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Ascorbate peroxidase (APX), an important antioxidant enzyme, plays a significant role
in ROS scavenging by catalyzing the decrease of hydrogen peroxide under various
environmental stresses. Nevertheless, information about the APX gene family and
their evolutionary and functional attributes in peanut (Arachis hypogea L.) was not
reported. Therefore, a comprehensive genome-wide study was performed to discover
the APX genes in cultivated peanut genome. This study identified 166 AhAPX genes
in the peanut genome, classified into 11 main groups. The gene duplication analysis
showed that AhAPX genes had experienced segmental duplications and purifying
selection pressure. Gene structure and motif investigation indicated that most of the
AhAPX genes exhibited a comparatively well-preserved exon-intron pattern and motif
configuration contained by the identical group. We discovered five phytohormones-,
six abiotic stress-, and five growth and development-related cis-elements in the
promoter regions of AhAPX. Fourteen putative ah-miRNAs from 12 families were
identified, targeting 33 AhAPX genes. Furthermore, we identified 3,257 transcription
factors from 38 families (including AP2, ARF, B3, bHLH, bZIP, ERF, MYB, NAC,
WRKY, etc.) in 162 AhAPX genes. Gene ontology and KEGG enrichment analysis
confirm the role of AhAPX genes in oxidoreductase activity, catalytic activity, cell
junction, cellular response to stimulus and detoxification, biosynthesis of metabolites,
and phenylpropanoid metabolism. Based on transcriptome datasets, some genes
such as AhAPX4/7/17/77/82/86/130/133 and AhAPX160 showed significantly higher
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expression in diverse tissues/organs, i.e., flower, leaf, stem, roots, peg, testa, and
cotyledon. Likewise, only a few genes, including AhAPX4/17/19/55/59/82/101/102/137
and AhAPX140, were significantly upregulated under abiotic (drought and cold), and
phytohormones (ethylene, abscisic acid, paclobutrazol, brassinolide, and salicylic acid)
treatments. qRT-PCR-based expression profiling presented the parallel expression
trends as generated from transcriptome datasets. Our discoveries gave new visions
into the evolution of APX genes and provided a base for further functional examinations
of the AhAPX genes in peanut breeding programs.

Keywords: abiotic stress, antioxidant, drought, genomics, gene ontology, legume, miRNAs, stress responses

INTRODUCTION

Plants are regularly subjected to various environmental
factors (abiotic and biotic), which substantially influence crop
productivity and cause challenges to food security (Sabagh et al.,
2021; Mir et al., 2022; Raza et al., 2022a,b; Saeed et al., 2022;
Sharma et al., 2022). These factors can enhance the generation
of reactive oxygen species (ROS), damaging cellular systems
and supermolecules consisting of DNA, proteins, and lipids,
and ultimately leading to cell death (Fahad et al., 2015, 2017;
Mittler, 2017; Hasanuzzaman et al., 2020). ROS are mainly
produced in different locations including chloroplast, apoplast,
plasma membrane, mitochondrion, endoplasmic reticulum,
peroxisomes, and cell walls (Mittler, 2017; Hasanuzzaman et al.,
2020). In plants, ROS are formed as chemical by-products
due to the imperfect decline of oxygen metabolism. Further,
ROS are considered as signaling elements that regulate stress
tolerance mechanisms in plant molecular biology (Das and
Roychoudhury, 2014; Mittler, 2017; Hasanuzzaman et al., 2020).
Current progress has revealed that ROS homeostasis is essential
for maintaining typical cellular characteristics (Mittler, 2017;
Hasanuzzaman et al., 2020, 2021). Subsequently, for regular
ROS signaling, plants have developed defense systems including
enzymatic and non-enzymatic antioxidant enzymes to maintain
the equilibrium between ROS-scavenging and production under
stress conditions (Das and Roychoudhury, 2014; Mittler, 2017;
Hasanuzzaman et al., 2020, 2021).

In plants, among diverse antioxidant enzymes entailed in
ROS-scavenging mechanisms, ascorbate peroxidase (APX; EC,
1.11.1.11) belongs to the heme peroxidase superfamily (Hodges
et al., 1999; Teixeira et al., 2004; Lazzarotto et al., 2011). In higher
plants, APXs are one of the main antioxidant enzymes involved
in regulating the ascorbate-glutathione cycle and take parts to
scavenge hydrogen peroxide (H2O2) from chloroplast and the
cytoplasm. Mainly, it utilized the ascorbic acid as an electron
giver to scavenge H2O2 generated in plants and thus enhances
tolerance to oxidative and other stresses in plants (Cao et al.,
2017; Pandey et al., 2017; Hasanuzzaman et al., 2021; Raza et al.,
2021a). Additionally, APX enzymes are automated by APX gene
family involved in stress tolerance has been thoroughly explored
in diverse plant species using various in silico approaches.
For example, five APX genes have been discovered in wild
watermelon (Citrullus lanatus) (Malambane et al., 2018); six in
shrub (Ammopiptanthus nanus) (Wang et al., 2022); eight in

rice (Oryza sativa L.) (Teixeira et al., 2004) and Arabidopsis
thaliana (Panchuk et al., 2002, Panchuk et al., 2005); nine in
sorghum (Sorghum bicolor L.) (Akbudak et al., 2018); 13 in
kiwifruit (Actinidia chinensis) (Liao et al., 2020); 16 APX genes
in tomato (Solanum lycopersicum L.) (Najami et al., 2008); 21
in wheat (Triticum aestivum L.) (Tyagi et al., 2020); and 26 in
cotton (Gossypium hirsutum L.) (Tao et al., 2018). Nevertheless,
the APX gene family in peanut (Arachis hypogea L.) has not been
systematically reported, and their roles in peanut development
and stress tolerance still remain ambiguous.

Cultivated peanut/groundnut (A. hypogaea L.), an
allotetraploid crop, is one of the most valuable and economic
oilseed food crops globally (Agarwal et al., 2018; Bertioli
et al., 2019; Chen X. et al., 2019; Zhuang et al., 2019). This
crop is being widely cultivated in the tropical and subtropical
regions globally; however, several abiotic and biotic factors
significantly affect its growth and production, including many
important agronomic traits (Agarwal et al., 2018; Gangurde
et al., 2020, 2021; Kumar et al., 2020; Pandey et al., 2020;
Shasidhar et al., 2020; Sinha et al., 2020; Jadhav et al., 2021; Soni
et al., 2021; Aravind et al., 2022; Bomireddy et al., 2022; Liu
et al., 2022; Patel et al., 2022). Therefore, it is vital to identify
new potential genes associated with multiple stress tolerance
and trait improvement in peanut for better protein-rich food
supply, particularly in Asian and African countries. In this
regard, the recently sequenced peanut genome and recent
advances in genomics-assisted breeding make it easier for us
to carry out a comprehensive systematic analysis of new gene
families (Varshney et al., 2019, 2020, 2021a,b). To our best
knowledge, APX gene family was yet to be comprehensively
characterized in peanut. Thus, the current study performed
a genome-wide identification and characterized the APX
gene family in peanut (AhAPX). Several in silico analysis,
such as characterization, genomic evolution, gene structure,
conserved motifs, cis-regulatory elements, putative miRNA
and transcription factors, functional annotations, etc., were
utilized to get insights into the novel roles of AhAPX genes.
Furthermore, their expression profiling in diverse tissues/organs,
under phytohormones and abiotic stress conditions were also
performed using transcriptome and qRT-PCR techniques. In
short, this report offered evolutionary and functional roles
of AhAPX genes which could open new windows for further
functional studies on the novel roles of AhAPX genes in peanut
breeding programs under stress conditions.
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MATERIALS AND METHODS

Discovery and Physicochemical Features
of APX Genes
As explained earlier (Li et al., 2021; Raza et al., 2021b; Su et al.,
2021), two approaches, i.e., BLASTP and the Hidden Markov
Model (HMM), were applied to identify APX genes in the peanut
(A. hypogea) genome. The peanut genome sequence was taken
from peanut Genome Resource (PGR) database1 (Zhuang et al.,
2019). In the first approach, the sequences of eight Arabidopsis
thaliana APX genes were gained from TAIR Arabidopsis genome
database2 (Rhee et al., 2003). Then, these sequences were utilized
as a query to perform the BLASTP against peanut genome. In
the second approach, HMMER 3.13 (Finn et al., 2015) software
was employed to seek out the APX genes with default controls.
Later, the HMM file of the ascorbic acid peroxidase domain
(PF00141) was retrieved from the Pfam database4 (El-Gebali
et al., 2019). Lastly, the sequences comprising the PF00141
domain were chosen as putative APX genes, and finally, 166
AhAPX genes were discovered by uniting the results obtained
from both approaches in the peanut genome. Following the same
approaches, APX genes were also discovered in diploid parents,
i.e., A. duranensis (90 genes; AdAPX1-AdAPX90) and A. ipaensis
(102 genes; AiAPX1-AiAPX102). Their genome sequences were
downloaded from PeanutBase database5 (Dash et al., 2016).
The detailed information (including gene name, gene ID, and
protein sequences) of all identified APX genes is given in
Supplementary Table 1.

Physicochemical features of AhAPX were assessed utilizing the
ProtParam tool6 in the ExPASy server (Gasteiger et al., 2005).
Subcellular localization of AhAPX proteins was estimated from
CELLO v.2.57 (Yu et al., 2006). Exon-intron configuration of
all AhAPX were determined using TBtools software (v1.09867)8

(Chen et al., 2020). The conserved motifs of AhAPX sequences
were documented using the MEME website9 (Bailey et al., 2009).

Evaluation of Chromosomal Location,
Phylogenetic Relationships, and Synteny
Analysis of APX Genes
The data about the chromosomal location of AhAPX was attained
from the PGR database, and the TBTools was utilized to map
the genes on chromosomes. To discover the evolutionary link
of the APX proteins, a phylogenetic tree among A. hypogea
(AhAPXs), A. duranensis (AdAPXs), A. ipaensis (AiAPXs), and
A. thaliana (AtAPXs) was created. Multiple sequence alignment
was implemented using MEGA7 software10 (Kumar et al., 2018).

