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Rice is one of the most important food crops for human beings. Its total production
ranks third in the grain crop output. Bacterial Leaf Blight (BLB), as one of the three major
diseases of rice, occurs every year, posing a huge threat to rice production and safety.
There is an asymptomatic period between the infection and the onset periods, and BLB
will spread rapidly and widely under suitable conditions. Therefore, accurate detection
of early asymptomatic BLB is very necessary. The purpose of this study was to test the
feasibility of detecting early asymptomatic infection of the rice BLB disease based on
hyperspectral imaging and Spectral Dilated Convolution 3-Dimensional Convolutional
Neural Network (SDC-3DCNN). First, hyperspectral images were obtained from rice
leaves infected with the BLB disease at the tillering stage. The spectrum was smoothed
by the Savitzky–Golay (SG) method, and the wavelength between 450 and 950 nm was
intercepted for analysis. Then Principal Component Analysis (PCA) and Random Forest
(RF) were used to extract the feature information from the original spectra as inputs. The
overall performance of the SDC-3DCNN model with different numbers of input features
and different spectral dilated ratios was evaluated. Lastly, the saliency map visualization
was used to explain the sensitivity of individual wavelengths. The results showed that
the performance of the SDC-3DCNN model reached an accuracy of 95.4427% when
the number of inputs is 50 characteristic wavelengths (extracted by RF) and the dilated
ratio is set at 5. The saliency-sensitive wavelengths were identified in the range from 530
to 570 nm, which overlaps with the important wavelengths extracted by RF. According
to our findings, combining hyperspectral imaging and deep learning can be a reliable
approach for identifying early asymptomatic infection of the rice BLB disease, providing
sufficient support for early warning and rice disease prevention.

Keywords: bacterial leaf blight, asymptomatic infection, hyperspectral imaging, deep learning, spectral dilated
convolution, interpretable
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INTRODUCTION

Rice is one of the most important grain crops, more than half
of the world’s population relies on it for food (Wu et al., 2020).
Achieving steady and high rice yield has always been the goal
of agricultural production. Bacterial leaf blight (BLB) disease, as
one of the three major diseases of rice, is not evenly distributed
in rice fields, but occurs in patches with large areas of the
field free of disease in the early stages of infestation. In recent
years, the outbreak area of BLB disease accounts for about one
third of the total planting areas, and the average diseased plant
rate is about 10%. It has a huge impact on the yield of rice.
Generally, the yield is reduced by up to 50–60%, and even the
grains are not harvested (Zarco-Tejada et al., 2018; Zhang et al.,
2020). To reduce the negative effects of rice BLB disease, farmers
used to treat a large number of pesticides. Overuse of pesticides
not only increases the treatment expenditure, but also pollutes
the environment (Šebela et al., 2018; Zhang J. et al., 2019).
From the perspective of plant protection, the primary task is to
quickly and accurately identify the potential occurrence of BLB,
and then apply chemical treatments with the required amount
(Tian et al., 2021). Therefore, the early identification of BLB
is particularly critical. Early detection and prevention, as well
as timely guidance, enable farmers to take efficient measures to
control the spread of the disease, thereby reducing the amount
of pesticides applied, and achieving the goal of sustainable
agriculture (Rahman et al., 2020; Shu et al., 2021).

As computer vision and deep learning techniques have
developed rapidly in recent years, they have shown great promise
in detecting plant diseases (Qiu et al., 2021). Various rice
disease detection methods have been proposed by detecting
external changes of infected rice leaves from RGB images.
Jiang et al. (2021) used a VGG-16 model and RGB images
to recognize diseases of rice leaves and wheat leaves at the
same time. Lu et al. (2017) proposed a deep convolutional
neural network to identify a dataset of 500 RGB images
containing 10 rice diseases, and the accuracy achieved
at 95.48%. Besides, researchers have applied evolutionary
approaches to neural architecture search of convolutional
neural networks for improving computational efficiency
(Xue et al., 2021a,b).

Although deep neural networks have achieved great success
in detecting rice disease from RGB images, it is worth noting
that these networks may fail to generate correct results for the
early asymptomatic BLB disease detection based on RGB images.
The examples of healthy and asymptomatic leaves are presented
in Figure 1. Without giving labels in advance, one can hardly
identify whether the leaf is healthy (Figure 1A) or asymptomatic
(Figure 1B) due to their similar visual textures.

Since the rice BLB disease is caused by pathogen, rice leaves
under such a stress would experience two periods, including
asymptomatic and symptomatic stages (Deng et al., 2019; Tian
et al., 2021). Although there are no significant lesions shown
at the asymptomatic stage, the inner chemical composition has
changed according to the plant pathology theory (Chen et al.,
2020). Therefore, this inner change in rice leaves motivated
us to adopt the hyperspectral imaging technique to detect the

asymptomatic infection of the rice BLB disease and we obtained
the following results shown in Figure 2. It can be seen that there
are distinguishable features between the wavelengths from 378
to 1033 nm of hyperspectral images of healthy and infected rice
leaves. This finding motivates us to use the hyperspectral imaging
technique to detect the rice BLB disease at the asymptomatic
stage, thereby providing an earlier warning to the farmers and
assisting them in decision making about chemical treatments.

