
option for improving cotton production with increased
NUE (Ping et al., 2007). Site-specific management originated
in efforts to adjust fertilizers to account for within-field
variations in soil physical properties. Quantifying the spatial
variability of soil properties and crop yield is important
for decision-making in site-specific crop management
because the spatial variability of soil and crop growth is
the critical factor for determining variable-rate inputs of
fertilizers and other chemicals. Improving the synchrony
between demand and supply of N in the crop from all
sources, that is, fertilizer application throughout the growing
season, improves crop NUE (Cassman et al., 2003; Shankar
et al., 2020; Ali et al., 2022b). However, site-specific N
management is only possible following spatial variations.
Recently, precision agriculture has provided an opportunity to
address and measure spatial variability to promote sustainable
agriculture and environmental stewardship (Ping et al., 2007;
Ali Q. et al., 2021).

4R nutrient stewardship

An appropriate amount of N is required by crop plants
for biomass production, and it helps restore soil organic
carbon (C) levels (Lal, 2010). The best nutrient management

practices (BNMPs) for N fertilizers play a key role in reducing
nitrate leaching, lowering the risk of N2O emissions (a
potent greenhouse gas), and improving overall NUE (Good
and Beatty, 2011). Considering the weather and site-specific
conditions when selection a suitable N fertilizer source can
help improve NUE (Bruulsema et al., 2009; Ali M. et al.,
2021). Intensive cropping systems meet the world’s need
for food, fiber, and biofuel, which depend on better and
sustainable crop production with improved NUE (Snyder
et al., 2007; Solangi et al., 2021). Significant improvements
in nutrient management practices may take several years
to implement, as 4R practices are based on incremental
progress and have an interim improvement/site-specific nature.
However, implementing each management practice improves
overall NUE and N2O emission mitigation (Wang et al.,
2001).

Nitrogen loss pathways include NH3 volatilization,
denitrification, leaching, and runoff, leading to the formation
of secondary aerosols, contamination of groundwater, and
eutrophication, while N2O is emitted mainly from nitrification
or denitrification processes (Ding et al., 2020; Manghwar
et al., 2022). Thus, quantifying the different N loss pathways is
important for developing proper N management strategies to
improve overall NUE. One of the greatest factors leading to low
N use efficiency and excess N losses in annual cropping systems
is the mismatched timing of N availability with crop needs
(Ranjan and Yadav, 2019). Recently, a 4R Nutrient Stewardship
(4RNS) initiative has been developed and is being supported
by the global fertilizer industry to achieve the basic economic
(generation of more revenue per unit cropped area/input),
social (production of better-quality food to meet global needs),
and environmental elements (sustenance/improvement in
soil quality and soil fertility, preservation of wildlife habitat,
and biological diversity) of sustainability (Fixen, 2020). 4RNS
is the adaptive management of mineral nutrients that has
evolved through the refinement of interconnected practices
and is site-specific (Bruulsema, 2018). The 4R practices that
most clearly resulted in an improved NUE are presented
in Figure 2.

Right source, rate, time, and place

The key principle for selecting the right source is to
ensure a balanced supply of nutrients, considering soil and
crop plant characteristics, in addition to the rate, time, and
placement method. Furthermore, we consider the synergism
among nutrients and ensure the supply of nutrients in available
forms to plants while selecting the right form. The use of
enhanced N fertilizer sources with nitrification, urease, and
dual inhibitors is a reliable means of reducing N losses and
increasing NUE (Zhang et al., 2021). The greatest opportunities
for increasing NUE were associated with lower rates of N
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FIGURE 2

4Rs nutrient stewardship provides a framework to achieve cropping system goals, such as increased production, increased farmer profitability,
enhanced environmental protection and improved sustainability. The figure created with Biorender (https://biorender.com/).

fertilizer application. The key concept in selecting the correct
rate is to assess the soil and crop needs in the source, time,
and placement method. Rate-specific economics and fertilizer
use efficiency (FUE) also play a key role in determining the
correct rate. Better accounting for soil and residue N sources
and targeting N rates for maximal N-use efficiency resulted in
reduced overall N losses. To choose the appropriate fertilizer
application time, split application of N fertilizers, especially
for long-duration crops during the growing season, effectively
reduces N losses with increased NUE. For example, the best
time to apply N to late-sown cotton is at the appearance of
the first flower. Afterward, cotton plants can utilize N much
more efficiently in later stages (Zhang et al., 2021). Fertilizer
placement can increase the efficiency of N fertilizer use by
reducing NH3 emissions. The crop plant rooting pattern is the
main deciding factor for the placement method, considering
the source, rate, and time. It has also been shown that
placement interacts with the tillage system, moisture, and
temperature content to influence NUE. 4RNS is specifically
built to achieve sustainability goals, including GHGs emission
mitigation, particularly N2O, to reduce nutrient losses and
produce more food per acre (Snyder et al., 2014). There
are also opportunities to improve NUE associated with non-
4R practices. Considering the effects of crop rotation on N
availability, the impact of the tillage system, the use of tile
drainage, and the inclusion of legumes in rotation are all
important for improving NUE and developing 4R practices
(Burton, 2018). Snyder et al. (2014) suggested that growers, crop

advisors, researchers, policymakers, consumers, and the public
could play a role in best management practices.

Metabolic and molecular pathways
of nitrogen use in plants and
specifically in cotton

The study of plant metabolism is a key aim in plant research.
An improved understanding of the metabolic activities will
improve production and our understanding of the influence on
the environment (Weißenborn and Walther, 2017; Yu et al.,
2021). Several basic metabolic pathways, including the shikimic
acid, mevalonate, amino acid, glutamine, proline, aspartate,
carbohydrate, nitrogen (N), and lipid pathways (Rojas et al.,
2014), have been studied in plants. All enzymatic steps are
specific to the metabolic process and act on several families
of associated molecules. As a result of metabolism, metabolic
pathways produce several products accumulated in the same
cell or different compartments or exported where needed. These
molecules are channeled through metabolic pathways called
metabolic flux. Other metabolites that regulate the primary and
secondary metabolic pathways are also produced. Thus, it is
difficult to understand the metabolic pathways (Farré et al.,
2014).

Nitrogen metabolism is a basic and vital process for
optimum plant growth, stress tolerance, and normal
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physiological processes (Zhong et al., 2017; Johnson et al., 2022).
It is also an essential component of nucleic acids, chlorophyll,
photosynthesis, RuBisCO, and some hormones (Liao et al.,
2019). In the second half of the 20th century, nitrogenous
fertilizers significantly augmented crops worldwide. However,
excessive and limited application of nitrogenous fertilizers
causes stagnation of cotton yields and reduces NUE. Moreover,
external cues, such as biotic and abiotic stresses, also reduce
crop yield by decreasing gas exchange and chlorophyll
fluorescence triggered by increased resistance to CO2 diffusion
and metabolic constraints (Zhong et al., 2017; Ihtisham et al.,
2020). Exposure to drought alters plant metabolic activities and
biological functions, which are responsible for restricted growth
(Mahmood et al., 2019).

