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The current study considered the climate extreme index (CEI) values

originated from extreme environmental events (EEEs) by following the

National Oceanic and Atmospheric Administration (NOAA) guidelines. The

EEEs were fractionated into six sub-categories (i.e., high temperature, low

temperature, high precipitation, low precipitation, drought, and wind), and

the combined impact of CEIs was utilized to develop an algorithm for the

estimation of the phenology sensitivity index (PSi). Finally, the CEIs, and

the PSi were undergone the development of the phenology forcing (PF) model.

The developed model showed a high sensitivity at the CEI value of as low

as ≥1.0. Furthermore, the uncertainty index varied between 0.03 and 0.07,

making a parabolic curvature at increasing CEIs (1.0–15.0). The current study

precisely estimates the tendency of EEEs for phenology change. It will assist

in policy-making and planning crop cultivation plans for achieving sustainable

development goal 2 (SDG2) of the Food and Agriculture Organization (FAO).

KEYWORDS

agriculture policy, climate change, cropmodeling,maize, phenophase shifts, extreme
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Introduction

Periodic events in the life of plants are very important for their survival and for the
production of seeds to enter the next generation (Liu et al., 2021; Chen et al., 2022).
Timely completion of the vegetative stage and a scheduled initiation of the reproductive
(flowering) stage can warrant the production of healthy fruits and seeds (Yousaf et al.,
2015; Liu et al., 2020a). This periodic occurrence of life events is called phenology. All the
life events happening in a plant life cycle are studied under phenology, including seedling
emergence, seedling growth stages, plant growth stages, initiation of the reproductive
stage, transformation in reproductive stages, maturity, etc. These stages can be named
differently based on easily different life events of different plants. But, the importance
of phenology can never be over-emphasized in the successful completion of a plant
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life-cycle and to engender the next generation (Shafique et al.,
2014; Ibrahim et al., 2017; Shah et al., 2021). The importance
of phenology is amplified in agriculture as the farmers are
interested in the timely maturity of the crops and the in-between
events. A strictly scheduled growth pattern allows them to
cultivate multiple crops round the year (Anjum et al., 2017; Yasin
et al., 2019), and any deviation in the crop phenology can cause
significant crop losses (Fatima et al., 2020).

Climate is the supreme factor affecting the plant life cycle
and the timetable of their life events (Pan et al., 2019; Liu et al.,
2020a). Generally, the plants grow in an open environment,
and they have to face the environmental conditions directly
without any protection shield. Therefore, plants are among the
most exposed organisms to the environment (Bashir et al., 2016;
Khan et al., 2019). On the other side, the environment has
become unpredictable, and the frequent extreme events impact
the plants the most (Ahmed et al., 2022). Although the climate
has been changing over the last few centuries, the frequency of
extreme events has been increased over the last few decades,
and it continues to increase and challenge the life cycle of the
agricultural crops (Abbas et al., 2017; Ahmed et al., 2018).

Generally, the phenology change or the phenophase shift
is of two types, (i) transient phenology change (ii) permanent
phenology change. Temporary shift in phenophase of the
crop plant not persisting to the next year cultivated crops is
categorized as transient phenology change (TPC). This type of
phenology change is caused by extreme environmental factors
under the survival threshold levels of the crop cultivars. Any
permanent shift in the phenophase of a crop is categorized
as a permanent phenology change (Visser and Both, 2005).
It may happen either by (i) an extreme environmental factor
exceeding the survival threshold levels of the crop cultivars or
by (ii) periodic conterminous events of extreme climate for
multiple years causing TPC. The frequent TPCs can influence
the ecological timetable of local geographical communities,
impacting the connected steps of the food chain, e.g., arthropods
feeding on plants (Ettinger et al., 2021). Furthermore, frequent
and consecutive phenology shifts can render farmers toward
the selection of crop cultivars more tolerant to environmental
extremes (Shafique et al., 2011; Khan et al., 2016).