Hyperspectral imaging is a technique that analyzes multiple
wavelengths of reflectance intensity of each pixel instead of just
investigating primary colors (e.g., red, green, and blue) that only
cover the wavelength range from 450 to 680 nm (Lowe et al.,
2017; Zhang et al., 2021a). In comparison to traditional spectral
and image technologies, hyperspectral imaging technology can
obtain multiple wavelengths of spectrum and image information
at the same time, and it has been demonstrated to be an
effective and non-destructive technique for detecting crop
diseases across multiple scales (Franceschini et al., 2019; Riefolo
et al., 2021). Adopting the hyperspectral imaging technique
to detect leaf disease has become a popular approach because
hyperspectral imaging has high potential for finding new
insights about plant diseases. Through the information fusion of
multiple wavelengths, hyperspectral imaging can achieve better
classification performance than using RGB images (Cabrera
Ardila et al., 2020; Wang et al., 2021). Koushik et al. (2019) used
hyperspectral imaging to detect soybean charcoal rot disease.
Zhao et al. (2020) combined hyperspectral imaging and SVM
to detect wheat early powdery mildew. Zhang et al. (2021a)
applied in-situ hyperspectral imaging to diagnose the symptoms
of sheath blight disease on rice stalk. Kaitlin et al. (2020)
detected potato pre-symptomatic of late blight and early blight
by hyperspectral imaging. From above works, it can be concluded
that hyperspectral imaging is a powerful technique to detect the
early disease of plants. Meanwhile, it is also worth noting that the
high dimensionality of hyperspectral images might bring a huge
challenge to the computational complexity, which is an urgent
problem to be solved in the detection of plant diseases using
hyperspectral images (Zhang et al., 2020).

Because of the high dimensionality of hyperspectral images,
shallow machine learning models cannot perfectly handle the
target detection tasks in hyperspectral images (Kaitlin et al.,
2020). Deep learning, on the other hand, has shown its great
potential in diverse applications. Hyperspectral images can be
treated as a stack of 2D matrices, representing the correlations
between spatial and spectral directions (Zhang J. et al., 2019).
Therefore, many scholars have contributed to the combination
of deep learning and hyperspectral imaging for plant disease
identification (Polder et al., 2019; Xiao et al., 2022). Chu et al.
(2022) proposed a shallow convolutional neural network with
attention mechanism model to predict the early herbicide stress
in wheat cultivars. Polder et al. (2019) designed a new imaging
setup consisting of a hyperspectral line-scan camera and applied
a convolutional neural network for detecting potato virus Y.
Nguyen et al. (2021) applied both deep learning and machine
learning models to identify grapevine early vein-clearing virus
in hyperspectral images. The result showed that the former
achieved a better classification result. Conclusively, combining
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FIGURE 1 | RGB images of rice leaves: (A) healthy; (B) asymptomatic.

FIGURE 2 | Spectra of infected leaves under different stages.

deep learning with hyperspectral imaging is very promising in the
plant disease detection task.

The purpose of this paper is to apply hyperspectral imaging
and deep learning to detect asymptomatic infections of the
rice BLB disease. The main contributions of this paper were
summarized as follows: (1) to explore the applicability of using
random forest (RF) and principal component analysis (PCA) to
extract sensitive features from raw hyperspectral data, thereby
improving the computational efficiency; (2) to build a spectral
dilated convolution 3-dimensional convolutional neural network
(SDC-3DCNN) model and test the effect of the number of input
features on the detection performance; (3) to assess the detection
performance of the SDC-3DCNN model under different spectral
dilated ratios (SDR); (4) to interpret the important wavelengths
with a saliency map method. In conclusion, the proposed SDC-
3DCNN model is able to detect the asymptomatic infection of

the rice BLB disease, thereby providing early warnings before the
disease outbreak. This result may assist in arranging chemical
treatments for disease control.

MATERIALS AND METHODS

Experimental Materials
Rice Planting and Artificial Inoculation
The experimental materials were processed and collected in 2020
at a greenhouse base in Nanjing Agricultural University, Nanjing,
Jiangsu, China. The rice seeds were sown and then transplanted
into plastic pots (three plants per pot) on June 17th, 2020.
The rice was grown in plastic pots (35 cm diameter × 32 cm
height) filled with paddy clay soil. A total of 50 pots were
used for the hyperspectral data collection. Data collected from
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different rice leaves provided an opportunity to evaluate the
reproducibility and reliability of the findings on disease detection.
To ensure consistent management practices in the greenhouse
environment, the basal nutrition fertilizers (nitrogen provided by
urea, 150 kg·ha−2; P2O5, 135 kg·ha−2; and K2O, 18.3 kg·ha−2)
were applied prior to transplantation, and a second nitrogen
topdressing (N, 150 kg·ha−2) was applied during the tillering
stage. The rice plants were irrigated as needed to ensure that the
soil in each pot was always covered by a shallow layer of water.
All plants were placed outdoors and were not transferred to the
greenhouse until 1 week before the inoculation treatment. The
greenhouse comprised two layers of transparent materials and
was equipped with air conditioning and humidifying facilities to
provide suitable environmental conditions (26–32◦C, over 90%
relative humidity, and a photoperiod of 14 h) for the artificial
inoculation of the BLB pathogen. The artificial inoculation
operations were conducted on rice leaves to induce BLB infection
at the tillering stage. The BLB pathogen (Xanthomonas oryzae
pv.oryzae Xoo) was provided by the College of Plant Protection at
Nanjing Agricultural University, Nanjing, Jiangsu, China. After
the BLB pathogen was isolated, it was transferred to the plate
medium (beef extract 0.3%, meat peptone 1%, sucrose 1%, and
agar 2%). The bacteria were placed in an incubator at 28◦C
and cultivated for 48 h, diluted with phosphate buffered saline.
The concentration was diluted to about 9 × 109 bacteria per
milliliter by the turbidimetric method. The surgical scissors were
used to dip the bacterial solution and cut off the tip of the rice
flag leaf to complete the bacterial inoculation. All inoculation
operations were completed within 3 h. After inoculation, all
plants were completely covered with black, light-tight plastic
materials for 48 h. Temperature (26–32◦C), relative humidity
(≥90%), and light conditions were all strictly controlled to ensure
a successful infection.

Definition of the Disease Infection Process
Previous studies have typically defined disease severity at the
leaf level as the average percentage of symptomatic surface areas
(Bock et al., 2020; Tian et al., 2021). However, rice leaves with
asymptomatic infections cannot be described by this method. For
the rice BLB disease, the appearance of obvious symptoms on rice
leaves indicates that a large area has begun to spread, which is
not conducive to the timely prevention of the disease. Effectively
identifying asymptomatic infections is crucial for the prevention
and control of the BLB disease.