1http://peanutgr.fafu.edu.cn/
2http://www.arabidopsis.org/
3http://www.hmmer.org/
4http://pfam.xfam.org/
5https://www.peanutbase.org/
6http://web.expasy.org/protparam/
7http://cello.life.nctu.edu.tw/
8https://github.com/CJ-Chen/TBtools
9https://meme-suite.org/meme/db/motifs
10https://megasoftware.net/home

The neighbor-joining (NJ) method was undertaken to design a
phylogenetic tree with 1,000 bootstrap replicates and iTOL was
used to beautify the tree11 (Letunic and Bork, 2021).

The syntenic associations of APX genes between A. hypogea,
A. duranensis, A. ipaensis, and A. thaliana were executed through
the MCScanX toolkit and were pictured by the Advance Circos
package in the TBTools software (Chen et al., 2020). Additionally,
the multiple collinearity analysis of APX genes was completed via
multiple synteny Plot packages in TBTools software. The Ka/Ks
ratios of all AhAPX were predicted via simple Ka/Ks calculator in
TBTools software.

Prediction of cis-Regulatory Elements in
the AhAPX Promoters
To predict the putative cis-regulatory elements in the AhAPX
promoters, the 2 Kb sequences upstream of start codons were
separated from the peanut genome. The promoter sequences
of all AhAPX genes were observed with PlantCARE website12

(Lescot et al., 2002), and the picture was illustrated using
TBtools software.

Prediction of Putative miRNAs Targeting
AhAPX Genes and Functional Annotation
Evaluation
The CDS of all AhAPX was used to predict the miRNA
target sites with psRNATarget website13 (Dai et al., 2018) with
default considerations. The interactive network figure among the
putative miRNAs and AhAPX genes was made via Cytoscape
software (v3.9)14 (Shannon et al., 2003). Gene ontology (GO) and
Kyoto encyclopedia of genes and genomics (KEGG) annotation
evaluation was undertaken by submitting all AhAPX protein
sequences to the eggNOG v4.015 (Powell et al., 2014). At the same
time, GO and KEGG enrichment evaluations were performed
with TBtools software.

Prediction of Transcription Factor
Regulatory Network of AhAPX Genes
To predict the putative transcription factors (TFs) and regulatory
network, the 500 bp nucleotide sequences from upstream regions
of AhAPX genes were removed and complied to the PlantRegMap
(Transcriptional Regulatory Map)16 with p-value ≤ 1e−6 (Tian
et al., 2020). The regulatory network of predicted TFs and AhAPX
genes was created with Cytoscape v3.9 software.

Expression Profiling of AhAPX Genes
The expression levels of all AhAPX genes at diverse
developmental tissues/organs (embryo, cotyledon, testa, pericarp,
peg, root and stem, root nodule, root tip, root, step tip, stem,
leaf, and flower), under various hormones (ethylene, abscisic

11https://itol.embl.de/
12http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
13https://www.zhaolab.org/psRNATarget/home
14https://cytoscape.org/download.html
15http://eggnog-mapper.embl.de/
16http://plantregmap.gao-lab.org/binding_site_prediction.php
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acid, paclobutrazol, brassinolide, and salicylic acid), and abiotic
stress (drought and cold) conditions were evaluated using openly
available transcriptome dataset of cultivated peanut (cultivar
Shitouqi) at PGR database (see text footnote 1; BioProject
PRJNA480120) (Zhuang et al., 2019). The detailed procedure for
sample harvesting and data analysis is presented in our recent
paper (Zhuang et al., 2019). Owing to the great differences in
the expression trends, we normalize the log2 of fragments per
kilobase of transcript per million (FPKM) values. Finally, the
circular heat maps were designed by TBtools software.

Plant Material and Stress Conditions
In this study, a widely cultivated peanut variety in southeast
China, “Minhua-6” was used for stress treatments. The same
variety was also used for transcriptome analysis in our recent
paper (Zhuang et al., 2019). The seeds of the “Minhua-6” cultivar
were obtained from the FAFU, Fuzhou, China. The vigor seeds
were cultured on small pots having a mix of vermicompost. For
stress treatment, germinated seedlings at the four-leaf stage were
exposed to cold stress at 4◦C and ABA (10 µg mL−1) for 0 (CK),
3, 6, 9, and 12 h with three biological repetitions. All of the
samples were instantly frozen in liquid nitrogen and were kept
at -80◦C until RNA extraction.

RNA Extraction and qRT-PCR-based
Expression Analysis
Total RNA was isolated utilizing the CTAB method as described
in our recent work (Sharif et al., 2021), and cDNA was prepared
with the help of Evo M-MLV RT Kit with gDNA Clean
for qPCR II (Code No. AG11711; Hunan Aikerui Biological
Engineering Co., Ltd., China) following the developer guidelines.
The comprehensive information on qRT-PCR reaction has been
described in our recent work (Sharif et al., 2021). The peanut
Actin gene was used as a housekeeping gene to stabilize the
expression (Chi et al., 2012). The expression data of three
biological repeats were normalized using the 2−11CT method
(Livak and Schmittgen, 2001). All the primers used for qRT-PCR
are given in Supplementary Table 2. The graphs were made with
GraphPad Prism v9.0.0 software17 (Swift, 1997).

RESULTS

Comprehensive Characterization of
AhAPX Genes in Peanut Genome
In this study, a total of 166 AhAPX genes were discovered in
the peanut genome (Table 1). Henceforward, these genes are
labeled as “AhAPX1–AhAPX166.” These genes were irregularly
mapped in the cultivated peanut genome. The maximum
number (15) of AhAPX genes were mapped on Chr14,
followed by Chr04/Chr11 with 11 genes on each chromosome.
While, Chr01/Chr06/Chr10/Chr20 were found to have ten
genes, followed by Chr05/Chr15/Chr16 with nine genes,
Chr07/Chr19 with eight genes, Chr09/Chr13 with seven genes,

17https://www.graphpad.com/

Chr03/Chr08/Chr17/Chr18 with six genes on each chromosome.
The lowest number (1 and 4) of AhAPX genes were mapped
on Chr02 and Chr12, respectively. Notably, three AhAPX genes
(AhAPX1/2/3) were also mapped on an unassembled region
(Chr00) (Figure 1).

Comprehensive information of all predicted 166 AhAPX
genes is presented in Table 1. In short, the CDS length varied
from 327 bp (AhAPX71) to 1,923 bp (AhAPX25/45), and
the amino acid length assorted from 108 (AhAPX71) to 640
(AhAPX25/45) amino acids. The number of exons varied from
one (AhAPX43/50/61/117/131/134) to 16 (AhAPX45/145)
(Table 1). Particularly, only two genes (AhAPX45 and
AhAPX145) had the uppermost number of introns (i.e., 15), and
quite a few genes lack introns (i.e., AhAPX43/50/61/117/131/134)
(Table 1). The anticipated molecular weights (MW) of the
166 AhAPX proteins increased from 3.85 kDa (AhAPX79) to
70.66 kDa (AhAPX45), the isoelectric points (PI) extended
from 4.41 (AhAPX83) to 9.76 (AhAPX51), and the GRAVY
ranged from -0.639 (AhAPX145) to 0.392 (AhAPX161). The
transformations in MW and PI are primarily due to the
elevated content of necessary amino acids and post-translational
alterations. The in silico subcellular localization discovered that
115 AhAPX proteins were situated on the extracellular matrix,
14 AhAPX proteins on plasma membrane, 12 AhAPX proteins
on cytoplasm, nine AhAPX proteins on chloroplast, and five
AhAPX proteins on mitochondrion (Table 1). Notably, some
AhAPX proteins were found to be located in more than one
location (Table 1).

On the other hand, eight genes (AtAPXs) from A. thaliana,
90 genes (AdAPX1-AdAPX90) from A. duranensis, and 102
genes (AiAPX1-AiAPX102) from A. ipaensis genomes were
also recognized to study the evolution of APX genes between
tetraploid and diploid parents (Supplementary Table 1).

Insights From Phylogenetic
Relationships of APX Proteins
To determine the in-depth evolutionary and phylogenetic history
between the AhAPX (166 members), AdAPX (90 members),
AiAPX (102 members), and AtAPX proteins (8 members), an
unrooted phylogenetic tree was built by a multiple sequence
alignment, which was divided into 11 main groups (group1–
group11) (Figure 2). The discoveries exposed that group1
comprised of seven APX members (2 AhAPX, 2 AiAPX, and
3 AdAPX) followed by group4/5 (eight APX members), and
group3 (14 APX members). Notably, the maximum number of
APX members (66 AhAPX, 39 AiAPX, and 33 AdAPX) were
found in group 11 followed by group7 (38 APX members),
group2/6 (37 APX members), group8/9 (28 APX members), and
group10 (24 APX members) (Figure 2). All AtAPX members
were clustered only in one group, i.e., group 2. In general,
APXs grouped into the indistinguishable sub-group may retain
corresponding functions. It is worth stating that A. hypogea
APX (AhAPXs) were distributed in each group with homologs
from A. duranensis, A. ipaensis, and A. thaliana., and group11
was detected to have more AhAPX members than the other 10
groups (Figure 2). Furthermore, it was observed that the AhAPXs
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TABLE 1 | The data of 166 AhAPX genes identified in peanut genome.