In cotton, the excessive use of nitrogenous fertilizers, very
high costs, and external cues, such as biotic and abiotic
stresses (Khan et al., 2017a; Sarraf et al., 2022) have become
challenging tasks to improve NUE (Zhang et al., 2018).
Furthermore, half of the applied nitrogenous fertilizers are not
absorbed by plants and are leached, polluting groundwater
reservoirs, which ultimately threatens ecosystems (Cameron
et al., 2013). Iqbal et al. (2020b) studied four cotton genotypes
and found that N concentration and different N-metabolic
enzymes are important regulators of NUE. Additionally, 48
candidate genes involved in nitrogen metabolism were identified
in wheat (Liu et al., 2020). A recent review by Ueda et al.
(2017) emphasized the importance of N-responsive genes
involved in the efficient uptake of N (Ueda et al., 2017).
A recent study identified that the TaPAP, TaUPS, and TaNMR
genes were differentially expressed in wheat with varying N
levels. Expression studies revealed their roles as conserved
N-metabolism genes. TaNMR has been identified as a novel gene
in N metabolism (Li et al., 2019).

Technical/metabolic pathway at
the cellular, organ, and structural
levels

Various studies on N metabolism have been conducted in
wheat, rice, Arabidopsis, and cotton (Zhong et al., 2017; Vidal
et al., 2020; The et al., 2021). N metabolism is a complex
process that includes many physicochemical and biochemical
processes, including N transportation, distribution, use, and
reuse (Xing et al., 2018). Few studies have focused on N
metabolism in cotton. However, even fewer studies describe the
importance of N metabolism related to drought stress (Iqbal
et al., 2020a), variation in N metabolism in response to NUE
(Iqbal et al., 2020b), the effects of salt stress on N metabolism
in roots and stems (Taliercio et al., 2010), the varying ratio
of NH4

+/NO3
− and its impact on N metabolism, higher N

application, and increased N metabolism (Iqbal et al., 2020a)

and recent advancements in N metabolism in cotton (Baslam
et al., 2020).

Nitrogen metabolism (Figure 3) is one of the critical
processes in plants that reduces nitrate and convert it into
amino acids. It has proven to be influential in determining
the NUE in cotton (Iqbal et al., 2020b). During this process,
key enzymes including nitrate reductase (NR), nitrite reductase
(NiR), glutamine synthetase (GS), glutamate dehydrogenase
(GDH), glutamine synthase (GOGAT), asparagine synthetase
(AS), and aspartate aminotransferase (AspAT), are used to make
the N available to the plants in the form of amino acids (Xu and
Zhou, 2004). These enzymes were assessed in citrus to determine
biochemical markers of N status (Singh et al., 2018). The
conversion of input N as a raw material to final product amino
acids is mediated by a series of enzymes. NO3

− is converted
to NH4

+ by NR and NiR in the cytoplasm using one mole of
NADPH or NADH, and NH4

+ to glutamine in plastids using six
moles of the reduced form of ferredoxin (Marcondes and Lemos,
2012; Ohyama et al., 2017). Initially, the enzyme GS, which
consumes only one mole of ATP, assimilates the ammonium ion
(NH4

+) into Gln coupled with Glu. Furthermore, in plastids,
2 moles of ferredoxin are used by GOGAT to convert Gln into
an organic acid, 2 oxoglutarate (2-OG) (Crawford, 2000). As a
result of the transfer of Glu into organic acids, several amino
acids (AA) are produced via transaminases. Previously, NH4

+

was viewed as a factor responsible for the assimilation of Glu by
GDH. However, recent research has validated the GS/GOGAT
cycle as the principal route of ammonium assimilation in plants
(Crawford, 2000; Crawford and Forde, 2002).

Previously, cotton was an orphan crop; many studies
have been conducted to increase the NUE by focusing on
the N concentrations and morphological and biochemical
traits, but not much has been done on N metabolism and
related enzymes, such as NR, NiR, GS, GOGAT, and GDH,
which carry out the whole process from N uptake to use
(Abenavoli et al., 2016; Luo and Zhou, 2019). Furthermore,
N-containing compounds, such as amino acids and proteins, are
key partners of N metabolism processes, including assimilation
and metabolism, which determine genotypic responses to N
supply (Quan et al., 2017). Therefore, these enzymes and N
metabolism are considered the most vital biochemical factors
for improving NUE in cotton (Xu et al., 2012). Another study
was conducted to determine the contrasting NUE of six cotton
genotypes. Biochemical and morpho-physiological traits such as
N metabolic enzymes, shoot dry weight, and root traits were
mostly affected in response to varying nitrate concentrations.
NUE positively correlated with improved N uptake efficiency
(Iqbal et al., 2020d).

In another study on cotton (Iqbal et al., 2020b), a close
association between N uptake and utilization efficiency was
demonstrated by applying various N doses. Because it is
challenging to improve NUE by lowering N supply and
selecting N efficient cotton genotypes, uptake, utilization, and
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FIGURE 3

Nitrogen transporters and key enzymes involved in N metabolism and acquisition in plants. Panel (A) represents the activity in leaves. Panel (B)
represents the activity in plant. Panel (C) represents the activity within the roots. The figure created with Biorender (https://biorender.com/).

remobilization of available N. Based on a contrasting N
metabolic study, N uptake efficiency (NUpE), and N utilization
efficiency (NUtE), CCRI-69 and XLZ-30 showed efficient NUE
(Iqbal et al., 2020b). The N concentration and N-metabolizing
enzymes were attributed as important traits that confer high
NUpE. After applying higher N concentrations, shoot and
root NR, GOGAT, and GDH enzyme activities increased.
However, different genotypes exhibited contrasting behaviors
(Iqbal et al., 2020b).

Nitrogen transporters and role in
nitrogen use efficiency

Plants absorb N in the form of nitrate at the root level
by four nitrate transporter families: the nitrate peptide
family NPF (previously known as NRT1/PTR), nitrate
transporter 2 family NRT2/NNP (Nitrate-Nitrite Porter),
chloride channel/transporter family (CLC-1), and slow anion
associated channel homolog (SLAC1/SLAH) family (Iqbal et al.,
2020d) (Figure 4). However, according to recent literature
(Fan et al., 2017), the NRT1 (NPF) and NRT2 families are
considered the main nitrate transporters for the uptake and
transfer of nitrate in plant roots (Fan et al., 2017). NPF and
NRT2 families are mainly responsible for low-affinity transport
systems (LATS) and high-affinity transport systems (HATS),

respectively (Williams and Miller, 2001; Tsay et al., 2007),
whereas NRT1·1 (NPF6.3) and NRT1.3 (NPF6.4) (Morère-Le
Paven et al., 2011) are responsible for both LATS and HATS (Liu
et al., 1999). However, at high nitrate concentrations (>1 mM),
it responds toward LATS (Raddatz et al., 2020). The NRT1
(NPF) nitrate transporters in other crops and transporters that
behave differentially based on the varying nitrate concentration
has been discussed in detail (Segonzac et al., 2007; Morère-Le
Paven et al., 2011; Hawkesford, 2012; Hu et al., 2015; Chen et al.,
2016).