Since the spectrum of health pixels is different from infected
areas, a pixel-level annotation method can be used to visualize
areas of asymptomatic infection and to more precisely define
the disease levels (Lowe et al., 2017). Labels for each pixel
sample were determined by combining visual inspection of leaf
color with spectral changes (Sun et al., 2018). Specifically, the
healthy ROI was defined as the same uninoculated area without
any change in the spectrum after inoculation (Figure 3A). The
asymptomatic ROI was defined as the area where obvious disease
lesions had not yet appeared but the spectral of infected leaves
changed. In the asymptomatic stage, light yellowish-green watery
lesions could be observed on a few infected leaves, but they
are often not easily noticed under field conditions (Figure 3B).

FIGURE 3 | The pixel-level annotation of disease severity levels. (A) Denotes
pixels that belong to the healthy class. (B) Denotes pixels that belong to the
asymptomatic class. (C–E) Denote pixels that belong to the symptomatic
class.

The symptomatic ROI was defined as the leaves are turning
into wavy yellow green or gray green spots along one or both
sides of the leaf margin or along the mid-vein, along with
irregular chlorotic spots, and then turning into withered yellow
patches or large patches (Figures 3C–E). The boundary between
the symptomatic part and the asymptomatic part is observable,
whereas it is difficult to distinguish between the asymptomatic
and healthy pixels.

Data Collection and Processing
The configuration of the hyperspectral imaging system and
parameter settings in this study can be referred to Zhang et al.
(2015). The correlative settings of HSI, including the speed of the
motor and positions, could be set by the software (Isuzu Optics
Corp, Taiwan, China). The main components and parameters of
the hyperspectral imaging system are shown in Table 1.

The imaging system was pre-heated for 5 min before collecting
hyperspectral images. For data collection, rice leaves were placed
on the stage below the imaging lens at an object distance of 27 cm,
and leaves were fixed on a black background (Figure 4).

The spectrum was recorded in the wavelength range of
378.28–1033.05 nm by the hyperspectral imaging system. In the
first conversion step, the information was transformed to a cube
format containing the spatial information in the x–y directions
and the spectral information in the z direction (Bauriegel et al.,
2011). Due to the existence of dark current in the CCD camera
and the uneven intensity distribution of the light source in
different spectra, the obtained hyperspectral image is unstable.
Therefore, the hyperspectral image correction was carried out by
the black and white correction method (Zhang et al., 2015). After
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TABLE 1 | Main components of the imaging system and parameter settings.

Parameters Value (unit) Parameters Value (unit)

Spectral
camera

Raptor EM285 Light input 21V/200W halogen
light

Dispersion 97.5 nm/mm Spectral range 378.28–
1033.05 nm

Spectral
resolution

2.14 nm Image size 1632 × 1401 pixels

Spatial
resolution

Spot diameter
< 9 µm

Object distance 27 cm

Aberration Halo < 1.5 µm,
trapezoid < 1 µm

Exposure time 8 ms

Aperture F/2.4 Move speed 0.8 mm/s

FIGURE 4 | The schematic of the hyperspectral imaging system. 1. Imaging
lens; 2. halogen lamps; 3. transportation platform; 4. leaves sample.

collecting the hyperspectral images of all diseased rice leaves, the
leaf samples were quickly put back into the original environment
for further cultivation so as to facilitate the next image collection
while reducing the impact of the environment on plant growth
and disease development.

Overview of Data Processing and
Modeling Pipeline
The spectrum used in this study ranged from 378.28 to
1033.05 nm, 306 wavelengths in total. In order to reduce
redundancy and increase the computational efficiency, RF and
PCA were used to extract spectral features from raw hyperspectral
images. According to the number of extracted features, nine
datasets were established. The detection performance of the SDC-
3DCNN model over the nine datasets was tested. Meanwhile, the
effect of dilation ratios was also examined through experiments.
Lastly, the saliency score of wavelength channels was calculated
and sorted for interpretation of feature importance. The overview
workflow of the data processing and modeling pipeline for early
rice BLB disease detection is shown in Figure 5.

Hyperspectral Preprocessing
Raw hyperspectral images were analyzed with the software ENVI
5.3 (ITT Visual Information Solutions, Boulder, United States).

With this software, symptomatic and healthy pixels of leaves
could easily be labeled in a false color image at 450, 550, and
650 nm by visual inspection. While asymptomatic pixels have
to be labeled according to the spectral change. The false color
images also facilitated the proper manual setting of ROIs and
the selection of tissues for spectral analysis. In all hyperspectral
images, spectra of healthy and infected tissue areas were obtained
pixel-wise. To reduce the impact of noise at both ends of the
spectrum, only 450–950 nm (a total of 232 wavelengths) were
intercepted for further analysis. The original spectra of different
ROIs are shown in Figure 6A.

In order to eliminate the random noise in the spectral signal
and improve the signal-to-noise ratio of the sample signal, the
Savitzky–Golay (SG) smoothing filter was used to reduce the
random noise (the kernel size was 5 × 5 × 5, the polynomial
order was 3, and the filter value was calculated at the central
node of the kernel). The noise in the spectra of different ROIs
was greatly reduced after SG smoothing, and the interference
of size difference and different information structures was
removed (Figure 6B).

The original spectra and SG smoothed spectra in the range of
450–950 nm are shown in Figure 6. The general distribution of
the reflection intensity of the healthy ROI is consistent with the
asymptomatic ROI, however, both of which are different from
the reflection intensity of the symptomatic ROI. From 450 to
550 nm, the reflectance of all spectra shows an increasing trend.
While the trend changes between 550 and 750 nm, for healthy and
asymptomatic ROI, the reflectance shows a significant decrease
in the spectral range of 550–680 nm and a rapid increase in
the range of 680–750 nm. The reflectance of the asymptomatic
spectrum is higher at each wavelength than the reflectance of the
healthy spectrum. For symptomatic ROI, the reflectance from 680
to 750 nm increases less than the reflectance of asymptomatic
ROI. Finally, between 750 and 950 nm, the spectrum tends to be
flat. The difference between different spectra provides a basis for
classifying different pixels based on the spectral information.