Extreme environmental events (EEEs) that occur for a short
period can cause significant crop losses and cause a complete
failure of the cultivated crop. Several studies have reported the
impact of climate change on crop phenology (Visser and Both,
2005; Ettinger et al., 2021; Liu et al., 2021). Similarly, now it
is also a well-proven fact that the EEEs significantly impact
crop phenology; however, the EEEs’ tendency to change crop
phenology is yet to be disclosed. There is a large knowledge
gap about the quantitative measurement of the phenology
shift in plants resulting from the abrupt climate changes,
as there is no research available to arithmetically estimate
the tendency of EEEs for shifting phenophases. Furthermore,
there is no reliable way to calculate the differential sensitivity

of phenophases toward different types of extreme climates.
Previously, researchers have been using some crop models in
which the phenophase shift has been used as an input factor
(Ahmad and Ashraf, 2016; Zhou et al., 2017; Czernecki et al.,
2018; Zhao et al., 2018), e.g., univariate linear regression model,
multiple linear regression model, etc. However, there was no
model available to determine the potential of the extreme
climate to advance or delay plant phenology. Therefore, we
designed this study to develop a model to precisely measure
the phenology shift tendency of the EEEs on agricultural
crops in terms of phenology forcing index (PF). PF is an
arithmetic representation of the perturbation tendency of an
environmental factor to shift a phenophase of the plant either
earlier or delayed. The plant population facing phenophase
shift is termed the phenophase shift density (PSD), largely
based on the type of phenophase and the type of crop plant
determining phenology sensitivity. We have taken into account
the phenology sensitivity during the algorithm development for
this model. Therefore, the current model is able to provide the
closest value of the phenology forcing index for the given EEEs.
The model also considers six different classes of EEEs separately
and has the capability to give them a share in determining the
final values of PF . The study is a unique effort to arithmetically
calculate the phenology shift tendency and play a key role in
improving the accuracy of existing crop models. It will help
to understand crop responses toward climate better and will
assist the researchers in developing agriculture policies and
future food security.

Methodology

Data used and algorithms development

Earth’s climate was considered stable before the industrial
revolution occurred in 1750. Therefore, the change in climate
and the climate forcing index are considered zero in 1750.
Similarly, the phenology forcing index (PFI) is the arithmetic
estimation of the potential of an extreme environmental event
to shift a specific phenophase. The data were collected from
the world weather & climate extremes archive of the World
Meteorological Organization to perform the analyses. The
calculation of PFI is carried out in a relative manner, considering
it zero in 1750. The PFI is based on an aggregate set of
conventional climate extreme indicators which, as described
by the National Oceanic and Atmospheric Administration
(NOAA)–National Centers for Environmental Information.
NOAA climate database has enlisted six extreme climate
factors derived from four types of environmental datasets;
(i) extreme high temperature, (ii) extreme low temperature,
(iii) extreme high precipitation, (iv) extreme low precipitation,
(v) wind speed (storm, hurricane, etc.), and (iv) drought. All
these six parameters possess their specific share in EEEs and
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have the tendency for phenology shift. We developed the
algorithms to calculate the extent of each EEEs sub-category
according to NOAA guidelines and combined them to get their
collective impact.

Description of extreme environmental
events subclasses

The temperature was taken as the mean temperature
value recorded in degrees Celsius (◦C), while the precipitation
was considered in millimeters (mm). Drought intensity was
measured in terms of drought duration, based on the number
of days without precipitation by following the palmer drought
severity index (PDSI). At the same time, the wind speed was
considered in kilometers per hour (km h−1) by neglecting its
blowing direction. In this way, the extreme climate factors
considered in this model development were the same as used
in the calculation of the climate extreme index (CEI) by NOAA,
while their detailed description is as follows:

1. Climate extreme index of high temperature (CEIHT)
was calculated from the sum of (a) a percentage
of the maximum temperatures below average high
temperatures (HTAvr) and (b) a percentage of the
maximum temperatures much above the HTAvr .

2. Climate extreme index of low temperature (CEILT)
was the sum of (a) the percentage of the minimum
temperatures much below average low-temperature
LTAvr and (b) the percentage of the minimum
temperatures much above LTAvr .

3. Climate extreme index of high precipitation (CEIHP)
was the sum of (a) percentage of the high precipitation
higher than the average high precipitation HPAvr of the
area and (b) percentage of the high precipitation lower
than the HPAvr .