Gene name Gene ID Genomic region CDS
length

(bp)

Exon Intron Protein
length

(aa)

MW
(KDa)

PI GRAVY Subcellular
localization

AhAPX1 AH00G01650.1 Chr00 (2097889, 2103344, +) 1260 11 10 419 44.68 8.64 −0.156 Chloroplast

AhAPX2 AH00G03280.1 Chr00 (4356387, 4358168, +) 756 7 6 251 27.79 5.39 −0.491 Cytoplasmic

AhAPX3 AH00G04650.1 Chr00 (6939173, 6940468, −) 987 4 3 328 35.75 6.17 −0.223 Extracellular
and nuclear

AhAPX4 AH01G28620.1 Chr01 (102500998, 102502258, −) 1011 4 3 336 37.9 8.48 −0.37 Nuclear

AhAPX5 AH01G31200.1 Chr01 (105607976, 105610045, +) 972 4 3 323 35.1 6.59 −0.101 Extracellular

AhAPX6 AH01G01000.1 Chr01 (1376119, 1378806, −) 1005 4 3 334 36.6 8.23 −0.169 Extracellular

AhAPX7 AH01G11780.1 Chr01 (19611835, 19615124, +) 981 4 3 326 35.23 8.87 −0.056 Extracellular

AhAPX8 AH01G05760.1 Chr01 (7328535, 7331547, +) 969 4 3 322 34.26 6.28 0.029 Extracellular
and plasma
membrane

AhAPX9 AH01G05770.1 Chr01 (7337595, 7340770, −) 987 3 2 328 36.11 9.57 −0.173 Extracellular

AhAPX10 AH01G05780.1 Chr01 (7349081, 7354713, −) 969 3 2 322 35.44 8.68 −0.441 Nuclear

AhAPX11 AH01G21450.1 Chr01 (93462135, 93464576, +) 987 4 3 328 35.34 6.08 0.017 Extracellular

AhAPX12 AH01G22400.1 Chr01 (94528243, 94529833, +) 990 3 2 329 36.09 9.2 −0.206 Extracellular

AhAPX13 AH01G26210.1 Chr01 (99439266, 99440500, −) 999 4 3 332 35.7 4.5 −0.139 Extracellular

AhAPX14 AH02G25000.1 Chr02 (95622557, 95623515, +) 660 3 2 219 24.43 8.99 −0.35 Extracellular

AhAPX15 AH03G45630.1 Chr03 (139181976, 139183516, +) 966 3 2 321 34 6.51 −0.088 Extracellular

AhAPX16 AH03G12620.1 Chr03 (14627327, 14629723, +) 978 4 3 325 35.45 6.55 −0.021 Plasma
membrane

AhAPX17 AH03G01960.1 Chr03 (2186290, 2188245, −) 756 9 8 251 27 5.52 −0.319 Cytoplasmic

AhAPX18 AH03G05320.1 Chr03 (5424432, 5426098, +) 978 4 3 325 34.52 8.71 0.015 Extracellular

AhAPX19 AH03G06180.1 Chr03 (6345566, 6348916, −) 867 9 8 288 31.66 6.67 −0.311 Cytoplasmic

AhAPX20 AH03G07350.1 Chr03 (7481431, 7483098, −) 978 4 3 325 34.61 8.71 0.019 Extracellular
and plasma
membrane

AhAPX21 AH04G21680.1 Chr04 (106761278, 106763236, +) 954 4 3 317 33.53 8.05 −0.061 Extracellular

AhAPX22 AH04G21700.1 Chr04 (106776477, 106779460, +) 957 4 3 318 34 4.94 −0.057 Extracellular

AhAPX23 AH04G09710.1 Chr04 (16167517, 16170131, +) 912 4 3 303 33.45 7.53 0.003 Extracellular

AhAPX24 AH04G09790.1 Chr04 (16461353, 16464502, −) 1068 4 3 355 38.16 6.58 0.005 Extracellular
and plasma
membrane

AhAPX25 AH04G09830.1 Chr04 (16586332, 16594630, −) 1923 7 6 640 69.4 5.78 −0.138 Extracellular
and plasma
membrane

AhAPX26 AH04G09840.1 Chr04 (16603008, 16606152, −) 1113 4 3 370 39.73 5.72 −0.016 Extracellular

AhAPX27 AH04G09850.1 Chr04 (16611949, 16615189, −) 1077 4 3 358 38.56 5.74 −0.085 Extracellular

AhAPX28 AH04G09870.1 Chr04 (16648330, 16651554, −) 1080 4 3 359 38.83 7.51 −0.154 Extracellular

AhAPX29 AH04G10990.1 Chr04 (20506854, 20510294, +) 1047 3 2 348 38.82 5.58 −0.139 Extracellular
and plasma
membrane

AhAPX30 AH04G12400.1 Chr04 (28356898, 28358984, −) 990 4 3 329 36 7.58 −0.1 Extracellular

AhAPX31 AH04G06960.1 Chr04 (8749652, 8755948, +) 999 4 3 332 36 5.85 −0.117 Extracellular

AhAPX32 AH05G33570.1 Chr05 (109243748, 109247060, +) 1032 4 3 343 37.89 5.3 0.039 Plasma
membrane

AhAPX33 AH05G34100.1 Chr05 (110343093, 110344607, −) 753 2 1 250 27.34 7.04 −0.191 Cytoplasmic

AhAPX34 AH05G02820.1 Chr05 (2952742, 2957237, +) 849 9 8 282 31.57 7.72 −0.496 Cytoplasmic

AhAPX35 AH05G12980.1 Chr05 (33401595, 33403392, −) 1269 2 1 422 45.9 5.21 −0.302 Cytoplasmic,
nuclear,

and
extracellular

AhAPX36 AH05G03640.1 Chr05 (3964114, 3966683, +) 1047 4 3 348 39.09 5.89 −0.224 Extracellular

AhAPX37 AH05G04730.1 Chr05 (5512010, 5518889, −) 984 4 3 327 35.78 9.05 −0.147 Extracellular

AhAPX38 AH05G05760.1 Chr05 (7138559, 7139891, −) 984 4 3 327 35.88 6.42 0 Extracellular

AhAPX39 AH05G21680.1 Chr05 (87703778, 87704768, +) 645 3 2 214 23.47 5.95 −0.169 Extracellular

(Continued)
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AhAPX40 AH05G21770.1 Chr05 (87831257, 87833413, −) 984 4 3 327 36 5.5 −0.127 Extracellular

AhAPX41 AH06G24710.1 Chr06 (101560772, 101566207, +) 990 3 2 329 35.4 5.31 −0.142 Extracellular
and

chloroplast

AhAPX42 AH06G24750.1 Chr06 (101678350, 101681066, −) 978 3 2 325 35.12 5.87 −0.095 Extracellular

AhAPX43 AH06G26990.1 Chr06 (106045942, 106046919, −) 981 1 0 326 35.92 8.33 −0.187 Extracellular
and

chloroplast

AhAPX44 AH06G12580.1 Chr06 (17096141, 17097919, −) 1050 4 3 349 38.3 9.06 −0.146 Extracellular

AhAPX45 AH06G12600.1 Chr06 (17107249, 17113857, −) 1923 16 15 640 70.66 8.94 −0.077 Chloroplast

AhAPX46 AH06G12640.1 Chr06 (17206186, 17208105, +) 1047 4 3 348 38 9.26 −0.121 Extracellular

AhAPX47 AH06G13400.1 Chr06 (18468981, 18470093, −) 957 3 2 318 34.52 8.79 −0.068 Extracellular

AhAPX48 AH06G00870.1 Chr06 (2535291, 2536767, −) 981 4 3 326 34.46 5.77 −0.012 Extracellular

AhAPX49 AH06G20810.1 Chr06 (88751346, 88752854, −) 954 2 1 317 34.17 9.07 −0.038 Extracellular

AhAPX50 AH06G20840.1 Chr06 (88866272, 88866907, −) 639 1 0 212 22.93 6.82 0.017 Chloroplast

AhAPX51 AH07G12530.1 Chr07 (18527530, 18532254, −) 972 4 3 323 35 9.76 −0.198 Extracellular
and

mitochondrial

AhAPX52 AH07G12560.1 Chr07 (18594967, 18601313, +) 1005 3 2 334 36.23 5.8 −0.22 Extracellular

AhAPX53 AH07G12590.1 Chr07 (18635964, 18639438, −) 900 4 3 299 32.1 6.41 0.088 Plasma
membrane

AhAPX54 AH07G16820.1 Chr07 (44801964, 44806304, +) 1035 3 2 344 38.1 8.78 −0.11 Plasma
membrane

AhAPX55 AH07G19820.1 Chr07 (62509939, 62515927, −) 1065 11 10 354 38.47 8.59 −0.324 Mitochondrial

AhAPX56 AH07G22100.1 Chr07 (73486525, 73488901, −) 1221 4 3 406 45.08 5.58 −0.359 Nuclear,
extracellular,
and plasma
membrane

AhAPX57 AH07G07450.1 Chr07 (8286104, 8288644, −) 975 4 3 324 34.37 8.54 −0.083 Extracellular

AhAPX58 AH07G07460.1 Chr07 (8308573, 8309778, +) 762 4 3 253 27.57 8.83 −0.272 Extracellular
and

mitochondrial

AhAPX59 AH08G05850.1 Chr08 (10750010, 10755089, +) 1338 12 11 445 48.75 8.67 −0.428 Chloroplast

AhAPX60 AH08G13980.1 Chr08 (28333679, 28334962, −) 756 7 6 251 27.75 5.39 −0.48 Cytoplasmic

AhAPX61 AH08G15100.1 Chr08 (29841553, 29842344, −) 795 1 0 264 28.8 4.85 −0.335 Nuclear
and

cytoplasmic

AhAPX62 AH08G16780.1 Chr08 (31925820, 31927225, +) 984 4 3 327 35.85 8.93 −0.108 Extracellular

AhAPX63 AH08G19120.1 Chr08 (35244506, 35247372, +) 975 3 2 324 34.42 8.75 −0.044 Extracellular

AhAPX64 AH08G26960.1 Chr08 (47233841, 47238063, −) 993 10 9 330 35.63 8.42 −0.221 Chloroplast

AhAPX65 AH09G23660.1 Chr09 (106807615, 106809134, +) 984 2 1 327 35.95 8.06 −0.046 Extracellular
and

mitochondrial

AhAPX66 AH09G31660.1 Chr09 (116756835, 116759702, −) 984 4 3 327 35.92 6.09 −0.202 Extracellular