Features Extraction by Different Algorithms
Considering that the variation of disease rice physiological
parameters could induce strong responses at specific spectral
wavelengths, the unbalance of the spectral features selected from
the 450–950 nm range could be attributed to the sensitivity of
different physiological parameters to disease infection. Spectral
information covers wavelengths from 450 to 950 nm and is
characterized by a high dimension of redundancy between
adjacent wavelengths. Excessive redundant spectral information
brings great challenges to detection methods and computational
complexity (Hennessy et al., 2020; Zhang et al., 2021b). Therefore,
it is necessary to compress the amount of data by a dimensionality
reduction method to reduce the cost of subsequent processing
on the basis of not dropping the effective feature spectral
information (Poona et al., 2016; Sadeghi-Tehran et al., 2021).

On the one hand, the principal component analysis (PCA)
algorithm is a common data compression method and it is
often used for dimensionality reduction of high-dimensional
data. PCA can extract principal components (PCs) of original
hyperspectral data (Hsieh and Kiang, 2020). The main idea of
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FIGURE 5 | The overview workflow of data processing and modeling pipeline for early rice BLB disease detection.

PCA in this paper is to map 232 wavelengths to a k-dimensional
feature space (k < 232). On the contrary to simply removing
less important dimensional features from the original space, these
k-dimensional features can be viewed as PCs through mapping
the features in the original space into a latent space. The PCs were
obtained by following the calculation process shown in Figure 7.

The PCA was used to extract PCs from the smoothed
232 wavelengths of hyperspectral images. The original
hyperspectral data was projected to a k-dimensional space
for dimensionality reduction.

On the other hand, the random forest wavelength extraction
method is to randomly replace each wavelength and to evaluate
its importance (Ma et al., 2018). The higher the wavelength
importance, the greater the variation in the prediction error
rate would achieve (Hidayat et al., 2017; Speiser et al., 2019).
In this way, each wavelength was scored by the change in the
error rate of the out-of-bag data before and after wavelength
replacement, so as to obtain the characteristic wavelength with
a high importance score (Tan et al., 2020). In this paper, in order
to reduce the dimension of original hyperspectral data, a different
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FIGURE 6 | The reflection intensity of different ROIs: (A) Original spectra; (B) SG smoothed spectra. A single line represents the reflection intensity of an individual
spectrum. The total number of spectra in (A) and (B) is both 1000.

number of characteristic wavelengths were selected according to
the important score.

The random forest algorithm used for extracting characteristic
wavelengths is described as follows. The number of decision trees

FIGURE 7 | Flowchart of extracting the PCs.

in the RF is denoted by Ntree, set at 200; the number of the
original wavelength is denoted by d, set at 232. The wavelength
importance measurement based on out-of-bag error analysis of a
single feature Xj(j = 1, 2, , d) was calculated as follows:

Step1: Calculate the number of Out-of-Bag error samples
ErrOOBi of Out-of-Bag data OOBi corresponding to the
ith decision tree.

Step2: Keep other wavelengths unchanged, randomly change
the wavelength Xj in OOBi, and obtain OOBji.

Step3: Re-calculate the number of out-of-bag error samples
ErrOOBji of out-of-bag data OOBji.

Step4: Repeat steps 1, 2, and 3 to obtain{
ErrOOBji|i = 1, 2, ,Ntree

}
.

Step5: The importance score VI
(
Xj) of wavelength Xj was

calculated by Equation 1:

VI(Xj) =
1

Ntree

Ntree∑
i

(ErrOOBji − ErrOOBi) (1)

Both PCA and RF were adopted to reduce the dimension of
raw hyperspectral data, thereby minimizing the computational
complexity. The importance score of each wavelength from
the original spectrum was ranked by the above methods, and
the top 50, 100, 150, and 200 wavelengths extracted by RF
were used to establish four datasets. On the other hand, the
principal components (PCs) of the top 50, 100, 150, and 200
rankings extracted from the original spectrum by PCA were
used to establish another four datasets. In addition, the original
smoothed 232 wavelengths without feature extraction were used
to establish the ninth dataset for comparison as well. In total, nine
datasets were established.

Spectral Dilated Convolution
Dilated convolution is usually applied to expand the receptive
field without changing the original structure or the number
of parameters of the model (Cao and Guo, 2020). Whereas
traditional 2D dilated convolutions can only enlarge the receptive
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field along spatial dimensions (Xu et al., 2021). Due to the 3D
character of hyperspectral data, 3-Dimensional Spectral Dilated
Convolution (3D SDC) was developed to expand the receptive
field along three dimensions of hyperspectral (Figure 8).

The receptive field of 3D SDC is decided by the spectral dilated
ratio (SDR) as:

Rf = 2 × (rSDR − 1) × (k− 1)+ k (2)

Where Rf represents the receptive field of a single convolution
kernel; rSDR represents the spectral dilation ratio; k represents the
size of convolution kernels. Here k was set to 3 (Mohanty et al.,
2016; Albattah et al., 2022).

As shown in Figure 8, the black cubes represent the
convolution kernel, and the white cubes cover the receptive
field. When SDR is set to 1, 2, and 3, the receptive fields
of the convolution kernels are 3 × 3 × 3, 7 × 7 × 7, and
11× 11× 11, respectively.

Residual Module
The increase in the model depth usually improves the
performance of the neural network (Xu et al., 2021). However,
such an increase may cause gradient vanishing or gradient
explosion (Zhong et al., 2018). Cao and Guo (2020) suggested that
the 3D residual connection can solve this problem.