4. Climate extreme index of low precipitation (CEILP)
was the sum of (a) percentage of the low precipitation
higher than the average low precipitation LPAvr of the
area and (b) percentage of the low precipitation lower
than the LPAvr .

5. Climate extreme index of drought (CEID) was
calculated as the sum of (a) percentage of the days with
no precipitation greater than an average number of
days without precipitation (DDAvr) and (b) percentage
of the days with no precipitation lesser than DDAvr .

6. Climate extreme index of wind speed (CEIW) was
calculated as the sum of (a) percentage of the wind
speed greater than average wind speed (WS’) and (b)
percentage of the wind speed lesser than WS’.

In each case, the parameters were considered as much below
and higher than the maximum and minimum environmental

conditions. Furthermore, the representative values were
screened as the tenth percentile of the period of record.
Furthermore, the CEI values of each subclass of the extreme
environment were summed up to calculate the total value of the
climate extreme index (CEI).

CEI = CEIHTCEILTCEIHPCEILPCEIDCEIw

The zero value of CEI indicated that no fraction of the climatic
parameter recorded had extreme conditions. However, the
highest CEI value of 100 represented that the entire test area had
extreme conditions throughout the recorded period.

The method devised by the National Centers for
Environmental Information (NCEI) climate division
precipitation and temperature databases were followed to
calculate the PDSI (Karl et al., 1986). The PDSI categorized
drought conditions in increasing order of intensity as near
normal, mild to moderate, severe, or extreme for droughts
and wet periods, depending upon the weeks passed under
drought conditions, which fitted nicely into the CEI framework.
Similarly, it had a large database for tropical storm and
hurricane wind data, extracted from the National Hurricane
Center’s North Atlantic Hurricane Database (HURDAT), which
were added to the CEI.

Impact of climate extreme index on
phenology shift

The algorithms derived under NOAA guidelines assisted
by NCEI based PDSI was used to calculate the impact of
CEI on phenology shift using HURDAT based data in terms
of phenology shift index (PSi). Meanwhile, the phenophase
data was used to calculate the penology sensitivity (SCEI) by
keeping in mind that all the plant species did not respond
identically to the extreme environmental conditions in terms
of phenophase shift. Taking into account the PSi and SCEI a
phenology forcing index (Fp) was devised as per the rate of
climate extreme index with respect to phenology sensitivity. The
details of the algorithms and the devised model were presented
in the equations.

Verification of phenology forcing index

High-resolution datasets about maize crops were procured
from the HURDAT database and from the environmental
data station of the institution to verify the results of the
phenology forcing index. The datasets used in this study
were of nClimGrid grade with a spatial resolution of 5 km
and temporally distributed from 1979 to 2020. Furthermore,
sample maize data of phenophase shift was used to compare
the results of the model and the actual field conditions. All
the procured datasets were undergone a forest analysis and
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a funnel plot to estimate the data deviation. The funnel test
represented the reliability of the results. At the same time,
the main characteristics of the funnel plot were the sample
size and its statistical significance. The forest plot estimated
the summary effect and analyzed the heterogeneity in the data
components. The differential weight of the data components
was represented with the square boxes, while horizontal lines
represented the weight range. A starred square area showed the
total variance of the components. The analysis was performed
with a confidence interval (CI) of 95% along with the neutral
point shown with a dashed line. The datasets were analyzed
by PyCharm V:2021.1.1 × 64 (JetBrains; SRO) as an integrated
development environment (IDE), as an extended platform of
Python to draw time-course phenology shift plots. Furthermore,
the graphical illustrations were presented to give a comparison
between devised model and observed data.

Results

The algorithm for the climate extreme index of high
temperature was developed in the following form:

EHT = (HTAvr−HT) ×
HT
100

Whereas the deviation from the average of the tenth
percentile of these values was considered as the climate CEIHT .

CEIHT =
∑

EHT10p
− EHT

EHT
Similarly, the algorithm representing the climate extreme

index of low temperature was as follows:

ELT = (LTAvr−LT) ×
LT
100

However, the deviation from the average of the tenth
percentile of these values was considered as the climate CEILT .