In plants, multiple nitrate transporters (Table 1) perform
NO3

− uptake. Both NRT1 (NPF) and NRT2 transporter families
affect plant growth and seed development because of the
differences in NO3

− uptake efficiency (Wang et al., 2020). NRT1
(NPF) was identified in Arabidopsis (Tsay et al., 1993) and is part
of the NPF family (Léran et al., 2014). The NPF family includes
53 genes in Arabidopsis, 139 were identified in higher plants,
and 93 genes in rice. These are further subdivided into 8–10
families as reviewed by Iqbal et al. (2020d); NPF6.3 (NRT1.1)
and NPF4.6 (NRT1.2) are responsible for NO3

− uptake in roots
(Iqbal et al., 2020d). NRT1.1 (NPF6.3) is the first and most
studied NO3

− transporter in plants (Tsay et al., 1993). In the
NRT1 (NPF) family, Arabidopsis includes 53 genes, of which
51 show differential expression patterns in the whole plant
(Tsay et al., 2007). The NRT1 (NPF) family functions as NO3

−

transporters and a diverse range of substrates, including abscisic
acid, nitrite, amino acids, peptides, chloride, glucosinolates,
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FIGURE 4

Roles of different nitrogen transporters in nitrate uptake and efflux from the soil, transportation from roots to shoots, allocation and assimilation
in plant leaves, and seed development. As mentioned in the above section, these nitrogen transporters are linked to different families. The figure
created with Biorender (https://biorender.com/).

gibberellins, auxin, and jasmonoyl-isoleucine (Krouk et al.,
2010; Kiba et al., 2012; Nour-Eldin et al., 2012; Saito et al., 2015;
David et al., 2016; Tal et al., 2016).

Eight NRT2 transporters that respond to HATS have been
identified in different plants (Von Wittgenstein et al., 2014).
Although not many nitrate transporters have been identified
in, we present the transporters from other plants such as
Arabidopsis and rice. In Arabidopsis, several NRT2 transporters
have been identified; four of them, including NRT2.1, NRT2.2,
NRT2.4, and NRT2.5, function in nitrate influx and play a
role in 95% nitrate uptake under low NO3

− concentrations.
However, NRT2.1 and NRT2.2 are the principal members of the
NRT2 family for nitrate uptake (Lezhneva et al., 2014). Although
NRT2.1 is a member of HATS but works efficiently under low
nitrate availability (Li et al., 2007), its HATS activity is reduced,
and plant growth is affected by low NO3

− (Skopelitis et al.,
2006) as demonstrated using mutants (Carvalho et al., 2003).
However, compared to NRT2.1, NRT2.2 showed less expression
for the uptake of NO3

− (Suzuki and Knaff, 2005). Moreover,
NRT2.4 and NRT2.5 are also responsible for NO3

− uptake,
but NRT2.4 was identified as a high-affinity transporter, as its
mutant showed a reduction in NO3

− uptake upon 0.025 mM

nitrate (Kiba et al., 2012). Overall, NO3
− acquisition depends

on the specificity of NO3
− transporters because NRT2.4 and

NRT2.5 absorb NO3
− from soil root hairs while NRT2.1 and

NRT2.2 transport it from the apoplast to the apoplast cortex
and endodermis (Suzuki and Knaff, 2005). In response to long-
term starvation, NRT2.5 absorb NO3

− efficiently from shoots
and roots of adult plants, as its expression is increased along
with several other NRT2 transporters (Lezhneva et al., 2014).
In addition, NAR2(NRT3) from the NRT3 family is another
transporter that develops a coupling relationship with NRT2 to
transporters to NO3

− in plants (Li et al., 2007). Many NRT2
transporters have been identified and studied in other plants,
including Chlamydomonas reinhardtii (Zhou et al., 2000), barley
(Marschner, 2011), and rice (Chen et al., 2016). These NRT
transporters can be manipulated to improve NUE.

NH4
+ uptake is carried out by ammonium transporters

(AMTS) and other regulators such as cation channels or
aquaporins (Glass et al., 2002). However, the overexpression
of genes responsible for ammonium transporters has not yet
been successful (Meister et al., 2014). Because of the excess
availability of NH4

+ in cells, it becomes toxic, a possible
hindrance to targeting NH4

+ transporters to improve N uptake
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TABLE 1 Various nitrogen transporters involved in different functions of nitrate uptake, utilization, and remobilization.

Sr. no. N transporters Function/s References

(1) NPF2.7/NAXT1 Root efflux O’Brien et al., 2016

(2) AMT1;1, AMT2;1, NPF6.2/NRT1.4, LHT1 Leaf import Noguero and Lacombe, 2016

(3) NPF2.12/NRT1.6, UmamiT11, UmamiT14 Phloem unloading, and senescing Noguero and Lacombe, 2016

(4) NRT2.7 Seed vacuole O’Brien et al., 2016

(5) NPF7.2/NRT1.8, NPF6.2/NRT1.4, NPF1.2/NRT1.11,
NPF1.1/NRT1.12, AAP6, AAP2

Xylem and phloem transfer Fan et al., 2017

(6) CLCa, AVT3a Leaf vacuole Tegeder and Masclaux-Daubresse, 2018

(7) DiT2 Chloroplast Tegeder and Masclaux-Daubresse, 2018

(8) NPF2.13/NRT1.7, NPF1.2/NRT1.11, NPF1.1/NRT1.12, NRT2.4
NRT2.5, UmamiT18 AAP8

Leaf export and phloem loading Zhang et al., 2018

(9) NPF5.5, UmamiT28, UmamiT29, CAT6, AAP8, AAP1 Loading to seed Tegeder and Masclaux-Daubresse, 2018

(10) AMT1.1, AMT1.2, AMT1.3, AMT1.5, NRT2.1, NRT2.2,
NRT2.4, NRT2.5, NPF6.3/NRT1.1, NPF4.6/NRT1.2, AAP1,
AAP5, LTH1, LTH6, ProT2, ANR1

Nitrogen uptake Tegeder and Masclaux-Daubresse, 2018

(11) NPF7.3/NRT1.5, NPF2.3, UmamiT14, UmamiT18, UPS1-1,
UPS1-2

Movement from root nodule to xylem Tegeder and Masclaux-Daubresse, 2018

(12) NPF7.2/NRT1.8, NPF2.9/NRT1.9 Root reimport Fiaz et al., 2021

(Bittsánszky et al., 2015). In addition to inorganic N acquisition,
plants absorb organic nitrate in amino acids (AA) (Näsholm
et al., 2009). Various root transporters, including AAP1 and
AAP5, proline transporter ProT2, and lysine-histidine-type
transporters LHT1 and LHT6, are responsible for the uptake of
amino acids (The et al., 2021). However, this is only possible in
fields that rely on manure or compost (Enggrob et al., 2019).