The input information can be directly passed to subsequent
layers through the residual module. The shortcut connections can
be seen as identity mapping. In a residual block, the output of the
lth block is computed by Equation 3:

xl+1 = F(xl)+ h(xl) (3)

Where xl and xl1 are the input and output of the lth block,
respectively. F (xl) is a residual mapping function, and h (xl) is
an identity mapping function.

As shown in Figure 9, the shortcut connection in the lth
residual block, shown in blue background, h (xl) is basically a
direct connection between the input and output of the lth block,
while F (xl) usually contains multiple convolution layers and
batch normalization and activation.

Spectral Dilated Convolution 3-Dimensional
Convolutional Neural Network Framework for Early
Disease Detection
In this paper, we compared different numbers of input features.
The RF can sort the original wavelength according to the
importance score. The top 50, 100, 150, and 200 characteristic
wavelengths extracted by the RF were treated as inputs to the
SDC-3DCNN model, respectively. On the other hand, the top
50, 100, 150, and 200 PCs extracted by PCA from the original
spectrum were also treated as inputs to the SDC-3DCNN model,
respectively. In addition, the smoothed 232 wavelengths were
treated as the input to the SDC-3DCNN model for comparison.
The framework of the SDC-3DCNN model is presented in
Figure 10, where H, W, and D represent the height, width, and
size along the spectral dimension of the data cube. The SDC
modules can extract and fuse features corresponding to multiple
wavelength resolutions, so the important wavelength information
can be more effectively used. We also employed residual blocks
to avoid the gradient vanishing problem (Xu et al., 2021). The
target sample from the infected rice leaf HSI is composed of
31680 (132 × 240) pixels, which are divided into three classes:
healthy, asymptomatic, and symptomatic. The datasets were
divided into a training set, a verification set, and a test set under
the ratio of 8:1:1.

The 3D convolution is achieved by using a 3D kernel to stack
multiple contiguous wavelengths into a cube (Pi et al., 2021). By
this construction, the feature maps in the convolution layer are
connected to multiple wavelengths frames in the previous layer,
thereby capturing spectral information. Formally, the value at
position (x, y, z) on the jth feature map in the ith layer, denoted
as vxyz

ij , is computed by Equation 4.

vxyzij = f
(∑

m

hi−1∑
h=0

wi−1∑
w=0

di−1∑
d=0

whwd
ijm v(x+h)

(i−1) m
(y+w)(Z+d)

+ bij
)

(4)

Where Hi, Wi and Di are the height, width, and the size along the
spectral dimension of the kernel. wxyz

ijm is the value at the position(
h,w, d

)
of the kernel connect to the mth feature map in the

FIGURE 8 | 3D dilated convolution under different SDRs: (A) SDR = 1; (B) SDR = 2; (C) SDR = 3. It can be considered that zeros are inserted into the kernel to
evenly space the filter under different SDRs.

Frontiers in Plant Science | www.frontiersin.org 8 July 2022 | Volume 13 | Article 963170

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-963170 July 7, 2022 Time: 15:5 # 9

Cao et al. SDC-3DCNN

FIGURE 9 | Schematic of the 3D residual module.

previous layer. bij is the bias for this feature map. m indexes over
the set of feature maps in the (i− 1)th layer connected to the
current feature map, and the other parameters are the same as
in the 2D convolution (Ji et al., 2013).

The SDC-3DCNN model used cross entropy as the loss
function and the stochastic gradient descent optimizer for
training. The specific parameters of SDC-3DCNN were as
follows: learning rate was set to 1× 10−3, weight decay coefficient
was set to 1 × 10−6, momentum was set to 0.95, epsilon was set
to 1 × 10−5, epoch was set to 50, dropout was set to 0.45. In
order to achieve fast convergence, the training set was divided
into multiple batches, and the batch size was set to 64.

Saliency Wavelengths in Hyperspectral
Images
In order to prove the reliability of the detection results, we added
post-hoc explanations. A saliency map method was applied to
look into the classification results and further improve the overall
design of the system. Saliency scores have been used as a popular
visualization technique to detect how and why a deep learning
neural network makes certain predictions (Zhang et al., 2021c).

In this research, a saliency explanation of wavelength channels
was applied. Through one single back-propagation, the derivative
ω from a specific predicted result to the input wavelength can
be obtained from the well-trained model with the index h(i, j, c).
Here, (i, j) indicates the spatial arrangement of elements in ω,
while c indicates spectral channels (Zhang et al., 2021c). The
wavelength saliency scores Wc can be calculated by Equation 5.

Wc =
∑

i

∑
j

|ωh(i,j,c)| (5)

All contributions from one specific wavelength channel were
summed. The saliency score represents the contribution of
different wavelength channels to the classification result.
The importance of a specific wavelength can be quantified
by the saliency gradient magnitude at that wavelength
(Nagasubramanian et al., 2018).

Classification Assessment
This paper considers the widely acknowledged criteria to evaluate
the proposed SDC-3DCNN model, including precision, recall,
F1 score, accuracy, and kappa coefficient. True positive, false
positive, false negative, and true negative are denoted by TP, FP,
FN, and TN, respectively. The formulas of precision (P) and recall
(R) are presented in Equations 6 and 7.

P =
TP

TP+ FP
× 100% (6)

R =
TP

TP+ FN
× 100% (7)

It is expected that the values of precision and recall should
be higher, but they are incompatible. The F1 score is a better
metric that combines the characteristics of precision and recall to
evaluate the model for different classes in the dataset. A high F1
score is also indicative of satisfactory classification performance.

FIGURE 10 | Framework of the spectral dilated convolution 3-dimensional convolutional neural network model.
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The F1 score formula is presented in Equation 8.