CEILT =
∑

ELT10p
− ELT

ELT
The following equation was the arithmetic representation

of the algorithm for the climate extreme index of high
precipitation.

EHP = (HPAvr−HP) ×
HP
100

While the deviation from the average of the tenth percentile
of these values was considered as the climate CEIHP.

CEIHP =
∑

EHP10p
− EHP

EHP
The algorithm represented the climate extreme index of low

precipitation was as follows.

ELP = (LPAvr−LP) ×
LP
100

However, a deviation from the average of the tenth
percentile of these values was considered as the climate CEILT .

CEILP =
∑

ELP10p
− ELP

ELP

Climate extreme index based on drought developed the
following equation.

ED = (DDAvr−DD) ×
DD
100

And a deviation from the average of the tenth percentile of
these values was considered as the climate CEILT .

CEID =
∑

ED10p
− ED

ED

The climate extreme index of wind was processed to develop
the following algorithm.

EW = (WS−WS′) = WS′
100 And a deviation from the

average of the tenth percentile of these values was considered
as the climate CEIW .

CEIw =
∑

EW10p
− EW

EW

Impact of climate extreme index on
phenology shift

After the successful development of the algorithms for
all sub-categories of EEEs, the second step was to estimate
the relation between the CEI and phenology shift, which was
developed in the form of a phenology shift index as described
in the following equation.

PSi =
(∑
4P
)np

100 × Np

Where
∑
4Pis the sum of all the phenology shifts in

a test phenophases; and the Np is the total number of
phenophases studied.

The detailed equation to calculate phenology sensitivity was
as follows.

SHT =
((∑
4P
)np/100 × Np

)
CEI

The algorithm devised for the calculation of phenology
forcing index and its elaborated equation was as follows.

Fp = CEI/SCEI

Fp =
CEI2

× Np × 100(∑
4P
)np

Frontiers in Plant Science 04 frontiersin.org

https://doi.org/10.3389/fpls.2022.961335
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-961335 September 3, 2022 Time: 15:47 # 5

Ahmad and Liu 10.3389/fpls.2022.961335

Verification with a sample data

The maximum heterogeneity among the datasets was 5.21,
while the maximum inclination of the datasets representing
perturbation in phenology shift was recorded at 0.13. The
average data cover calculated in the analysis was 0.01, as
shown in the forest plot (Figure 1A). Besides, no dataset was
found with significant deviation compromising the reliability
of the results. Almost all the procured datasets were ranged
under the limits as calculated by 95% confidence interval, with
maximum data points in the funnel’s first quadrate (bottom
side). However, each of the second and third quadrates had one
data point (Figure 1B).

The phenophase shift modeled by the phenology forcing
index revealed the highest phenology shift at both the terminal
stages of a plant’s life, i.e., seedling emergence and maturity.
These stages showed the highest phenology shift of >15% of
their total duration under the influence of almost every sub-
class of EEEs. Drought and high temperature were the two
parameters that shifted the plant phenophases and changed
the rate of PSD per unit time duration. Low temperature
prolonged the seedling emergence and silking phenophases
up to 32 and 17% of their individual duration, respectively.
However, drought had the opposite impact and shortened the

FIGURE 1

Forest plot of the procured data for verifying phenology forcing
model (A) calculated at a confidence interval of 95%. The funnel
plot represents the reliability of the data components based on
the log OR-log odds ratio (B).

FIGURE 2

An illustration of the impact of phenology forcing on phenology
shift of four phenophases of maize crop. Time considered in the
study has been considered in months and mentioned on the
x-axis, while the score of phenology shift density (PSD) has been
mentioned on the y-axis. The role of each sub-class of EEEs has
been represented with differentially colored lines; high
temperature (red); low temperature (green); high precipitation
(blue) low precipitation (purple); drought (black); wind (gray).

plant life by increasing the value of PSD within a short interval
of time (Figure 2).