After NO3
− uptake, it is assimilated in different parts

of the shoot and loaded into the xylem vessels of roots
using several transporters such as NRT1(NPF)/PTR and NRT
(O’Brien et al., 2016). Upon assimilation, it is converted into
AA (Meyer and Stitt, 2001). More assimilation takes place in
shoots that in roots (O’Brien et al., 2016), using the same process
discussed earlier. Different NO3

− transporters have been shown
to increase N assimilation in plants. According to a recent review
(O’Brien et al., 2016), NRT1(NPF)/PTR and NRT2 members are
expressed in the xylem and phloem. In Arabidopsis, NPF7.3
(NRT1.5) (Meng et al., 2016), NPF7.2 (NRT1.8) (Tong et al.,
2005), and NPF2.9 (NRT1.9) (Wang and Tsay, 2011) play roles
in influx/efflux, removal of NO3

− from the xylem, and loading
of NO3

− into the root phloem, respectively. Besides these,
many other genes are also responsible for the better uptake,
assimilation, and remobilization of NO3

− from roots to shoots
(Fan et al., 2017).

According to the cited literature (Fang et al., 2013; Fan
et al., 2016a; Feng et al., 2017; Wang Y. Y. et al., 2018), only
NRT(NPF) transporters have been overexpressed in both leaves
and roots to improve the NUE (The et al., 2021). However, it
is yet to be determined whether overexpression of these NRT2
transporters in roots is sufficient to improve NUE. In the latest
research on Arabidopsis, rice, and tobacco, overexpression of
the hyperactive chimeric NO3

− transporter AtNC4N in the

phloem of old leaves increased N uptake and improved NUE
under low N levels. Another study showed that the OsNRT1.1A
(OsNPF6.3) NO3

− transporter gene is involved in improving
NUE, flowering, high yield, and early maturation in rice. Many
other N transporters, such as NRT1.1B (NPF6.3B), NRT2.1,
NRT2.3a, NRT2.3, NRT2.3b, PTR9, AMT1.1, and qNGR9,
have been shown to increase NUE under high and low N
concentrations (Fang et al., 2013; Ranathunge et al., 2014; Sun
et al., 2014; Fu et al., 2015; Hu et al., 2015; Chen et al., 2016, 2017,
2020b; Fan et al., 2016a,b). Furthermore, several other genes in
different plants have been shown to improve plant growth and
NUE, including the nitrate transporter OsNPF4.5 (Sun et al.,
2014), NAC42-activated nitrate transporter (Tang et al., 2019),
and nitrate reductase gene OsNR2 (Gao et al., 2019).

Molecular and signaling pathways
involved in nitrogen use efficiency

How the nitrate signaling and gene expression networks
can be used to improve NUE in plants are not yet completely
understood. Additionally, researchers have attempted to
increase NUE by modulating the expression of key genes
involved in NO3

− uptake, assimilation, and remobilization
in various plants. However, no significant success has been
recorded (McAllister et al., 2012). Thus, success cannot be
achieved until all other processes, including uptake, transport,
assimilation, and remobilization, are understood. To improve
NUE, it is also necessary to understand these processes and how
they coordinate the expression of genes involved in the NO3

−

response. Apart from the N source, NO3
− also modulates gene
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expression and plays a role in various developmental processes,
including seed germination, shoot development, flowering, and
root architecture (O’Brien et al., 2016; Lin and Tsay, 2017; Liu
et al., 2017; Kant, 2018; Wang Y. Y. et al., 2018).

NO3
− induces a primary NO3

− response that regulates
the transcriptional response without requiring de novo protein
synthesis (Gowri et al., 1992). As a result of this rapid response,
gene expression can be induced within minutes, reaching a
peak at approximately 30 min. However, NO3

− concentration
determines the induction levels of PNR genes (Hu et al., 2009).
Transcriptome analysis revealed the importance of NO3

− in
gene expression, as it controls 10% of the genome (Bouguyon
et al., 2012). Various PNR gene families have been studied in
plants, such as NRT1(NPF), NRT2, NIR, NIA1, NIA2, and other
genes responsible for different metabolic processes, including
the trehalose-6-P metabolism pentose phosphate pathway and
glycolysis (Scheible et al., 1997). Several main NO3

− signaling
pathways, including transcription factors, peptides and proteins,
kinases, NO3

− transporters, and calcium signaling. Because
cotton has not been well studied regarding NO3

− molecular
signaling pathways, we focused on these pathways in other crops
to understand the potential mechanism in cotton.

NRT1.1 (NPF6.3) is involved in the uptake of NO3
−.

Two NO3
− transporters, NRT1.1 (NPF6.3) and NRT2.1, are

responsible for NO3
− signaling and sensing. NRT1.1 (NPF6.3)

also regulates the expression of NRT2.1 (Munþos et al., 2004).
In the case of short-term and long-term NO3

− supply, NRT1.1
(NPF6.3) upregulates NRT2.1, which involves the feedback
repression of NRT2.1 (Bouguyon et al., 2015). Based on its
dual-affinity property, it can switch between high- and low-
level NO3

− responses (Hu et al., 2009), which is caused by
the phosphorylation status of the T101 residue (Hu et al.,
2009). Furthermore, NO3

− signaling is differentially regulated
by the interaction of two CALCINEURIN B-LIKE (CBL)-
INTERACTION PROTEIN KINASES (CIPKs) with NRT1.1
(NPF6.3), and CIPK8 and CIPK23 engage in low- and high-
affinity responses, respectively (Ho et al., 2009). Except for
PNR regulation, NRT1.1 (NPF6.3) is also involved in the root
during the aging process. NRT1.1 (NPF6.3), which plays a
role in sensing NO3

− concentration as root growth depends
on NO3

− sensing; at high and low NO3
− concentrations,

lateral root growth is promoted and inhibited, respectively.
At high NO3

− concentrations, NRT1.1 (NPF6.3) upregulates
Arabidopsis NO3

− regulated 1 (ANR1) for root proliferation
and lateral root growth development (Remans et al., 2006).
While At low NO3

− concentrations, NRT1.1 (NPF6.3) controls
auxin levels and meristem activation for the repression of lateral
root development (Mounier et al., 2014). An additional NO3

−

sensing system is also present, as the abolishment of NRT1.1
(NPF6.3) does not disrupt the PNR system, but its exact function
in NO3

− signaling is not understood (Sun et al., 2017).
After NO3

− sensing by NRT1.1 (NPF6.3), the next step is
to transmit the NO3

− signals to the nucleus, which magnifies

the cytosolic regulators. Calcium and various transcription
factors are the main role players in signal transduction.
Three CIPKs (CPK10, CPK30, and CPK32) and their partner
CBL indicated that calcium also functions in NO3

− signaling
(Krouk, 2017). Calcium acts as a secondary messenger in the
NO3

− signaling pathway (Liu et al., 2017), responsible for
changes in gene expression (Medici and Krouk, 2014). The
first time, this study was conducted 30 years ago on barley
and maize, where it showed that NO3

− responsive genes show
varying expression as a result of EGTA or LaCl3 pretreatment
(Sakakibara et al., 1997). Furthermore, its function as a NO3

−

signaling pathway has been investigated in various studies
(Riveras et al., 2015). Moreover, many other transcription
factors (TFs), like NLP7, TCP20, LBD37, LBD38, LBD39,
CIPK8, SLP9, TGA1, TGA4, CIPK23, bZIP1, BT1, and BT2
have been identified that interact with nitrate responsive genes,
carry out the function of NO3

− response, and improve NUE
(Wang Y. Y. et al., 2018).