F1 =
2 × TP

2 × TP+ FN+ FP
× 100% (8)

Accuracy (A) is another evaluation metric. In general, the higher
the accuracy, the better effect that a model would achieve. The
formula of accuracy is presented in Equation 9.

A =
TP+ TN

TP+ TN+ FN+ FP
× 100% (9)

Kappa coefficient (K) is used for consistency test and
classification accuracy. The higher the Kappa coefficient,
the better consistency that a model would achieve. The formula
of Kappa coefficient is presented in Equations 10 and 11:

K =
A−Pe

1−Pe
× 100% (10)

Pe =

∑n
i=1 ais × asi

N2 (11)

Where ais is the sum of the elements in the i row of confusion
matrix, asi is the sum of the elements in the i column of confusion
matrix, n is the number of columns in confusion matrix, N is the
total number of pixel samples.

Besides, the training time and the number of trainable
parameters of the model are also important indicators to evaluate
the complexity of the model.

RESULTS

The proposed model is programmed in Python and implemented
based on the Tensorflow and Keras open-source deep learning
framework. The operating platform hardware configuration
includes the NVIDIA GeForce RTX 2080Ti GPU and the AMD
Ryzen 5-1600 Six-Core processor @ 3.20 GHZ CPUs.

A total of nine datasets were constructed from 50, 100,
150, and 200 characteristic wavelengths extracted by RF (4
datasets), 50, 100, 150, and 200 PCs extracted by PCA (4
datasets), and smoothed 232 wavelengths without any extraction
(1 dataset). Each dataset is divided by 80% for training, 10%
for validation, and 10% for testing. The performance of the
SDC-3DCNN was evaluated as follows. First, the SDC-3DCNN
model was trained and evaluated with those nine datasets. It
is noted that at this stage, the SDR was set to 1, meaning that
the SDC module did not have any effect. Second, we further
explored the effect of the SDC module by adjusting the spectral
dilated ratios. Finally, the saliency map method was used to
interpret the important features that contributed the most to the
classification results.

Features Extracted by Random Forest
and Principal Component Analysis
In this paper, the RF was used to rank the importance of
the original 232 wavelengths of the hyperspectral spectrum
(Figure 11A). It can be seen that wavelengths with the highest
importance scores are mainly distributed at 530–710 nm. It has

been shown clearly in Figure 11B that the top 10 wavelengths
with high importance scores are 547.2, 534.5, 551.4, 566.2,
697.4, 530.3, 693.0, 543.0, 538.7, and 568.4. The original 232
wavelengths were sorted according to the importance score
obtained from the RF. The top 50, 100, 150, and 200 characteristic
wavelengths were used to construct datasets for the detection of
the asymptomatic BLB disease.

On the other hand, the PCA was used to compute the
variance contribution of PCs. It can be seen from Figure 12
that the x-axis represents the first principal component score
and the y-axis represents the second principal component score.
It can be seen that healthy, asymptomatic, and symptomatic
pixels were projected into different categories. The top 50, 100,
150, and 200 PCs extracted by PCA were used to establish the
datasets, respectively.

Detection Performance of Spectral
Dilated Convolution 3-Dimensional
Convolutional Neural Network With
Different Input Features
Table 2 shows the performance comparison of using nine
datasets to detect healthy, asymptomatic, and symptomatic
pixels. The original 232 wavelengths without feature extraction,
the top 50, 100, 150, and 200 PCs extracted by PCA, and
the top 50, 100, 150, and 200 characteristic wavelengths
extracted by RF were used as inputs to the SDC-3DCNN
model, respectively. It can be seen from Table 2 that the
fewer the input features, the shorter the training time and the
less the trainable parameters will be. For the same number
of features extracted by RF and PCA, there was a minor
difference between the training times. When the number of
input features was reduced to 50, the training time is almost
reduced to a quarter, and the number of trainable parameters
is reduced to about 1/6, compared with the full-feature input.
In terms of classification accuracy, when the characteristic
wavelengths extracted by RF were used as the input, the overall
performance is higher than that when the PCs extracted by PCA
and the original 232 wavelengths without features extraction
are used as the input. When the input is 50 characteristic
wavelengths extracted by RF, the performance of the model
achieved the best, with an accuracy of 94.7640% and a kappa
coefficient of 92.1466%.

Figure 13 shows the accuracy (Figure 13A) and loss value
(Figure 13B) of the validation set when inputting different
features extracted by PCA and RF, as well as the full wavelengths.
It can be seen that the worst accuracy was achieved when
the full wavelengths were used as the input to the SDC-
3DCNN model. However, using features extracted by PCA and
RF as inputs, the SDC-3DCNN model achieved better results,
especially the latter one.

From the results in Table 2 and Figure 13, it can be
seen that the performance is better when the characteristic
wavelengths extracted by RF are treated as the input. This shows
that the redundant spectral information not only increases the
computational complexity and training time of the model but
also reduces the performance of the detection model. It can be
concluded that RF is more suitable for dimensionality reduction.
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A B

FIGURE 11 | The importance scores of wavelengths: (A) importance scores of 232 wavelengths; (B) the ranking of importance scores of the top 50 wavelengths.

FIGURE 12 | PCA scores map of first two principal components.

Classification Performance Assessment
With Different Spectral Dilated Ratios
It can be seen from Table 2 that when the number of extracted
features is 50, the model performance is the best. As a result, we
set the number of input features to 50 and then tested the SDR
module with various spectral dilated ratios. As shown in Table 3,
for the 50 characteristic wavelengths extracted by RF, when the
SDR is 5, the SDC-3DCNN model reached the optimal detection
performance with an accuracy of 95.4427%. It is also worth
noting that when the SDR is set to 5, the SDC-3DCNN model
could detect healthy samples more accurately, with a precision
of 97.7513%. The performance of detecting symptomatic samples
ranks the second, with a precision of 94.3126%. It is nature

that the SDC-3DCNN model achieved the worst precision
(94.2804%) in the asymptomatic detection task because the
asymptomatic samples just had minor differences with the
healthy ones. Lastly, it is also glad to notice that the detection
performance is generally improved when the SDR is enabled
(when SDR is set greater than 1).