AhAPX67 AH09G08990.1 Chr09 (12467446, 12469586, +) 1011 4 3 336 36 9.22 −0.113 Nuclear
and plasma
membrane

AhAPX68 AH09G11440.1 Chr09 (19596211, 19598370, −) 1008 2 1 335 36.05 8.1 −0.094 Chloroplast
and

extracellular

AhAPX69 AH09G02450.1 Chr09 (2707377, 2709690, +) 1365 4 3 454 50.07 4.69 −0.35 Nuclear
and plasma
membrane

AhAPX70 AH09G19280.1 Chr09 (84644615, 84652197, +) 858 4 3 285 31.31 8.41 −0.263 Chloroplast

AhAPX71 AH09G20940.1 Chr09 (95646878, 95647778, −) 327 3 2 108 11.59 9.34 −0.157 Extracellular

AhAPX72 AH10G22530.1 Chr10 (100608918, 100612037, −) 1038 3 2 345 38.57 5.47 −0.136 Cytoplasmic
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AhAPX73 AH10G28820.1 Chr10 (111234752, 111235885, −) 969 2 1 322 35.56 6.6 −0.064 Plasma
membrane

AhAPX74 AH10G28830.1 Chr10 (111237536, 111239429, −) 975 3 2 324 35 5.98 0.028 Plasma
membrane

AhAPX75 AH10G10440.1 Chr10 (17084135, 17085775, +) 966 4 3 321 35.11 9.49 −0.117 Mitochondrial

AhAPX76 AH10G05800.1 Chr10 (5516527, 5517924, −) 981 3 2 326 34.81 7.54 −0.036 Extracellular

AhAPX77 AH10G05810.1 Chr10 (5525856, 5527195, +) 996 2 1 331 35.55 8.98 −0.037 Extracellular

AhAPX78 AH10G06100.1 Chr10 (5774246, 5774909, −) 594 2 1 197 21 5.61 0.36 Plasma
membrane

and
extracellular

AhAPX79 AH10G17560.1 Chr10 (81389354, 81391402, +) 957 3 2 318 3.85 9.4 −0.17 Extracellular

AhAPX80 AH10G20050.1 Chr10 (93192984, 93194610, +) 972 4 3 323 34.97 5.46 0.043 Plasma
membrane

AhAPX81 AH10G21960.1 Chr10 (99235900, 99237538, +) 654 3 2 217 23.87 5.29 0.004 Plasma
membrane

AhAPX82 AH11G28810.1 Chr11 (138798034, 138799289, +) 1011 4 3 336 37.9 8.48 −0.37 Nuclear

AhAPX83 AH11G31650.1 Chr11 (143323830, 143325073, +) 999 4 3 332 35.72 4.41 −0.172 Extracellular

AhAPX84 AH11G35510.1 Chr11 (148378457, 148381103, −) 885 3 2 294 32.16 9.23 −0.199 Extracellular

AhAPX85 AH11G36340.1 Chr11 (149098252, 149100518, −) 987 4 3 328 35.31 6.07 0.007 Extracellular

AhAPX86 AH11G11550.1 Chr11 (24493194, 24496183, +) 981 4 3 326 35.26 8.88 −0.057 Extracellular

AhAPX87 AH11G11700.1 Chr11 (25189097, 25190336, +) 687 3 2 228 24.68 4.81 −0.188 Extracellular

AhAPX88 AH11G02890.1 Chr11 (3085958, 3089759, −) 984 4 3 327 35.36 8.91 −0.135 Extracellular

AhAPX89 AH11G02910.1 Chr11 (3130507, 3135477, +) 1020 3 2 339 37.34 9.07 −0.284 Extracellular

AhAPX90 AH11G02940.1 Chr11 (3154813, 3157814, +) 858 3 2 285 31.1 9.36 −0.12 Extracellular

AhAPX91 AH11G02950.1 Chr11 (3166698, 3169834, −) 888 5 4 295 31.26 5.06 −0.145 Extracellular

AhAPX92 AH11G14080.1 Chr11 (38404886, 38409314, −) 1404 12 11 467 52.19 9.02 −0.453 Nuclear

AhAPX93 AH12G26730.1 Chr12 (108404606, 108406854, +) 975 4 3 324 35.2 8.28 −0.002 Extracellular

AhAPX94 AH12G26740.1 Chr12 (108408697, 108410986, +) 990 3 2 329 36.09 8.8 −0.234 Extracellular,
mitochondrial

and
chloroplast

AhAPX95 AH12G26750.1 Chr12 (108428068, 108430589, +) 987 3 2 328 35.84 5.66 −0.264 Extracellular

AhAPX96 AH12G38300.1 Chr12 (122043858, 122045120, +) 996 3 2 331 37.38 6.26 −0.412 Extracellular

AhAPX97 AH13G48270.1 Chr13 (139486821, 139487952, +) 966 3 2 321 34 6.51 −0.101 Extracellular

AhAPX98 AH13G58440.1 Chr13 (149092750, 149095384, +) 975 3 2 324 35 5.88 0.011 Plasma
membrane

AhAPX99 AH13G58450.1 Chr13 (149097506, 149098640, +) 969 2 1 322 35.33 6.31 −0.038 Extracellular

AhAPX100 AH13G15620.1 Chr13 (18204851, 18207371, +) 978 4 3 325 35.49 8.05 −0.013 Extracellular
and plasma
membrane

AhAPX101 AH13G03790.1 Chr13 (3974837, 3976803, −) 756 9 8 251 27 5.52 −0.319 Cytoplasmic

AhAPX102 AH13G08510.1 Chr13 (8737422, 8740756, +) 867 9 8 288 31.66 6.67 −0.311 Cytoplasmic

AhAPX103 AH13G09650.1 Chr13 (9945748, 9947398, −) 978 4 3 325 34.5 8.71 0.015 Extracellular

AhAPX104 AH14G24560.1 Chr14 (102202325, 102204136, +) 984 4 3 327 35.79 8.44 −0.154 Extracellular

AhAPX105 AH14G25410.1 Chr14 (105306662, 105308874, −) 924 4 3 307 32.74 5 −0.086 Extracellular

AhAPX106 AH14G25420.1 Chr14 (105316704, 105318852, −) 954 4 3 317 33.51 8.05 −0.034 Extracellular

AhAPX107 AH14G25430.1 Chr14 (105327285, 105329671, −) 957 4 3 318 33.64 8.51 −0.084 Extracellular

AhAPX108 AH14G08400.1 Chr14 (10636078, 10640476, +) 999 4 3 332 36.11 5.77 −0.137 Extracellular

AhAPX109 AH14G08420.1 Chr14 (10696309, 10699909, +) 1068 4 3 355 38.31 6.44 −0.153 Extracellular

AhAPX110 AH14G08430.1 Chr14 (10719836, 10722950, +) 1074 4 3 357 38.44 5.74 −0.075 Extracellular

AhAPX111 AH14G08440.1 Chr14 (10740576, 10743027, +) 1077 4 3 358 38.25 5.57 0.027 Extracellular

AhAPX112 AH14G08450.1 Chr14 (10751673, 10756427, +) 1068 4 3 355 38 4.99 −0.048 Extracellular

AhAPX113 AH14G08480.1 Chr14 (10795498, 10798919, +) 1068 4 3 355 38.14 6.2 −0.005 Extracellular

AhAPX114 AH14G08550.1 Chr14 (11049580, 11052270, −) 927 4 3 308 33.87 8.05 −0.041 Extracellular
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AhAPX115 AH14G13430.1 Chr14 (22102438, 22105949, +) 1047 3 2 348 38.8 5.68 −0.149 Extracellular
and plasma
membrane

AhAPX116 AH14G16980.1 Chr14 (39854809, 39855923, +) 570 3 2 189 20.65 6.7 0.287 Extracellular
and plasma
membrane

AhAPX117 AH14G16990.1 Chr14 (39859734, 39860093, +) 363 1 0 120 13.39 9.03 −0.37 Extracellular

AhAPX118 AH14G21760.1 Chr14 (89731359, 89733140, −) 909 5 4 302 32.95 8.35 −0.201 Extracellular

AhAPX119 AH15G18730.1 Chr15 (105800589, 105804751, −) 1032 4 3 343 37.88 5.3 0.024 Plasma
membrane

AhAPX120 AH15G00780.1 Chr15 (1195384, 1202015, −) 984 4 3 327 35.78 9.05 −0.147 Extracellular

AhAPX121 AH15G33980.1 Chr15 (148489966, 148492117, +) 984 4 3 327 36.17 5.88 −0.164 Extracellular
and nuclear

AhAPX122 AH15G33990.1 Chr15 (148500369, 148501868, +) 705 4 3 234 25.5 4.8 −0.226 Cytoplasmic
and

chloroplast

AhAPX123 AH15G34130.1 Chr15 (148706618, 148708110, −) 834 5 4 277 30.66 6.22 −0.226 Extracellular
and plasma
membrane

AhAPX124 AH15G35170.1 Chr15 (149938106, 149940460, −) 669 3 2 222 24.22 7.67 −0.021 Extracellular

AhAPX125 AH15G37650.1 Chr15 (152607618, 152611276, −) 1092 3 2 363 40.13 5.51 −0.222 Extracellular

AhAPX126 AH15G09760.1 Chr15 (17115019, 17116810, +) 1257 2 1 418 45.61 5.4 −0.337 Extracellular,
cytoplasmic
and nuclear

AhAPX127 AH15G01790.1 Chr15 (3022442, 3024001, −) 984 4 3 327 36 6.87 −0.042 Extracellular

AhAPX128 AH16G05890.1 Chr16 (10586280, 10589926, −) 987 4 3 328 35.89 7.97 −0.131 Extracellular

AhAPX129 AH16G06030.1 Chr16 (10824424, 10825859, +) 882 4 3 293 32.28 8.53 −0.268 Extracellular