Based on recent bioinformatics analyses, BT1 and BT2 have
proven to be great assets for improving NUE. BT1 was identified
as the closest homolog of BT2. BT1 and BT2 improve NUE
by repressing the expression of the nitrate transporters NRT2.1
and NRT2.4, which reduces NO3

− uptake (Araus et al., 2016).
Both TFs are involved in plant growth. However, it is yet to be
determined whether BT1 and BT2 target multiple genes under
N-sufficient and N-deficient conditions. The RWP-PK TFs
family includes NLP7 TF. In a genome-wide analysis, NLP7 was
identified as a player in modulating the expression of various
genes involved in NO3

− signaling, uptake, and assimilation
(Marchive et al., 2013). Similarly, SPLN also regulates the
expression of different NO3

− transporter genes, including
NPF6.3 (NRT1.1), NRT 2.1, NRT 2.2, NIA1, NIA2, and NIR
(Krouk et al., 2010).

Cross talk on source/sink
relationship and nitrogen use
efficiency

Generally, N is recycled and remobilized in source leaves
after uptake by the roots. It is delivered to the sinks via
the phloem as amino acids, NO3

−, and ureides (Figure 5)
(Tegeder and Masclaux-Daubresse, 2018). However, different
agronomic characteristics, such as NUE, grain filling, and
yield, depend on better N remobilization in the source
and its allocation to sink organs. The removal of N is
initiated mainly during leaf senescence (The et al., 2021). In
plants, senescence is a developmental process that regulates
the nutrient requirements. Therefore, leaf senescence is also
linked to the source/sink relationship (Guiboileau et al.,
2010). In addition to the natural aging process, many other
factors, such as nutritional starvation, pathogen infections, C-N
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ratio, photosynthetic activity, photoperiod, C accumulation,
and various other cues, can initiate senescence. The limited
availability of N also increases leaf senescence earlier than
the sufficient availability in sunflowers (Bieker and Zentgraf,
2013).

In addition to N, some environmental factors, such as
light quality and quantity and reactive oxygen species (ROS)
(Zimmermann et al., 2006; Kong et al., 2021a), induce leaf
senescence, which ultimately regulates nutrient mobility from
source to sink organs where needed. Different sink organs
and developmental processes require N. During anthesis, it
varies according to the genotype. Varying concentrations of
N are responsible for the differential uptake of N among
different Arabidopsis accessions. Upon application of High N
concentrations, most of the N is remobilized to the seeds,
whereas at low N concentrations, it is allocated to rosette leaves
(Masclaux-Daubresse and Chardon, 2011). During seed filling
and flowering, the uptake of N is arrested in response to a
reduction in HATS and HATS + LATS activities (Masclaux-
Daubresse et al., 2010). Here, we will focus on natural-induced
senescence accompanied by the movement of nitrogenous
nutrients from source leaves to sink organs and various
efforts to increase NUE in response to the source and sink
relationship.

Generally, due to autophagy, proteins, organelles, and
cytosolic macromolecules are degraded during leaf senescence,
and N is translocated toward sink organs (Chen et al.,
2019). Associated cytoplasmic components are dismantled
and degraded during autophagy, which plays an important
role in regulating and remobilizing nutrients from source to
sink organs (Tegeder and Masclaux-Daubresse, 2018). ATGs
genes are responsible for this autophagy process during leaf
senescence, and are upregulated during autophagy (Chung
et al., 2010; Breeze et al., 2011). Autophagy-related procedures
can degrade the chloroplast and the most abundant protein,
Rubisco, accounting for 80% of cellular N (Wada et al., 2009).
This is further reinforced by the fact that leaf senescence
is initially observed because of chloroplast dismantling and
degradation. According to the cited literature (Martínez et al.,
2008), enlisted protease enzymes, including chloroplastic DegP,
FstH, and CND41 are responsible for the degradation of
proteins D1 and Rubisco, respectively. Details regarding protein
degradation mechanisms are provided by various studies
(Tegeder and Masclaux-Daubresse, 2018; Gill et al., 2021). One
of the efficient methods, the “apparent remobilization” method,
which works based on N15 labeling, is used to orchestrate the
amount of N present in different developmental stages of plants
(Gallais et al., 2006).

Seeds are the major sink organs during N remobilization,
which depends on different factors: strength of the
seed sink, translocation processes in leaves, stems, and
reproductive organs, and efficiency of phloem pathways
(Manghwar et al., 2022). Based on acquired knowledge in

different plants, it is well known that asparagine and glutamine
are the major translocated amino acids from source to sink
organs. Their concentrations also increased during leaf
senescence. The amino acid permease (AAP) family is a
candidate gene for improving the phloem loading efficiency.
Different genes, including AAP4, AAP5, BnAAP1, and BnAAP2,
have been implicated in phloem loading (Fischer et al., 2002;
Koch et al., 2003; Chaffei et al., 2004; Tilsner et al., 2005). During
leaf senescence, N remobilization and assimilation can improve
the NUE of plants. Both GS1 and GS2 proved influential in
improving NUE. Further improvement of N remobilization
depends on the severity and severity of leaf senescence activity
(Diaz et al., 2008).

There is a long list of protease genes responsible for
protein degradation and N remobilization. Among these genes,
SAG12 is a widely studied enzyme that catalyzes the cysteine
protein in leaves. In addition, its homologs are also present
in other crops and are responsible for N remobilization and
improvement of NUE in oilseed and tobacco (Chung et al.,
2010). Furthermore, glutamate dehydrogenase (GDH) is also
important for improving NUE, as it functions to remobilize
N (Lea and Miflin, 2011). However, overexpression of GDH
did not result in N remobilization as in the case of tomato
Slgdh-NAD: B1 in tobacco, GDH from Sclerotinia sclerotiorum
and Magnaporthe grisea in rice (Purnell et al., 2005), and
Nicotiana plumbaginifolia GDHA and GDHB in Nicotiana
tabacum (Tercé-Laforgue et al., 2013). In contrast it improved
NUE in other plants, such as overexpression of EcgdhA
from Escherichia coli in tobacco and maize (Ameziane et al.,
2000). In addition, overexpression of AngdhA from Aspergillus
nidulans in potato (Egami et al., 2012) and fungal GDH from
Cylindrocarpon ehrenbergii (CeGDH) in rice (Zhou et al., 2015)
augmented NUE. Autophagy respondent genes such as AtATG8
in Arabidopsis, OsATG8b, OsATG8a, and OsATG8c in rice also
proved valuable in improving NUE under sufficient conditions
of N supply (Gallais et al., 2006; Zimmermann et al., 2006).