It can be seen from Table 4, for 50 PCs extracted by PCA
as the input, when the SDR is 3, the detection performance
reached the best, and the accuracy achieved at 93.2252%. Diving
into the detection performance of each class, it is noted that the
SDC-3DCNN model still can predict the healthy samples with the
highest precision (96.6517%), following the symptomatic class
with a precision of 93.2132%. This finding indicated that the class
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TABLE 2 | Classification performance of different inputs.

Feature extraction
method

Number of input
features

Training time/s Number of trainable
parameters

Accuracy/% Kappa coefficient/%

RF 50 154.1598 1,559,731 94.7640 92.1466

100 263.6340 3,263,667 94.6772 92.0167

150 382.1071 4,836,531 94.3261 91.4893

200 502.7476 6,540,467 94.7122 91.0660

PCA 50 154.7476 1,466,515 92.9688 89.4517

100 262.8174 2,870,451 92.6847 89.0279

150 383.3145 4,443,315 92.6491 88.9721

200 501.7399 6,147,251 92.9648 89.4443

None 232 573.6130 7,589,043 89.4492 84.1938

The bold values denote the achieved best performance.

A B

FIGURE 13 | Performance over the validation set: (A) accuracy; (B) loss.

sensitivity varies in the SDR settings. Meanwhile, we noticed that
when the 50 PCs were treated as the input and the SDR was set
to 2, the precision of detecting asymptomatic samples reached
at 91.1620%, even higher than the performance of symptomatic
detection.

By summarizing the results in Tables 3, 4 it can be concluded
that compared with using the 50 PCs extracted by PCA as
the input, using the 50 wavelengths extracted by RF may
generally achieve better performance, no matter how the SDR
was set. Meanwhile, due to the feature information extracted
by RF and PCA is different, the SDC-3DCNN model requires
specific SDR settings.

For further exploring the effect of SDR settings, we presented
the detection results in Figure 14. The red, green, and blue
pixels represent healthy, asymptomatic, and symptomatic pixels,
respectively. It can be seen that when the SDR equals 1–4, the
SDC-3DCNN model failed to classify certain pixels, especially the
ones near the boundary between asymptomatic and symptomatic
areas. This can be attributed to the over-extraction of the spectral
information. When SDR equals 5, the classification result was
fairly good, as more pixels can be classified correctly.

Interpretation of Feature Importance
Analysis
Figure 15 shows the saliency scores of each wavelength
channel, which guides us to extract the important channels for
detecting healthy, asymptomatic, and symptomatic pixels from
infected rice leaves.

The contributions of different wavelengths are depicted as
the gray area shown in Figure 15. Here the spectral saliency
scores were min-max normalized into the range of [0, 1].
It can be seen that all channels did not contribute equally
to the classification result. The regions between 530–580 and
680–710 nm contributed the most, which were 547.2, 534.5,
551.4, 564.1, 697.4, 530.3, 695.2, 543.0, 538.7, and 568.4 nm.
As shown in Figure 16, when compared with the top 10
characteristic wavelengths extracted by RF, it can be found that
eight characteristic wavelengths overlapped with the saliency
sensitive wavelengths. Through analysis of interpretation, the
accuracy of the extracted wavelengths by RF is verified. At the
same time, the saliency score can also be used to determine
the characteristic wavelengths and reduce the dimensionality of
the spectrum, thereby improving the computational efficiency.
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TABLE 3 | Performance of spectral dilated convolution 3-dimensional convolutional neural network models under different SDRs with RF extracted feature inputs.

Class Evaluating indicator SDR

1 2 3 4 5

Healthy Precision/% 94.7901 98.8107 97.3088 97.3327 97.7513

Recall/% 99.4036 96.1350 98.3419 98.3777 98.0079

F1-score/% 97.0420 97.4545 97.8226 97.8524 97.8794

Asymptomatic Precision/% 92.5733 90.5362 96.8478 91.1809 94.2804

Recall/% 91.4542 95.3800 86.4153 94.5302 91.7415

F1-score/% 92.0104 92.8950 91.3346 92.7431 92.9936

Symptomatic Precision/% 96.9153 96.5538 90.3685 97.1809 94.3126

Recall/% 93.4581 94.0855 98.8845 92.5285 96.5373

F1-score/% 95.1553 95.3037 94.4349 94.7976 95.4120

Average precision/% 94.7596 95.3002 94.8417 95.2315 95.4481

Average recall/% 94.7720 95.2002 94.5472 95.1455 95.4289

Average F1-score/% 94.7359 95.2177 94.5307 95.1310 95.4283

Accuracy/% 94.7640 95.1902 94.5944 95.1231 95.4427

The bold values denote the achieved best performance.

TABLE 4 | Performance of spectral dilated convolution 3-dimensional convolutional neural network models under different SDRs with PCA extracted feature inputs.

Class Evaluating indicator SDR

1 2 3 4 5

Healthy Precision/% 96.4727 96.8532 96.6517 96.9132 96.5840

Recall/% 97.8767 97.6619 97.4472 97.3756 97.1371

F1-score/% 97.1696 97.2559 97.0478 97.1439 96.8598

Asymptomatic Precision/% 90.2768 91.1620 89.7676 88.7874 89.8821

Recall/% 88.2346 86.6667 89.6709 89.5631 87.6122

F1-score/% 89.2440 88.8575 89.7192 89.1736 88.7327

Symptomatic Precision/% 92.0673 90.5007 93.2132 92.7705 91.4471

Recall/% 92.7841 94.0971 92.5633 91.5524 93.1792

F1-score/% 92.4243 92.2639 92.8871 92.1574 92.3050

Average precision/% 92.9389 92.8386 93.2108 92.8237 92.6377

Average recall/% 92.9651 92.8086 93.2271 92.8304 92.6428

Average F1-score/% 92.9460 92.7924 93.2180 92.8250 92.6325

Accuracy/% 92.9688 92.8267 93.2252 92.8227 92.6531

The bold values denote the achieved best performance.