AhAPX130 AH16G25780.1 Chr16 (114921710, 114923167, −) 954 2 1 317 33.99 8.98 −0.027 Extracellular

AhAPX131 AH16G25800.1 Chr16 (115100883, 115101305, −) 426 1 0 141 15.52 6.28 −0.05 Extracellular,
cytoplasmic

and
chloroplast

AhAPX132 AH16G30440.1 Chr16 (129635392, 129640099, +) 990 3 2 329 35.36 5.32 −0.127 Extracellular
and

chloroplast

AhAPX133 AH16G30490.1 Chr16 (129750891, 129753522, −) 975 3 2 324 34.81 5.87 −0.047 Extracellular

AhAPX134 AH16G33620.1 Chr16 (135979748, 135980725, −) 981 1 0 326 35.95 8.69 −0.161 Extracellular

AhAPX135 AH16G03520.1 Chr16 (7153751, 7155209, −) 981 4 3 326 34.38 5.31 −0.009 Extracellular

AhAPX136 AH16G01030.1 Chr16 (993418, 995239, +) 1050 4 3 349 38.29 9.17 −0.139 Extracellular

AhAPX137 AH17G30310.1 Chr17 (125992323, 125997218, −) 1338 12 11 445 48.73 8.8 −0.44 Chloroplast

AhAPX138 AH17G11990.1 Chr17 (20654955, 20659787, −) 972 4 3 323 34.93 9.74 −0.18 Extracellular

AhAPX139 AH17G12030.1 Chr17 (20764144, 20766484, +) 735 2 1 244 26.45 6.81 −0.317 Extracellular

AhAPX140 AH17G18150.1 Chr17 (49822929, 49829110, +) 1068 11 10 355 38.64 8.79 −0.338 Mitochondrial

AhAPX141 AH17G06310.1 Chr17 (7780769, 7782202, −) 963 4 3 320 34.92 8.65 −0.145 Extracellular

AhAPX142 AH17G06350.1 Chr17 (7839321, 7842337, +) 966 4 3 321 34 8.54 −0.113 Extracellular

AhAPX143 AH18G23730.1 Chr18 (103745127, 103747854, +) 1014 3 2 337 37.31 9.13 −0.136 Mitochondrial
and plasma
membrane

AhAPX144 AH18G10570.1 Chr18 (14253327, 14256241, +) 972 3 2 323 34.3 8.75 −0.044 Extracellular

AhAPX145 AH18G15530.1 Chr18 (26788797, 26795823, −) 1416 16 15 471 52.82 9 −0.639 Nuclear

AhAPX146 AH18G05400.1 Chr18 (5046262, 5048240, −) 969 2 1 322 35.34 5.8 −0.104 Plasma
membrane

AhAPX147 AH18G07180.1 Chr18 (7610724, 7612104, +) 987 4 3 328 35.93 8.82 −0.101 Extracellular

AhAPX148 AH18G22460.1 Chr18 (92176526, 92178893, +) 1218 4 3 405 45.05 5.81 −0.101 Extracellular,
nuclear and

plasma
membrane
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AhAPX149 AH19G24230.1 Chr19 (108739539, 108750043, −) 996 4 3 331 36.82 6.95 −0.132 Extracellular

AhAPX150 AH19G26520.1 Chr19 (124514590, 124517216, −) 996 4 3 331 40.26 7.97 0 Extracellular
and

chloroplast

AhAPX151 AH19G29790.1 Chr19 (138198709, 138200248, +) 984 2 1 327 35.98 8.06 −0.054 Extracellular
and

mitochondrial

AhAPX152 AH19G36370.1 Chr19 (152526370, 152529191, +) 984 4 3 327 36.19 5.9 −0.225 Extracellular
and nuclear

AhAPX153 AH19G42570.1 Chr19 (158270903, 158272107, −) 975 3 2 324 35.69 9.04 −0.179 Extracellular

AhAPX154 AH19G11940.1 Chr19 (16033083, 16035651, +) 1014 4 3 337 36.06 8.91 −0.113 Extracellular
and plasma
membrane

AhAPX155 AH19G14960.1 Chr19 (24411814, 24415355, −) 1278 3 2 425 46.49 6.47 −0.117 Chloroplast

AhAPX156 AH19G03800.1 Chr19 (3648102, 3650393, +) 1365 4 3 454 49.95 4.72 −0.351 Nuclear

AhAPX157 AH20G22440.1 Chr20 (100242945, 100244252, −) 987 4 3 328 35.74 6.17 −0.213 Extracellular
and nuclear

AhAPX158 AH20G23580.1 Chr20 (107122955, 107124841, +) 957 3 2 318 33.85 9.4 −0.173 Extracellular

AhAPX159 AH20G08720.1 Chr20 (10757292, 10758717, −) 981 3 2 326 34.71 6.07 −0.028 Extracellular

AhAPX160 AH20G08730.1 Chr20 (10773674, 10775017, +) 999 2 1 332 35.59 8.98 −0.023 Extracellular

AhAPX161 AH20G09010.1 Chr20 (11124003, 11124708, −) 636 2 1 211 22.75 4.93 0.392 Plasma
membrane

AhAPX162 AH20G26300.1 Chr20 (119159975, 119161601, +) 972 2 1 323 35 5.32 0.067 Plasma
membrane

AhAPX163 AH20G28750.1 Chr20 (126510516, 126511240, +) 465 2 1 154 17 6.4 −0.372 Nuclear

AhAPX164 AH20G28770.1 Chr20 (126544791, 126546815, +) 927 4 3 308 33.85 4.89 −0.132 Extracellular
and

cytoplasmic

AhAPX165 AH20G29320.1 Chr20 (128237247, 128240109, −) 1038 3 2 345 38.54 5.38 −0.138 Cytoplasmic

AhAPX166 AH20G14810.1 Chr20 (25055084, 25056732, +) 969 4 3 322 35.15 9.54 −0.139 Mitochondrial

In the genomic position, the positive (+) and negative (−) sign shows the presence of a gene on the positive and negative strand of that specific marker correspondingly.
MW, molecular weight; PI, isoelectric points; bp, base pair; aa, amino acids.

showed a greater phylogenetic network with the AdAPXs and
AiAPXs in each group.

Insights Into Synteny and Collinearity of
APX Genes
Gene duplications (i.e., tandem and segmental) are thought to
be the main factors in supporting the expansion and evolution
of new gene families in plants (Cannon et al., 2004). Hence,
gene duplication procedures were assessed between AhAPXs,
AdAPXs, AiAPXs, and AtAPXs (Supplementary Table 3). The
results of gene duplication study showed that there were 92
AhAPX gene pairs, and these pairs were unevenly mapped on
different chromosomes (Figure 3 and Supplementary Table 3).
Mainly, chromosome 13 had a maximum number (i.e., 16) of
AhAPX gene pairs, followed by chromosome 5 with 12 AhAPX
gene pairs. The least number of gene pairs (i.e., two) was
discovered on chromosome 12, and no gene pair was found
on chromosome 2 (Figure 3 and Supplementary Table 3). The
results reveal that segmental duplications have contributed to
the expansion of AhAPX genes in the cultivated peanut genome

(Supplementary Table 3). Notably, no tandem duplicated gene
pairs were identified.

Similarly, 10 duplicated gene pairs were detected
between AhAPX and AtAPX (Supplementary Figure 1 and
Supplementary Table 3); 171 pairs between AhAPX and AiAPX
(Supplementary Figure 2 and Supplementary Table 3); and 160
pairs between AhAPX and AdAPX (Supplementary Figure 3 and
Supplementary Table 3). All these gene pairs were irregularly
mapped on different chromosomes. Taken together, these
conclusions explained that the duplication activities played
a vital role in enlarging the APX genes between diploid and
tetraploid parents. Further, it can also be concluded that
A. hypogea might have lost some genes during genome evolution.

Collinearity analysis was carried out to review the
evolutionary association of the APX genes between A. hypogea,
A. duranensis, A. ipaensis, and A. thaliana (Figure 4 and
Supplementary Table 3). The results discovered a strong
orthologous of APX genes among these four species (Figure 4).
On the whole, several A. hypogea genes presented syntenic
networks with different AdAPX, AiAPX, and AtAPX genes.
Particularly, only one gene (AhAPX14) at chromosome Ah2
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FIGURE 2 | An unrooted neighbor-joining phylogenetic tree of APX proteins from A. hypogea, A. duranensis, A. ipaensis, and A. thaliana. On the whole, 166 AhAPXs
from A. hypogea (blue circles), 90 AdAPXs from A. duranensis (yellow circles), 102 AiAPXs from A. ipaensis (red circles), and 8 AtAPXs from Arabidopsis thaliana
(green circles) were clustered into 11 groups based on sequence similarities, domain, and 1,000 bootstrap values. The percentage of bootstrap values is shown in
the notes.

exhibited a syntenic connection with AdAPX85 gene at
chromosome Ad02 (Figure 4 and Supplementary Table 3),
while other homologous genes present on other A. hypogea
chromosomes also showed a syntenic relationship with
many AdAPX, AiAPX and AtAPX genes (Figure 4 and
Supplementary Table 3). These findings indicate that
whole-genome or segmental duplication procedures are
considered a main evolutionary force in the evolution

of AhAPX genes in the peanut genome (Figure 4 and
Supplementary Table 3).

The Ka/Ks ratio is considered as a huge diagnostic marker in
evaluating the sequence evolution in terms of selection pressures
and duplication types (Hurst, 2002). Thus, to understand the
evolutionary story of the AhAPX, the Ka, Ks, and Ka/Ks ratio
was revealed (Supplementary Table 3). The dataset unveiled
that all duplicated AhAPX gene pairs had a Ka/Ks ratio of <1
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FIGURE 3 | Chromosomal positions and inter-chromosomal groups of duplicated AhAPX gene pairs. Gray lines in the background demonstrate all syntenic blocks
in the A. hypogea genome, and the blue lines exhibit the segmental or tandem duplication network zones among AhAPX genes. The near location of AhAPX genes
is marked with black lines outside with chromosome names.