Model verification

The comparison between the sample maize data (observed
data) and a data series obtained thorough serial increment
showed almost parallel elevations of phenology forcing index
in most cases. Especially in the case of low precipitation, there
was no point in interception between the two lines representing
both of the data classes. Although the observed data values
were initially a little less, the area of this difference was lower
than the minimum impact limits of the model, which were
set at CEI ≥ 1.0. The EEEs of high precipitation and drought
showed the highest deviation among all environmental sub-
categories; however, their deviation pattern was not identical
to each other. The phenological forcing due to drought did
not deviate initially, but its value increased with the increasing
climate extreme index value (CEID). However, in the case of
high precipitation, the phenological forcing values were closer to
the model values with the increasing CEIHP. An identical trend
(just like high precipitation) was recorded in the case of wind
speed (Figure 3).

The sensitivity index of the devised model was increased
from CEI values of 1–4; however, it got stable at later stages.
The sensitivity index was recorded as 95.2 at the very initial
CEI value of 1.0, and then it was increased up to 99.5 at the
CEI value of 4.0. At later stages, it showed slight variability
between 99.5 and 99.8 at different CEI values. However, in the
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FIGURE 3

A phenology forcing comparison between the observed data and the serial increment data of six extreme environmental categories, i.e., high
temperature (A), low temperature (B), high precipitation (C), low precipitation (D), drought (E), and wind speed (F). climate extreme index values
have been plotted on the x-axis, and the phenology forcing index value has been mentioned on the y-axis. Minimum impact limit (MIL).

case of uncertainty analysis, the first four CEI values showed
an opposite trend with remarkably decreasing uncertainty up to
CEI = 4.0. However, during CEI 4–12, it remained stable and
again showed an increase between CEI 13–15 (Figure 4).

Discussion

Although climate change is perilous for crop cultivation
plans and patterns, it is common to observe that sudden
and intense changes in climate could cause more damage
to crops than gradual slow changes. Therefore, climate

extreme index- CEI was first introduced in early 1996
(Gleason et al., 2008; Liu et al., 2020b; Chen et al.,
2022) to summarize the multidimensional and multivariate
combinations of environmental conditions. The CEI helped the
inexperienced persons to understand the overall environmental
impact and to draw the impact on agricultural crops. The
CEI concept was so interesting and wide in its application
that it was adopted in various fields of research related to the
environment. The current study is an advancement to the CEI
concept as it introduces the impact of CEI on crop phenology.
Furthermore, it is the first effort to apply CEI values for
crop modeling. Therefore, the current investigation occupies a
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FIGURE 4

Uncertainty and sensitivity analyses of the phenology forcing
model. A trend line colored blue represents the sensitivity index
values as mentioned on the right vertical axis. While the
orange-colored trend line shows the uncertainty likelihood in
the model as mentioned on the left vertical axis. The climate
extreme index (CEI) is mentioned on the x-axis.

unique position in understanding the impact of extreme climate
on agricultural crops.

The most important aspect of the current investigation is
the consideration of all six sub-categories separately in the
development of algorithms. Generally, climate studies related
to crop cultivation are restricted to climate change, and they
don’t consider the abrupt and short-term changes in the climate,
the extreme environmental events (Athar et al., 2021; Chen
et al., 2022). However, these extreme environmental events
greatly impact crop cultivation and food security. The current
investigation has not only been extended to the EEEs, but it
also developed separate algorithms for all six sub-categories
of the EEEs, and then calculated their combined impact on
plants in terms of phenology forcing. It is an implication
of the NOAA guidelines to calculate EEEs impact on plant
phenology. By using this phenology forcing model, researchers
and environmental institutes could estimate an extended shift in
crop phenophase and its possible effects on ecological balances
and the food chain.