This evidence also provides some explanations for the decision-
making of the model, indicating that the model might use these
features to distinguish pixels in different infected states.

DISCUSSION

Advantages of Using Feature Extraction
and Spectral Dilated Convolution
3-Dimensional Convolutional Neural
Network Classification Models
Our results suggest that the combination of deep learning
and hyperspectral imaging can be a useful approach for
detecting asymptomatic infections of BLB disease in rice leaves.
Previous studies have demonstrated that redundancy exists
in the raw hyperspectral spectrum, leading to an increase in

computational complexity (Li et al., 2017). Therefore, feature
extraction is necessary. In this study, RF and PCA both
can extract characteristic features from the raw hyperspectral
data. Additionally, the characteristic wavelengths extracted by
RF may assist the SDC-3DCNN model in achieving better
classification performance than the ones extracted by PCA.
Compared with PCA, the characteristic wavelengths extracted by
RF could be better interpreted. The advantage of interpretability
enables a multispectral camera to incorporate only the most
important wavelengths instead of adopting the full wavelengths
for disease detection.

Feasibility of Hyperspectral in
Asymptomatic Disease Detection
We find that the healthy, asymptomatic, and symptomatic
pixels of rice leaves are sensitive to different wavelengths.
According to Šebela et al. (2018), Zhang S. et al. (2019), the
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FIGURE 14 | Comparative results under different SDRs. The red, green, and blue pixels represent healthy, asymptomatic, and symptomatic pixels, respectively. The
input to the spectral dilated convolution 3-dimensional convolutional neural network model is 50 characteristic wavelengths extracted by RF.

FIGURE 15 | Spectral saliency scores.

invasion of the rice BLB disease will cause inner changes
such as pigment, cell structure, and leaf water content. The
reflectance of different pixels is mainly affected by those inner
changes in leaves, which provides a theoretical basis for disease
detection based on hyperspectral imaging. In recent studies
(Su et al., 2018; Wang et al., 2019; Savian et al., 2020), it has
been demonstrated that accurate extraction of leaf characteristic
wavelengths at different scales is feasible and facilitates the
possibility of detecting the subtle spectral variation induced
by the BLB disease infection. Compared with RGB images,
hyperspectral imaging can obtain not only the texture and color
information, but also the spectral information of the internal
changes in rice leaves. This early detection can guide growers
to prevent and apply pesticides in advance, thereby avoiding

the BLB disease outbreak. On the other hand, the asymptomatic
detection method proposed in this paper for the BLB disease
can also be applied to the detection of asymptomatic infection
of other plant diseases.

Potential of Spectral Dilated Convolution
for Hyperspectral Imaging
At present, dilated convolution is mostly applied to increase
the receptive field without pooling in 2D computer vision tasks.
For the same feature map, a larger receptive field can decrease
the computation complexity and improve the effect of small
object recognition. Whereas the hyperspectral image is a cube,
which not only includes 2D spatial information but also includes
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FIGURE 16 | Venn diagram for the characteristic wavelengths and the
saliency wavelength channels.

the spectral information, 3D spectral dilated convolution is
needed for hyperspectral image processing. There is rarely
research on 3D spectral dilated convolution for hyperspectral
data analysis. Xu et al. (2021) used 3D dilated convolution in
hyperspectral image classification and achieved a good result.
However, only spectral dimension dilated convolution was
considered in the research. Considering the 3D characteristics
of hyperspectral images and the information redundancy of the
spectral dimension, we tested the effectiveness of 3D SDC in
hyperspectral data processing. Different SDRs were compared
and the SDC-3DCNN model achieved the best performance
when the SDR was 5. The 3D SDC increases the receptive field not
only in the spectral dimension but also in the spatial dimension,
thus obtaining richer features.

Interpretation of Characteristic
Wavelengths
At current, researches are paying attention to the interpretability
of deep learning models because the explainable scale network
can more precisely analyze the relationship between the learned
scale features and different classes (Shi et al., 2022). Human-
understandable results are more acceptable than undetectable
black-box results, especially in the practical application of disease
detection. On the basis of spectral saliency, we can find that
the important wavelengths for classifying healthy, asymptomatic,
and symptomatic pixels were located at 530-710 nm, which is
consistent with the research results of Wang et al. (2019). In this
paper, we used the saliency score to interpret the results of the
model and infer the wavelengths that contributed the most to
the output results. The top 10 saliency wavelengths overlapped
with 8 wavelengths from the top 10 characteristic wavelengths
extracted by RF, which indicated the validity of RF in extracting
characteristic wavelengths. On the other hand, the saliency map
method can figure out the important wavelengths, which are not
extracted by RF. In addition to the significant saliency score, other
interpretation methods can be further developed.

CONCLUSION

This is the first study to use hyperspectral imaging and deep
learning to detect the infection of rice leaf BLB disease,
particularly in the early asymptomatic stage that RGB imaging
cannot detect. In this paper, RF and PCA were used to extract
features from raw hyperspectral data. The detection performance
of the SDC-3DCNN model with different input features and
spectral dilated ratios was tested and compared. When 50
wavelengths extracted by RF were used as the input and SDR
was set to 5, the SDC-3DCNN model achieved the highest
accuracy at 95.4427%. In addition, the effectiveness of extracting
characteristic wavelengths was verified by saliency scores, and the
wavelengths with the greatest contributions were in the range of
530–710 nm. In conclusion, the combination of deep learning
and hyperspectral imaging can achieve good performance for
asymptomatic rice BLB disease detection. The proposed method
can further evaluate the incidence of plant diseases, providing an
early disease warning for farmers to apply pesticides accurately
and efficiently.
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