(Supplementary Table 3), demonstrating that the AhAPX genes
may have experienced strong purifying selective pressure and
segmental duplications throughout the evolution procedure
(Supplementary Table 3).

Insights Into Gene Structures and
Conserved Motifs of AhAPX Genes
The exon-intron arrangements and conserved motifs of the
AhAPX genes were analyzed to get insights into the advancement
of the APX family genes in peanut genome (Figure 5 and
Supplementary Table 4). The outcomes revealed that the
number of exons and introns varied from 16 to 1 and 0 to
15, respectively (Figure 5B and Supplementary Table 10).
In short, 6 genes have 1 exon and zero intron; 13 genes have

2 exons and 1 intron; 5 genes have 3 exons and 2 introns;
18 genes have 2 exons and 1 intron; 41 genes have 3 exons
and 2 introns; 81 genes have 4 exons and 3 introns; 3 genes
have 5/7 exons and 4/6 introns; 5 genes have 9 exons and
8 introns; only 1 gene has 10 exons and 9 introns; 3 genes
have 11/12 exons and 10/11 introns; and only 2 genes have a
maximum number of exons (16) and introns (15) (Figure 5B
and Supplementary Table 10). Above all, genes belonging to
the same sub-tree almost had parallel structures apart from a
few genes (Figure 5B). Among all genes, AhAPX149 possess
the longest structure, and only a few genes have a complex
structure, such as AhAPX17, AhAPX19, AhAPX34, AhAPX45,
AhAPX55, AhAPX59, AhAPX64, AhAPX92, AhAPX101,
AhAPX102, and AhAPX145 (Figure 5B). Exon loss or gain
has been found during the evolution of APX family genes.
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FIGURE 4 | Multiple collinearity analysis of APX genes between A. hypogea, A. duranensis, A. ipaensis, and A. thaliana chromosomes. Gray lines in the background
specify the collinear blocks within A. hypogea and other three genomes, while the red lines highlight the syntenic APX orthologous gene pairs.

The results recommended that APX genes held a somewhat
frequent exon-intron composition throughout the evolution of
peanut genome. Furthermore, AhAPX gene participants inside a
sub-tree had exceptionally corresponding gene structures, steady
with their phylogenetic clusters.

The conserved motif of the AhAPX genes ranged from one
(AhAPX55/140) to three (AhAPX2/71/117/131) (Figure 5A).
In total, 10 conserved motifs were recognized, and their
complete dataset, including motif names, sequences, width,
and E-value, is given in Supplementary Table 4. Similar to
gene structure, the motif distributions were also similar within
the sub-trees (Figure 5A), while some motifs were found to
be specific to some genes. For instance, some genes such as
AhAPX2/17/101/34/59/137 were limited to motifs 2, 3, and 10.
While AhAPX60 gene only contained motifs 3 and 10; AhAPX71
contained motifs 3, 8, and 9; AhAPX117 contained motifs 4, 6,
and 10; AhAPX131 contained motifs 4, 9, and 10; and AhAPX71
contained motifs 3, 8, and 9 (Figure 5A). Almost all other motifs
were present on all genes except in a few cases (Figure 5A).
In summary, the consistency of gene organizations within
sub-trees was credibly constant by appraising the conserved
motif structures, gene structures, and phylogenetic relations,
representing that the APX proteins have enormously well-
sustained amino acid deposits and APX members belonging to
the same tree may hold corresponding roles.

Cis-Elements: Key Players in the
Promoter Regions of AhAPX Genes
To better understand the regulatory role of AhAPX genes
toward peanut growth and development, and tolerance to
abiotic stress and phytohormones treatment, cis-regulatory
elements in the promoter of AhAPX were explored.
The complete dataset of cis-elements is presented in
Supplementary Table 5. We emphasized and recognized three
categories of cis-elements, including abiotic stress-responsive,
phytohormones responsive, and growth and development

responsive elements (Figures 6, 7 and Supplementary Table 5).
Mainly, six abiotic stress-responsive (drought, light, low
temperature, wound, defense and stress, and anaerobic)
elements were detected. These elements consist of I-box,
ATCT-motif, Box 4, GT1-motif, GA-motif, etc. (light-
responsive, 77%), ARE (13%), MBS (3%), TC-rich repeats
(3%), LTR (3%), and WUN-motif (0.15%) (Figures 7A,B and
Supplementary Table 5). Overall, results showed that most
of the abiotic stress-related elements were predicted to be
specific to some genes and unevenly distributed (Figure 6 and
Supplementary Table 5), indicating their defensive role against
stress conditions.

Likewise, five phytohormone-responsive elements [methyl
jasmonate (MeJA), abscisic acid, gibberellin, salicylic acid,
and auxin] consist of CGTCA-motif/TGACG-motif (36%),
ABRE (35%), P-box/TATC-box/GARE-motif (11%), TCA-
element/SARE (11%), and AuxRR-core/TGA-element/TGA-box
(7%) (Figures 7C,D and Supplementary Table 5). Some of
the elements were found to be specific to some genes and
unevenly distributed (Figure 6 and Supplementary Table 5).
These outcomes suggest that element-specific genes
could be considered as candidate players for further
functional studies to reveal their protective role under
hormone treatments.

Moreover, five growth and development-related (zein
metabolism, meristem expression, endosperm expression,
circadian control, and cell cycle regulation) elements
were discovered. These key elements include O2-site
(34%), CAT-box (31%), GCN4_motif/AACA_motif (17%),
circadian (14%), and MSA-like (5%) (Figures 7E,F and
Supplementary Table 5), suggesting their dynamic role
in different growth and developmental stages of peanut.
In a nutshell, these discoveries suggested that some of
the key elements are widely and randomly distributed
in some genes, while some of the elements are found to
be specific to some genes. It can be concluded that the
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expression profiles of AhAPX genes may fluctuate under
different developmental stages, phytohormone and abiotic
stress conditions.

Genome-Wide Investigation of miRNAs
Targeting AhAPX Genes
To better comprehend the miRNA-arbitrated post-
transcriptional alteration of AhAPX genes, we identified
14 miRNAs targeting 33 genes (Figure 8A and
Supplementary Table 6). These miRNAs belong to 12 different
families. To give an overview, the miRNA-targeted sites of
AhAPX29 and AhAPX147 are shown in Figures 8B,C, whereas
the complete dataset of all miRNAs targeted sites/genes is
provided in Supplementary Table 6. The results showed that
ahy-miR159 and ahy-miR3513-3P targeted the most number
(5) of genes. Three miRNAs, including ahy-miR3518, ahy-
miR3520-3P, and ahy-miR3513-5P targeted four genes, followed
by ahy-miR3520-5P that targeted three genes (AhAPX38,
AhAPX127, and AhAPX118). While six miRNAs including
ahy-miR3512, ahy-miR3510, ahy-miR167-3P, ahy-miR3514-5P,
ahy-miR3509-3P, and ahy-miR3508 targeted two different genes
individually. Notably, only two miRNAs (ahy-miR156b-5p and
ahy-miR3516) targeted one gene, AhAPX155 and AhAPX128,
respectively (Figure 8A and Supplementary Table 6).
Some common genes like AhAPX29, AhAPX62, AhAPX115,
AhAPX147, AhAPX74, and AhAPX98 are found to be
targeted by more than one miRNA. Hence, the expression
profiling of these predicted miRNAs and their targeted genes
necessitates confirmation to oversee their biological roles in the
cultivated peanut genome.

Transcription Factor Regulatory Network
of AhAPX Genes
To get further insights into the regulatory role of transcription
factors (TFs) in regulating the transcription of AhAPX genes,
we identified 3,257 TFs in 162 AhAPX genes (Figure 9
and Supplementary Table 7). The results showed that
these TFs belong to 38 diverse TFs families, including AP2,
ARF, B3, bHLH, bZIP, Dof, ERF, MYB, NAC, WRKY, HSF,
GATA, etc. (Figure 9 and Supplementary Table 7). The
amplest TFs families were Dof (742 members), ERF (698
members), MYB (545 members), BBR-BPC (344 members),
NAC (308 members), WRKY (238 members), GATA (223
members), MIKC_MADS (210 members), C2H2 (177
members), bHLH/bZIP (163 members), B3 (157 members),
AP2 (154 members), and HSF (102 members) (Figure 9B
and Supplementary Table 7). However, the least ample TFs
families were ARR-B/RAV/SRS (2 members), followed by GrBP
(4 members), S1Fa-like (6 members), SBP (7 members), C3H
(8 members), etc. (Figure 9B and Supplementary Table 7).
In contrast, other TFs families contained less than 100
members. Nearly, all 162 AhAPX genes were anticipated to
be targeted by various TFs belonging to diverse families.
For instance, AhAPX150 gene was abundantly tarted by 314
TFs, followed by AhAPX56 by 172 TFs, AhAPX148 by 145
TFs, AhAPX55 by 107 TFs, AhAPX92 by 93 TFs, AhAPX45
by 96 TFs., etc. (Figure 9 and Supplementary Table 7).
Some genes were nominally targeted, e.g., AhAPX5/79/99
by 1 TF, AhAPX83/90/93 by 2 TFs, AhAPX9/15 by 3 TFs,
AhAPX7 by 4 TFs, AhAPX8/70/80 by 5 TFs., etc. (Figure 9 and
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Supplementary Table 7). Overall, these results showed that
abiotic and phytohormone-related TFs could be engineered to
develop improved peanut cultivars.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomics Enrichment
Analysis of AhAPX Genes
To advance our knowledge about the dynamic roles of AhAPX
genes at molecular level, GO and KEGG enrichment analysis
were performed (Figure 10 and Supplementary Table 8).
The GO annotation outcomes of biological process (BP),
molecular function (MF), and cellular component (CC)
classes presented quite a few substantially enriched terms
(Figure 10A and Supplementary Table 8). For instance,
in MF class, the highly enriched terms were cytochrome-c
peroxidase activity (GO:0004130), oxidoreductase activity
(GO:0016491), catalytic activity (GO:0003824), antioxidant
activity (GO:0016209), and peroxidase activity (GO:0004601).
In CC class, the most enriched terms were cell wall

(GO:0005618), and cell junction (GO:0030054). Whereas in
BP class, the highly enriched terms were cellular response to
stimulus (GO:0051716), cellular detoxification (GO:1990748),
response to chemical (GO:0042221), hydrogen peroxide
catabolic process (GO:0042744), response to zinc ion
(GO:0010043), modulation by symbiont of host defense
response (GO:0052031), obsolete oxidation-reduction process
(GO:0055114), detoxification (GO:0098754)., etc. (Figure 10A
and Supplementary Table 8).