Other factors, such as N remobilization in the form of
inorganic or ionic N, or combined with organic molecules,
also play a differential role in improving NUE. Different
studies have reinforced the significant role of inorganic N
in N remobilization toward sink organs, but it also depends
on the availability of sufficient N inputs (Masclaux-Daubresse
et al., 2010). Various studies on NO3

− transporters, including
NRT2.5, NRT1.6 (NPF2.12), NRT1.5 (NPF7.3), and AMT1.5,
could improve NO3

− remobilization from source to sink organs,
which ultimately also increases NUE (Wu et al., 2014; Havé et al.,
2017). Another study was conducted on the NO3

− transporter
NRT1.7 (NPF2.13). They manipulated its remobilization, which
improved NUE and increased plant growth, as it was involved in
the meditation of stored NO3

− from the source to sink organs
(Chen et al., 2020c).

In addition to molecular-level studies, some common
agronomic practices are also essential for better source-to-sink
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FIGURE 5

Illustrates the mechanism of nitrogen remobilization from source (leaf) to sink (seed). Various known and unknown transporters are involved in
portioning, as mentioned in Tegeder and Masclaux-Daubresse (2018). AA, amino acids. The figure created with Biorender
(https://biorender.com/).

relationships in plants. Research on efficient and inefficient
cotton genotypes, CCRI-69 and XLZ-30, showed that moderate
to high N applications improve the remobilization of the
source-to-sink relationship, which ultimately increases the NUE
and yield (Iqbal et al., 2020c). Furthermore, different foliar
applications also proved beneficial. Under treatment with
different N foliar applications, such as NO3

− and urea, winter
wheat plants showed increased grain filling and source-to-sink
relationships of N remobilization, as (Lyu et al., 2020; Liang
et al., 2022). However, many N studies have been conducted
on plants other than cotton plants. Currently, there is a dire
need to study cotton plants to improve the NUE and source-
to-sink relationship for better remobilization of N by employing
molecular and agronomic studies.

Crop plants largely absorb N in the form of nitrate (NO3
−)

(Robinson et al., 2011; Manghwar et al., 2022), or ammonium
(NH4

+) when growing in acidic soils (Robinson et al., 2011;
Wang L. et al., 2018). After uptake from the soil, plant roots
assimilate NH4

+ to avoid the toxicity of free ammonium,
which would eliminate the transmembrane proton gradients
pivotal for respiratory electron transport. Unlike ammonium,
a large concentration of nitrate ions are assimilated in plant
tissues and then translocated to plant shoots for assimilation.
It is well established that N rates and sources significantly
affect plant growth and developmental process (Irshad et al.,
2008; Lu et al., 2009). Therefore, selecting the appropriate
rate and method based on plant species, growth stage, soil,
and environmental conditions is necessary to maximize plant
growth and NUE (Marschner, 2011; Niu et al., 2011; Mendoza-
Villarreal et al., 2015). Other farm management practices,

including genotype selection, also significantly improved NUE.
Genotype development and screening have been reported to be
imperative for improving the uptake and utilization of N (Iqbal
et al., 2020b).

In a recent study, Iqbal et al. (2020a) evaluated the
performance of N-efficient and N-inefficient cotton genotypes
supplied with nitrate and ammonium-N. They reported
increased N uptake and utilization efficiency, better plant
growth, chlorophyll content, and gas exchange in the N-efficient
genotype when supplied with nitrate-N (Iqbal et al., 2020a).
Improved root traits in nitrate-fed plants, including length,
dry weight, and surface area, have been reported previously
(Schortemeyer and Feil, 1996). Another study also reported
better seedling growth in cotton when fed nitrate N than
ammonium-fed seedlings, mainly due to better photosynthesis
under increased translocation of nitrate to the photosynthesis
system (Irshad et al., 2008). Ammonium application is also not
recommended, as it reduces the uptake of potassium and cations
to retard stomatal function and inhibit osmotic regulation,
respectively (Lopes and Araus, 2006). Similarly, low NUE in
cotton under ammonium application has also been attributed to
inhibited ammonium metabolism and reduced protein synthesis
(Pessarakli and Tucker, 1985). Chen et al. (2020a) studied
different N application rates under field conditions. They
reported that a moderate N application rate (240 kg ha−1)
significantly increased seedling growth and cotton yield, thereby
promoting NUE (Chen et al., 2020a). Similarly, in a recent study,
Wang et al. (2021) reported that N application at 250 kg ha−1

considerably increased the N uptake and NUE in cotton (Wang
et al., 2021).
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Increasing plant nitrogen
utilization and remobilization
efficiency in plants

Nitrogen application rate, time of application, the N source,
and other agronomic practices affect crop yield, N uptake, and
its movement and metabolism within the plant, depending
on the plant species (Ali, 2015; Ali et al., 2022a). Xu et al.
(2012) studied the effects of different planting densities and
reported that increasing planting densities in cotton enhanced
N accumulation in plant parts (Xu et al., 2012). Similarly, Yao
et al. (2015) reported that plant density alters N allocation. In
partitioning, medium planting density results in high leaf N
allocation to the P/S apparatus and its different partitioning
components (Yao et al., 2015). Recently, Liu et al. (2022)
demonstrated that N application significantly affects the N
utilization efficiency. N at 180 kg ha−1 was applied at the
flowering stage, promoting N utilization and efficiency in cotton
grown under a wheat-cotton double cropping system (Liu et al.,
2022).

In another study, Du et al. (2016) evaluated different
cropping systems and reported reduced N accumulation rates
and NUE in cotton in wheat-cotton rotations compared with
monoculture (Du et al., 2016). Wei et al. (2012) studied the
effects of different irrigation methods and N application rates.
They reported that a moderate N application rate with drip
irrigation promoted N uptake, translocation, and efficiency in
cotton grown in arid regions (Wei et al., 2012). N application
at 150 kg ha−1 and straw incorporation significantly improved
N uptake and NUE, as reported by Wang et al. (2020). Niu
et al. (2020) examined the responses of various cultivars and
N application rates to NUE. They reported that CRI 69 and
ZZM 1017, as N-inefficient cultivars, had increased N uptake
and translocation into different parts and ultimately NUE in
cotton (Niu et al., 2020). Plants inoculated with Azospirillum
brasilense also show better N uptake, translocation into different
tissues, and NUE (Saubidet et al., 2002).