Most of the time, climate change is not a simple interaction
between two variables. We have to consider a mesh of
interlinked parameters while dealing with climate change (Yasin
et al., 2018; Ahmad et al., 2021). For example, the carbon cycle
is a multifaceted parameter that impacts the global environment
(Fariduddin et al., 2006; Mehmood et al., 2018). It is interlinked
with all the major parts of every ecosystem of this earth
and continuously affects all types of life. All life control lies
in carbon emissions and sequestration processes occurring in
ecosystems. Its emission into the environment causes carbon
fertilization, positively impacting plant growth and promoting
carbon sequestration. At the same time, it is contributing to
greenhouse gases and causing global warming (Tariq et al.,
2021). Due to the complexity of the interlinked factors with the
carbon cycle, its overall impact on the environment is difficult

to be determined precisely (Rehman et al., 2020; Li et al., 2021;
Abbas et al., 2022). Therefore, most of the time, we get only
stochastic measures to estimate environmental factors, which
is a major hurdle in achieving sustainable development goal
2 (SDG2) of the Food and Agriculture Organization—FAO
(Ahmad et al., 2014; Khan et al., 2015). Moreover, we cannot
estimate the precise nutritional distribution in the food chain
due to unreliable estimation of the phenology shift of food crops
(Amoroso, 2018). Additionally, the increased global warming
has boosted the frequency and intensity of EEEs, making it
more complex to understand the environment and its impact
on agricultural crops. Considering all of these facts, there is
a continuous need to develop improved models for a better
understanding of plants’ responses toward EEEs. The study
contributes a unique model to better understand the climate
impact on crop phenology.

Climate change has the ability to alter the energy balance
in a multivariate way, and this ability of energy change
alterations is calculated in terms of climate forcing (Foster
et al., 2017). It corresponds to energy transformation and
energy flow from radiation to carbon sequestration, air pressure
dynamics, aerosols mechanics, etc. (Foster et al., 2017; Zhao
et al., 2019). However, there is no previous mechanism available
to understand the tendency of climate change to change crop
phenology (Liu et al., 2021; Zhou et al., 2021). The unpredictable
phenology change also resulted in a less-reliable estimation of
the interrelations among ecological components. Due to this,
the overall impact of extreme environmental events could not
be fully explained. Being an extremely important aspect of a
plant’s life, it was a prominent gap in scientific knowledge that
the current investigation has fulfilled. Now, the researchers
can easily estimate the ability of the extreme climate to affect
the life cycle events of a targeted crop and can devise better
crop cultivation policies. Furthermore, the impact of EEEs on
the ecological relationships of the plants and their dependent
species can be correctly estimated.

Researchers must revise the environment-related model
repeatedly with multiple datasets and at different geographical
locations (Ahmad et al., 2018; Tan et al., 2021). Most of the time,
this task is performed on a set of observed data in comparison to
the set algorithms in the model. An example of this revision was
the modifications in theCEI index in 2003 when it was improved
with experimental and observed datasets (Gleason et al., 2008;
Zhao et al., 2017; Yang et al., 2021). Researchers have to collect
the observed data from multiple years and compare it with CEI
simulations to generate a more reliable algorithm applicable
to more diverse geographic regions and climatic conditions.
A similar type of activity has also been performed with the
current devised model, in which the developed algorithm has
been compared with observed datasets to verify its output.
Although, there will always be a need for more improvements
by running its algorithms on spatially and temporally more
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distributed datasets. But, the initial verification process results
are satisfactory and close to the natural output or phenology
shift. Moreover, the sensitivity and uncertainty analyses have
also proved that the model consists of a highly reliable set of
algorithms and can detect the phenology shift from the fraction
of CEI value.

Due to complexities in the EEEs and poor understanding
of how they affect agricultural crops, we cannot use the
primitive models due to their high error values and increased
uncertainty (Wang et al., 2005; Liu et al., 2020a). The main
reason for their unsuitability for EEEs is that they were not
built for environmental extremes (Pan et al., 2019; Zhang
et al., 2021). The researchers made their efforts to develop new
models with the least error in the predicted environmental
change and related factors. However, there was still a wide
gap between the actual impact of EEEs dynamics in an
ecosystem and its modeled values. This gap has been a cause
of serious uncertainties in predicting EEEs impact on the
crops hampering the experts in designing future agriculture
policies with substantial confidence. The current study has
precisely synchronized the EEEs with the phenophases of the
maize crop to narrow this gap of uncertainties and bring
more confidence in the predictive operations of agriculture
policy-making and crop cultivation. Moreover, the designed
model can be practiced in the global fields to get the
intended benefits.
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