Furthermore, KEGG pathway enrichment study discovered
six pathways participating in diverse functions of AhAPX
genes (Figure 10B and Supplementary Table 8). The highly
enriched pathways include biosynthesis of other secondary
metabolites (B09110), metabolism (A09100), phenylpropanoid
biosynthesis (00940), followed by ascorbate and aldarate
metabolism (00053), glutathione metabolism (00480), and
metabolism of other amino acids (B09106) (Figure 10B and
Supplementary Table 8). Briefly, it can be concluded that GO and
KEGG enrichment study validates the functional contribution
of AhAPX genes in several cellular, molecular, and biological
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processes, that are associated with antioxidant defense systems,
ROS scavenging, response to stresses, and biosynthesis of
different metabolites.

Expression Profiling of AhAPX Genes at
Diverse Developmental Tissues
The expression profiling of 166 AhAPX genes was observed
in various tissues and organs, including embryo, cotyledon,
testa, pericarp, peg, root and stem, root nodule, root tip,
root, step tip, stem, leaf, and flower using openly available
transcriptome dataset (Supplementary Table 9). Overall,
the expression heatmap indicated that only a few genes
were highly expressed in certain organs/tissues (Figure 11
and Supplementary Table 9). For example, some genes
including AhAPX4, AhAPX7, AhAPX17, AhAPX19, AhAPX28,
AhAPX42, AhAPX51, AhAPX76, AhAPX77, AhAPX82,
AhAPX86, AhAPX101, AhAPX102, AhAPX130, AhAPX133,
and AhAPX160 were highly expressed in almost all the
organs/tissues (Figure 11). While some genes were found to be
specific to some tissues like AhAPX12 showed considerable
expression in cotyledon, root and stem, root tip, and
stem; AhAPX109, AhAPX111, and AhAPX13 expressed in
stem, roots and peg; AhAPX135 expressed in pericarp; and
AhAPX138 expressed in cotyledon (Figure 11). Particularly,
a few genes also exhibited modest expressions in a variety
of tissues. On the whole, expression dataset shows that
some particular genes may substantially participate in
peanut growth and development. Hence, the functional

characterization of these genes may perhaps be carried out
in future studies.

Expression Profiling of AhAPX Genes
Under Abiotic Stress and Hormones
Treatments
To further study the contribution of all AhAPX genes toward
abiotic and hormones stress tolerance in peanut, an openly
available transcriptome dataset was used to evaluate the
expression levels (Figure 12 and Supplementary Table 9).
Similar to tissue-specific trend, only a few genes showed
higher expressions in both cold and drought stresses. For
instance, AhAPX4, AhAPX17, AhAPX19, AhAPX82, AhAPX101,
and AhAPX102 were highly expressed under stress (cold
and drought) and CK conditions. Likewise, some genes
also showed moderate expression levels, such as AhAPX27,
AhAPX34, AhAPX51, AhAPX55, AhAPX59, AhAPX113,
AhAPX137, AhAPX138, AhAPX140, and AhAPX157 under
stress (cold and drought) and normal conditions. On the
other hand, AhAPX720, AhAPX21, AhAPX51, AhAPX77,
AhAPX106, AhAPX130, AhAPX158, and AhAPX160 displayed
considerable expression under cold stress compared to CK
conditions (Figure 12A).

Under phytohormones treatments, AhAPX4, AhAPX17,
AhAPX55, AhAPX59, AhAPX82, AhAPX101, AhAPX102,
AhAPX137, and AhAPX140 displayed significantly higher
expression patterns throughout the treatments. In comparison
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FIGURE 10 | Gene ontology (GO) and KEGG enrichment analysis of AhAPX genes. (A) The highly enriched GO terms from MF, CC, BP classifications in AhAPX
genes. (B) The highly enriched KEGG pathways in AhAPX genes.

to CK, some genes are specifically expressed under
certain hormones, such as AhAPX21 under paclobutrazol,
AhAPX27 under ethylene and abscisic acid, AhAPX51
under abscisic acid, and AhAPX88 under abscisic acid and
paclobutrazol (Figure 12B). Notably, most of the genes
did not show any expression under any type of stress
conditions. The candidate genes with higher expression
could be genetically engineered to improve the tolerance
against multiple hormones and abiotic stress (cold and
drought) conditions.

qRT-PCR-Based Expression Profiling of
AhAPX Genes Under Cold and ABA
Treatment
For qRT-PCR-based expression profiling, 10 highly upregulated
AhAPX genes were selected based on transcriptome datasets to
validate their transcript levels under ABA and cold treatment
at various time points (Figure 13). Under ABA treatment,
almost all genes demonstrated higher expression levels at
all time points compared to CK, excluding a few cases.
Such as, AhAPX55 and AhAPX140 showed relatively low
expression at 9 and 12 h compared to CK and other time
points (Figure 13A). In response to cold stress, although
all the genes were upregulated; nevertheless, some genes

showed relatively low expression levels compared to CK,
such as AhAPX4, AhAPX19, AhAPX55, AhAPX82, AhAPX102,
AhAPX137, and AhAPX140. Whereas AhAPX17 and AhAPX59
showed considerably higher expression than CK (Figure 13B).
In short, all the preferred genes display parallel expression
trends (i.e., upregulated) to those developed from transcriptome
datasets (Supplementary Figure 4), therefore representing the
reliability of the transcriptome datasets.

DISCUSSION

Characterization and Evolution of APX
Gene Family in Plants
Cultivated peanut is widely known as an essential oilseed,
protein-enrich food crop worldwide and retains important
breeding traits during domestication (Zhuang et al., 2019; Bohra
et al., 2022). Even so, peanut production is still substantially
influenced by numerous biotic and abiotic factors (Agarwal
et al., 2018; Gangurde et al., 2020, 2021; Kumar et al., 2020;
Shasidhar et al., 2020; Sinha et al., 2020; Jadhav et al., 2021;
Pandey et al., 2021; Soni et al., 2021; Aravind et al., 2022;
Bomireddy et al., 2022; Liu et al., 2022; Patel et al., 2022).
When plants are exposed to diverse abiotic and biotic factors,
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FIGURE 11 | Expression profiling of AhAPX genes in various developmental tissues of peanut. In the expression bar, the red, white and blue colors show high to low
expression levels. The circular heat map was designed by taking log2 of fragments per kilobase of transcript per million (FPKM) values.

APX enzyme as a primary marker can quickly eliminate
unnecessary H2O2 (i.e., ROS scavenging) from plant cells by
adjusting several physiological and biochemical activities to
safeguard cells from the noxiousness of overproduction of ROS
(Das and Roychoudhury, 2014; Mittler, 2017; Hasanuzzaman
et al., 2020, 2021). During the past few years, excessive
advancement has been achieved in studying the mode of action
of APX genes; however, their vital role still requires more
examination. Recent peanut genome sequencing data allow us
to comprehensively discover new gene family members and
recognize their functional and defensive mechanisms against
stress conditions.

Usually, APX gene family of plants comprises a few genes.
In this study, 166 AhAPX genes have been discovered in
peanut genome (Supplementary Table 10), a larger APX family
than previously reported APX gene families in watermelon
(Malambane et al., 2018), shrub (Wang et al., 2022), rice

(Teixeira et al., 2004), A. thaliana (Panchuk et al., 2002,
Panchuk et al., 2005), sorghum (Akbudak et al., 2018), kiwifruit
(Liao et al., 2020), tomato (Najami et al., 2008), wheat (Tyagi
et al., 2020), and cotton (Tao et al., 2018). Deviations in the
APX members amongst diverse plant species may perhaps be
attributed to gene duplication events involving tandem and
segmental repeats and play a role in expanding APXs for
deviation. Repetition of APX genes was also discovered in
several plant species (Teixeira et al., 2004; Panchuk et al.,
2005; Akbudak et al., 2018; Liao et al., 2020; Wang et al.,
2022). Our outcomes confirmed that AhAPXs had suffered
segmental duplications (Supplementary Table 3). Subsequently,
these reports recommended that AhAPXs duplicate cases may
possibly play an essential role in gene evolution.