Nitrogen use efficiency regulating
enzymes and genes

Plants have evolved various mechanisms involving enzymes
and activating genes to increase NUE (Table 2). However, only a
few studies have discussed the key enzymes and genes directly
or indirectly involved in enhancing NUE in cotton (Iqbal
et al., 2020d). NUE highly depends on N uptake, utilization
efficiency, and N assimilation rate (Garnett et al., 2015;
Hawkesford, 2017). The involvement of the N-assimilation
enzyme glutamine synthetase in promoting NUE through
increased N harvest index (Brauer et al., 2011), increased
number of grains (Martin et al., 2006), biomass production

(Oliveira et al., 2002), and photorespiration (Hoshida et al.,
2000) has been well documented in previous reports. Cai
et al. (2009) documented that glutamine synthetase significantly
promoted N uptake by crop plants (Cai et al., 2009). GS
has been reported to enhance biomass production (Chichkova
et al., 2001) and seed weight (Yamaya et al., 2002). NR
and NiR are important enzymes for N assimilation; their
role in enhancing NUE has been well reported in terms of
enhancing dry weights (Abiko et al., 2010), nitrate content
(Lillo et al., 2003), NiR activity (Crété et al., 1997), and NO2

−

assimilation (Takahashi et al., 2001). The GDH (NADH-GDH)
has been reported to play a role in assimilating inorganic N to
form glutamate by combining ammonium with 2-oxoglutarate
(Fontaine et al., 2012).

It is also well documented that NADH-GDH facilitates
ammonium assimilation, which has an advantage over
glutamine synthetase. The plastidic isoenzyme (GS2) is also
involved in primary N assimilation, and the cytosolic GS
isoenzyme (GS1) is involved in the recycling of organic N
(Masclaux et al., 2000; Hirel et al., 2001). According to Martin
et al. (2006), the GS1.3 isoenzyme plays a putative role in
controlling yield under variable N conditions. NADH-GOGAT,
a pyridine nucleotide-dependent GOGAT isoenzyme, is present
in bundle-sheath cells and is involved in glutamate synthesis to
promote plant growth (Tabuchi et al., 2007; Plett et al., 2016).
The essential roles of another N-assimilation enzyme, alanine
aminotransferase, in increasing biomass and seed yield have
been well documented in previous reports (Good et al., 2007;
Shrawat et al., 2008). According to Lam et al. (2003) and Ranjan
and Yadav (2019), increased ammonium assimilation is also a
result of the involvement of carbamoyl phosphate synthase and
cytosolic asparagine synthetase enzymes (encoded by ASN1,
ASN2, and ASN3).

Nitrogen use efficiency responsive
genes manipulation

Different breeding approaches have been used in recent
years to select the most appropriate traits for improving NUE.
In plants, NUE is a complex trait that depends on the availability
of soil N and various internal and external factors, including
photosynthetic carbon fixation. NUE, the ratio of grain yield and
N uptake, also varies with N application rates, where different
genes are expressed in plants according to N rates (Hirel et al.,
2001; Good and Beatty, 2011). According to Hirel et al. (2001),
cytosolic GS genes, namely, gln1, gln2, and gln4, regulate leaf
cytosolic enzyme activity. The GS gene gln4 has been reported as
a housekeeping gene that controls NUE and influences yield by
promoting ammonia assimilation (Hirel et al., 2001). A previous
study reported enhanced NUE and yield upon overexpression
of Gln1-3 and Gln1-4 (He et al., 2014). In an investigation by
Castaings et al. (2009), it was concluded that the regulatory

Frontiers in Plant Science 14 frontiersin.org

https://doi.org/10.3389/fpls.2022.994306
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-994306 September 21, 2022 Time: 15:36 # 15

Chattha et al. 10.3389/fpls.2022.994306

TABLE 2 Nitrogen use efficiency regulating enzymes and their specific roles in plants.

Enzymes Roles References

Plastidic isoenzyme-GS2 Involved in primary N assimilation Masclaux et al., 2000; Hirel et al., 2001

Cytosolic GS isoenzyme-GS1 Involved in the recycling of organic N Masclaux et al., 2000; Hirel et al., 2001

Glutamine synthetase Increased N uptake and photorespiration Habash et al., 2001

Nitrate reductase and nitrite reductase NO2
− assimilation and reduced the nitrate levels Takahashi et al., 2001; Lillo et al., 2003

GS1.3 isoenzyme Plays a putative role in controlling the yield under variable N conditions Martin et al., 2006

Alanine aminotransferase Increased biomass and grain yield Good et al., 2007

NADH-GOGAT Involved in glutamate synthesis to promote the growth of plants; promoted
inorganic nitrogen assimilation notably in the roots

Tabuchi et al., 2007; Garnett et al., 2015

Cytosolic asparagine synthetase and
carbamoylphosphate synthase enzymes

Increased ammonium assimilation Lam et al., 2003; Ranjan and Yadav, 2019

TABLE 3 Genes directly or indirectly involved in nitrogen use efficiency.

Genes Direct/Indirect functions References

GS2 Increased the photorespiration and biomass production Migge et al., 2000

NiR NO2
− assimilation Takahashi et al., 2001

GOGAT Improved plant biomass and seed weight Yamaya et al., 2002

AtDUR3 Upregulation of AtDUR3 plays a putative role in organic N uptake Liu and Tsay, 2003

GDHA Increased ammonium assimilation, biomass, and dry weight Mungur et al., 2006

GS1 A glutamine synthetase gene had higher grain yield, NUtE, and kernel number upon
overexpression

Gallais et al., 2006

AlaAT Increased plant biomass and seed yield Good et al., 2007

AMT genes (AMT 1.1, 1.3, 1.5) Help in ammonium uptake and its transport in plants Yuan et al., 2007

HvAlaAT As alanine aminotransferase gene increased biomass and grain yield Shrawat et al., 2008

AtNRT1.1 It can result in better nitrate uptake when acting as a nitrate sensor Ho et al., 2009

ENOD93–1 Increased plant biomass and seed weight Bi et al., 2009

NIA (Nia1 and Nia2) As nitrate reductase genes significantly increased grain weight, dry biomass, and protein contents
when overexpressed in model crops

Lillo et al., 2003; Zhao et al.,
2013

DOF1 Promoted the growth and N uptake Wang et al., 2013

AGL21 Increased plant biomass and seed weight Yu et al., 2014

Gln1-3 and Gln1-4 Overexpression of these genes improved the yields and enhanced NUE He et al., 2014

OsAMT1;1 As an ammonium transporter gene, helped in enhancing NUE Ranathunge et al., 2014

OsAMT1;1GS1 Facilitate in achieving higher seed yield, NUE, and more numbers of seeds Ranathunge et al., 2014

TOND1 Enhanced tolerance under N deficit condition Zhang et al., 2015

OsNRT2.1 Increased biomass production Chen et al., 2016

NRT1.1B and OsNRT2.3b As nitrate transporter genes helped in increasing the biomass production and seed yield to help in
enhancing NUE

Gallais et al., 2006; Hu et al.,
2015; Fan et al., 2016b

OsNRT2.3b and NRT1.1B Worked as nitrate transporter genes to enhance NUE Hu et al., 2015; Fan et al.,
2016a

NLP7, ZmNLP6, and ZmNLP8 NLP7 regulates the nitrate content, and ZmNLP6 and ZmNLP8 are helped in nitrate signaling to
increase the productivity of model plants

Castaings et al., 2009; Cao
et al., 2017

GLN1 and GLN2 GLN2 nuclear gene involved in the assimilation and re-assimilation of ammonium produced by
nitrate reduction and from photorespiration, respectively. GLN1 helped in the recycling of
ammonium during leaf senescence.

Bernard and Habash, 2009;
Ranjan and Yadav, 2019

gene NLP7 was identified in Arabidopsis to regulate the nitrate
content (Castaings et al., 2009). In a recent study, Cao et al.
(2017) reported that regulating genes ZmNLP6 and ZmNLP8
help in nitrate signaling to increase the productivity of model

plants (Cao et al., 2017). Table 3 lists the genes involved
in NUE.

The glutamine synthetase gene GS1 and nitrate transporter
genes OsNRT2.3b and NRT1.1B (NPF6.3B) have been reported
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to promote biomass production and seed yield, thereby
enhancing NUE (Hu et al., 2015; Fan et al., 2016a). Similarly,
according to Zhao et al. (2013), the expression of the nitrate
reductase gene NIA promotes seed weight and protein content
(Zhao et al., 2013). In another study, Shrawat et al. (2008)
demonstrated that the alanine aminotransferase gene HvAlaAT
significantly increases biomass production and seed yield
(Shrawat et al., 2008). In addition, the ammonium transporter
gene OsAMT1;1GS1 has been reported to have a higher seed
yield, nitrogen use efficiency, and number of seeds (Ranathunge
et al., 2014). In plants, the GLN2 nuclear gene is involved in
the assimilation and re-assimilation of ammonium produced
by nitrate reduction and photorespiration (Ranjan and Yadav,
2019). Similarly, according to Bernard and Habash (2009),
the GLN1 gene facilitates the recycling of ammonium during
leaf senescence (Bernard and Habash, 2009). The dual affinity
transporter protein AtNRT1.1 (AtNPF6.3), which is expressed in
root tips, can act as a nitrate sensor and improve nitrate uptake
(Tsay et al., 2007; Ho et al., 2009), even under low N conditions
(Liu and Tsay, 2003). Similarly, Li et al. (2006) demonstrated that
AtNRT2.1 and AtNRT2.2 are involved in high-affinity nitrate
uptake. Improved NUE via increased biomass has been well
reported as a result of gene expression, including GS1 (Fuentes
et al., 2001), GOGAt (Chichkova et al., 2001), AlaAT (Good et al.,
2007), and ENOD93–1 (Bi et al., 2009) (Table 3).

Integrated approaches to enhance
nitrogen use efficiency in cotton

Nitrogen use efficiency is defined as a plant’s ability to absorb
nutrients from the soil, assimilate them, and utilize them to
maximize crop yield (Hawkesford, 2017; Erisman et al., 2018).
Increasing crop production is largely associated with fertilizer
use and application rates. The optimum supply of nutrients
plays a significant role in increasing crop production and
NUE (Erisman et al., 2018; Fernie et al., 2020). In agricultural
farming systems, N management should achieve higher crop
productivity without polluting the environment (Klerkx et al.,
2010). In the form of nitrate, N is a mobile nutrient that severely
impacts the environment through GHGs emissions (Hristov
et al., 2013). Plants obtain N from different sources, including
residual N, organic matter decomposition, and biological N
fixation, and it is imperative to understand the contribution
of these sources to enhance NUE (Plett et al., 2020). Various
approaches have been used in recent years to manage N and
enhance the NUE. Soil and plant-based analysis, based on
SOM, yield goal, N credit from the previous crop, manure,
and irrigation water, is among the most commonly used
techniques for N management in different crops (Dobermann
and Cassman, 2002). According to a recent study by Guo et al.
(2019), soil-based approaches are more suitable for areas with a
homogeneous landscape and environmental and soil conditions

with similar EC, crop productivity, and resource use efficiency
(Benedetti et al., 2019; Guo et al., 2019). Variables such as slopes,
soil depth, and drainage within a landscape significantly affected
seed yield. Higher N fertility status has been reported in foot
slopes due to higher SOM content and flow of water, while it
is also well established that soils with upper landscape positions
are poor with SOM (Sharma et al., 2017).

Fertilizer placement and timing

Compared to other nutrients, N is more prone to many soil
transformations that occur within the soil, particularly above the
soil layer, and can influence NUE (Yadav et al., 2017). Significant
N losses have been reported owing to leaching, soil runoff, and
volatilization. Therefore, it is necessary to choose appropriate
methods of N application to maximize N availability to crop
plants and NUE (Sharma et al., 2017). The broadcasting method
of N application is not recommended because it causes severe
losses in crop yield, and N is applied through volatilization and
immobilization (Lasisi et al., 2020; Nasielski et al., 2020).

Use of tissue analysis for nitrogen
management

Sensitive plants have been used for a long time as a marker
of soil nutrient status. Some crop species are good markers for
overall growing conditions, as they are immediately correlated
with climatic conditions and soil management techniques, as
discussed recently by Sharma and Bali (2017). In a recent study,
Iqbal et al. (2020b) demonstrated that increased availability
of N to crop plants results in N accumulation in different
tissues, thereby increasing the chlorophyll content and net
photosynthetic rates (Iqbal et al., 2020b). A positive correlation
between chlorophyll content, corn yield, and N accumulation
has been reported previously (Han et al., 2016; Ali et al., 2020).

Breeding program

Breeding for improved NUE can be attained through
an assortment of different components (Cormier et al.,
2013); where compensation and regulation are abundant
and dependent on N application rates, plant species, and
growth stage, directing obstacles to create effective NUE
phenotypes (Cormier et al., 2016). However, omics-based
studies offer results that enable us to focus on routes
for improvement (Cormier et al., 2016). In addition, high-
throughput phenotyping using high-throughput genotyping
techniques will promote research on variable environments
and species, which could significantly enhance their nutrients
(Banerjee et al., 2020).
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Conclusion

This review critically assessed various agronomic and
molecular approaches for quick and efficient NUE in cotton
production. Here, we describe opportunities to increase NUE
through new agronomic practices such as 4R’S nutrient
stewardship and recently developed molecular strategies,
including manipulating metabolic pathways and transport
in cotton plants. However, several concerns remain to be
addressed. These could improve metabolic activities, the role
of nitrogen transporters, signaling and sensing of metabolic
pathways, and the relationship between sources and sinks.
Ultimately, we recognize that improving NUE in cotton will be
equally beneficial for the environment and growers to maximize
their profits. This also involves expanding the growers’
objectives from the primary emphasis on cotton production
for profit, which is crucial for livelihoods, to adding to the
stewardship of the land and surrounding environment, which is
essential for sustainability in cotton production. Understanding
and following these motives will assist in building better
education and other activities to eliminate barriers to nitrogen
use efficiency in cotton farming.
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