Previous studies showed that APX family genes are
usually clustered into four major groups based on their
subcellular localization or tree topologies (Pandey et al., 2011;
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Malambane et al., 2018; Tyagi et al., 2020). In the present
study, all APX genes from four plant species were grouped
into 11 main groups based on tree topologies and sequence
similarities (Figure 2). This grouping was also recently
supported by a new study on brassica crops (B. napus
and B. rapa), where all APX genes were grouped into
13 subfamilies (Ma et al., 2021). Further, gene structure
analysis also showed that genes belonging to the same
subtree possess almost similar exon-intron patterns, ranging
from 16 to 1 (exons) and 0 to 15 (introns) (Figure 5B
and Supplementary Table 10). A significant difference
was observed in gene structures where some genes have
many exons-introns while some lack introns. Similar
gene structure patterns were also reported in previous

reports, such as in wheat number of exons extended from
7 to 12 (Tyagi et al., 2020). In Actinidia chinensis, the
gene structure possesses 4–22 introns (Liao et al., 2020),
which are higher than our observations. The exon-intron
organization disparity was practiced by three important
methods (exon/intron gain/loss, exonization/pseudoexonization,
and insertion/deletion), and they are clearly supported by
structural inconsistency (Xu et al., 2012). Notably, the AhAPX
genes in each group almost exhibited comparable exon-
intron group and conserved motifs (Figure 5), suggesting
that these genes may possibly contribute to the similar tasks
associated with several abiotic stressors. These outcomes
are in agreement with earlier studies of kiwifruit (Liao
et al., 2020), and wheat (Tyagi et al., 2020), where genes

FIGURE 12 | (Continued)
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FIGURE 12 | Expression profiling of AhAPX genes under different (A) abiotic stress, including cold and drought stress, and (B) phytohormone treatments such as
abscisic acid, salicylic acid, ethylene, brassinolide, and paclobutrazol. In both maps, the label “CK” refers to the control plants in comparison to the stress-treated
plants. In the expression bar, the red, white and blue colors show high to low expression levels. The circular heat map was designed by taking log2 of fragments per
kilobase of transcript per million (FPKM) values.

inside the same group comprise distinct structures and
motifs organizations.

The Contribution of APX Genes Toward
Stress Responses and Tolerance
Mechanisms
To boost our understanding into the involvement of AhAPX
genes contrary to numerous environmental factors, cis-elements
were predicted in the promoter of AhAPX genes. The discoveries
showed that three types of cis-elements were recognized, i.e.,
abiotic stress, phytohormones, and growth and development-
related elements (Figures 6, 7). Recent studies show that the

cis-elements in APX genes contribute to the plant abiotic
and phytohormones stress responses. Similar types of abiotic
and phytohormone-related cis-regulatory elements have been
identified in previous studies (Akbudak et al., 2018; Malambane
et al., 2018; Tao et al., 2018; Liao et al., 2020; Tyagi
et al., 2020; Wang et al., 2022). Furthermore, AhAPXs gene
functions were further predicted by GO enrichment analysis
(Figure 10), which also supported the role of these genes
in ROS scavenging and stress response mechanisms. To get
further insights into the role of AhAPX genes, their expression
levels were examined under various hormones and abiotic stress
treatments (Figures 12, 13). Our results showed that a few
genes significantly contribute to specific stress responses like
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FIGURE 13 | Expression profiling of the AhAPX genes under (A) abscisic acid and (B) cold stress treatments. The time points include 0 (CK), 3, 6, 9, and 12 h when
the samples were picked for expression analysis after the stress treatment. Error bars signify the SD of three biological repeats (n = 3).

cold, drought, and ABA. These results are in agreement with
the previous reports of Akbudak et al. (2018), where some
SbAPX genes were significantly induced by drought stress in
the leaves and roots of two genotypes. Similarly, many genes
showed higher expression levels in A. nanus under cold and
osmotic stress (Wang et al., 2022). Many BrAPX and BnAPX
genes showed higher expression trends in cold-tolerant varieties
in response to cold stress (Ma et al., 2021). Under drought
stress, most of the ClAPX genes were significantly upregulated
and displayed elevated expression in watermelon (Malambane
et al., 2018). These conclusions can enhance our perception
of AhAPX genes under various stress conditions, especially
cold and drought.

Recent reports also suggest that manipulating APX genes
could contribute to stress tolerance in plants. For instance,
a novel ScAPX6 gene from sugarcane was overexpressed
in tobacco (Nicotiana benthamiana), and transgenic plants
showed improved resistance to the biotic stress (Pseudomonas
solanacearum and Fusarium solani) by positively regulating the
phytohormones contents (Liu et al., 2018). The overexpression
of PcAPX from Chinese white poplar (Populus tomentosa)
improves tolerance to multiple stresses, including salinity,
drought, and oxidative stress in transgenic tobacco plants
by improving biochemical mechanisms (Cao et al., 2017).
Likewise, the overexpression of Populus peroxisomal PpAPX

gene enhances drought stress tolerance in transgenic tobacco
plants (Li et al., 2009). Transgenic tobacco overexpressing
cytosolic APX gene alleviated the drought stress tolerance
(Faize et al., 2011). Ectopic overexpression of the peroxisomal
SbpAPX gene improves salinity tolerance in transgenic peanut
(Singh et al., 2014). So far, this is the only APX gene that
has been functionally characterized in peanut. These studies
recommend that the genetic engineering of APX genes is of great
importance in conferring various stress tolerance in crop plants,
including peanut.

Among various identified TFs, ERF TFs have been functionally
characterized from peanut. The results exhibited that
overexpression of AhERF008 impaired the root magnitude
of A. thaliana; however, overexpression of AhERF019
improved tolerance to heat, salinity and drought stresses in
A. thaliana (Wan et al., 2014). Ectopic overexpression of
MYB repressor gene (GmMYB3a) increases drought tolerance
and physiological mechanisms in transgenic peanut under
drought stress (He et al., 2020). Another NAC TF gene
(AhANC4) from peanut enhances drought tolerance in
transgenic tobacco plants due to improved stomatal closure
and advanced water use efficiency (Tang et al., 2017).
A novel WRKY TF gene (AhWRKY75) improved salinity
tolerance in transgenic peanut plants by improving antioxidant
mechanisms, ROS scavenging, stomatal conductance, and
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photosynthesis under salinity stress (Zhu et al., 2021). All
these studies suggest that the genetic engineering of TF is a
promising approach to improve peanut performance under
stressed conditions.

The Contribution of APX Genes in
Numerous Organs/Tissues
Here, the tissue-specific expression profiling of 166 AhAPX
genes was carried out in various organs/tissues using publically
available transcriptome datasets. Overall, the results showed
that only a few AhAPX genes showed higher expression levels,
particularly in roots, stem, leaf, peg, pericarp, testa, and flowers
(Figure 11). In A. nanus, the RNA-seq data was used to
observe the expression levels in leaves. The results displayed
that only one gene showed substantially higher expression
in leaf (Wang et al., 2022). In wheat, most of the genes
showed higher expression patterns in root, stem, leaf, spike,
and grain. Especially, almost half of the APX genes were
found to be leaf-specific due to significantly higher expression
(Tyagi et al., 2020). In A. chinensis, qRT-PCR-based expression
profiling of 13 AhAPX genes was performed in various fruit
developmental stages. The outcomes demonstrated that eight
AcAPX genes had the utmost expression patterns during the
color turn-off phase (Liao et al., 2020). It can be concluded
that the tissue-specific APX genes (such as AhAPX4, AhAPX17,
AhAPX77, AhAPX82, AhAPX101, and AhAPX130) could be
considered as target candidates for further molecular studies
to fully reveal their role and mechanisms in peanut growth
and development.

MicroRNA: Emerging Players for Crop
Improvement and Stress Tolerance
MicroRNAs (miRNAs) are a group of tiny-non-coding RNAs
formed from individual-strand hairpin RNA precursors.
These miRNAs switch gene expression by attaching to
corresponding sequences surrounded by target mRNAs
(Jamla et al., 2021; Patil et al., 2021). Extensive progress has
been put together in finding the targets of peanut miRNAs
that contribute to various stresses and developmental activities
(Zhao et al., 2010, 2015; Chi et al., 2011; Zhang et al., 2017;
Chen H. et al., 2019; Figueredo et al., 2020; Tong et al.,
2021). The present predicted 14 miRNAs belonging to 12
different families targeting 33 AhAPX genes (Figure 8 and
Supplementary Table 6). Notably, none of the previous studies
predicted the miRNAs that can target APX genes, expect
one study. A recent study supports our findings where 51
miRNAs have been identified targeting 29 TaAPX genes in
wheat (Tyagi et al., 2020). However, these target genes are yet
to be characterized in wheat. In another study, a new miRNA
(ath-miR447a-3p) was found to be targeting APX3 gene, and
its expression analysis showed that it negatively regulated the
expression of APX3, which is directly involved in the APX
synthesis under drought stress in Zanthoxylum bungeanum
(Fei et al., 2020).

However, some of the identified miRNAs have been
reported to take part in stress tolerance and developmental

processes. For instance, spatio-temporal expression patterns of
miRNA159 family representatives have been found targeting
MYB genes in grapevine (Vitis vinifera L.). The results
showed that miRNA159c-VvGAMYB module is involved in
gibberellin-tempted parthenocarpy in grapevine (Wang et al.,
2018). Another study discovered that miR167A is the main
member of miR167 family that regulates the A. thaliana
reproduction. Further, miR167A acts as a parental gene
that works mostly via ARF6 and ARF8 genes in maternal
management of embryonic and seed growth (Yao et al., 2019).
A member of miRNA156 family has been reported to be
involved in the interaction between ABA and miRNA156,
which regulates the expression profile of anthocyanin biogenesis
genes in drought-stressed plants (González-Villagra et al.,
2017). Notably, several miRNA families such as miR3513,
miR3518, miR3520, miR3513, miR3516, etc., have not been
functionally characterized; therefore, the future work could also
be focused on these unique miRNAs to reveal their potential
in plant growth and development. Moreover, the expression
profiling of prophesied miRNAs and their targeted genes
demands validation to direct their biological roles in the peanut
breeding programs.

CONCLUSION

Altogether, we recognized 166 putative AhAPX genes
in the cultivated peanut genome, which are mapped
on all chromosomes, including unassembled ones.
Comprehensive in silico examination of AhAPX
genes, i.e., characterization, evolution, gene structure,
conserved motifs, cis-elements, putative miRNA and
TFs prediction, GO and KEGG enrichment were
executed to increase our understanding of AhAPX
genes in peanut. Their expression trends were also
evaluated in various developmental organs/tissues,
phytohormones, and abiotic stress conditions. In brief,
this report set the foundation for further functional
experiments (such as overexpression, gene editing via
CRISPR/Cas system, etc.) of some candidate genes such as
AhAPX4/17/19/55/59/82/101/102/137 and AhAPX140, which
can advance the peanut breeding programs under undesirable
stress conditions.
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