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As compared with the traditional visual discrimination methods, deep learning and image 
processing methods have the ability to detect plants efficiently and non-invasively. This is of 
great significance in the diagnosis and breeding of plant disease resistance phenotypes. 
Currently, the studies on plant diseases and pest stresses mainly focus on a leaf scale. There 
are only a few works regarding the stress detection at a complex canopy scale. In this work, 
three tea plant stresses with similar symptoms that cause a severe threat to the yield and 
quality of tea gardens, including the tea green leafhopper [Empoasca (Matsumurasca) onukii 
Matsuda], anthracnose (Gloeosporium theae-sinensis Miyake), and sunburn (disease-like 
stress), are evaluated. In this work, a stress detection and segmentation method by fusing 
deep learning and image processing techniques at a canopy scale is proposed. First, a 
specified Faster RCNN algorithm is proposed for stress detection of tea plants at a canopy 
scale. After obtaining the stress detection boxes, a new feature, i.e., RGReLU, is proposed 
for the segmentation of tea plant stress scabs. Finally, the detection model at the canopy 
scale is transferred to a field scale by using unmanned aerial vehicle (UAV) images. The results 
show that the proposed method effectively achieves canopy-scale stress adaptive 
segmentation and outputs the scab type and corresponding damage ratio. The mean average 
precision (mAP) of the object detection reaches 76.07%, and the overall accuracy of the 
scab segmentation reaches 88.85%. In addition, the results also show that the proposed 
method has a strong generalization ability, and the model can be migrated and deployed to 
UAV scenarios. By fusing deep learning and image processing technology, the fine and 
quantitative results of canopy-scale stress monitoring can provide support for a wide range 
of scouting of tea garden.

Keywords: tea green leafhopper, anthracnose, sunburn, deep learning, image processing

INTRODUCTION

Tea is an important economic crop whose demand is increasing worldwide (Xia et  al., 2017; 
Bora et  al., 2019; Fang et  al., 2019). However, the tea production is affected by diseases and 
pest infestations, which poses a severe threat to the yield and quality of tea leaves. Currently, 
there are nearly 1,000 types of tea plant pests and more than 380 tea plant diseases that have 
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been reported globally. These diseases and pests lead to yield 
losses as high as 43% (Gnanamangai and Ponmurugan, 2012; 
Sun et  al., 2019; Roy et  al., 2020). An effective detection and 
identification of major tea plant diseases and pests can provide 
a guide map for prevention and control. In addition, it can 
also assist in reducing the environmental pollution caused by 
the excessive application of pesticides (Sankaran et  al., 2010; 
Hu et  al., 2019a). It is noteworthy that the detection of tea 
plant diseases and pest infestations is also important for high-
throughput phenotypic analysis during tea plant breeding. The 
conventional phenotyping based on manual inspection is prone 
to subjective errors. Currently, there is a lack of efficient methods 
for detecting disease-resistant tea plant phenotypes. Therefore, 
non-destructive high-throughput methods for detecting tea 
pests and diseases are highly desired (Mahlein et  al., 2019).

Due to the rapid popularization of portable cameras, the 
researchers are able to easily acquire the images of plant diseases 
and pests. There are various works presented in literature that 
combine the image processing techniques with machine learning 
methods for the detection of pests and diseases. Patil and 
Zambre (2014) extracted the texture, shape, color, and other 
features, and then used a support vector machine (SVM) for 
classifying various cotton leaf diseases and pests with an accuracy 
of 96.66%. Waghmare et  al. (2016) used texture features and 
SVM to classify the grape leaf downy mildew and black rot 
with an accuracy of 96.6%. Ramesh et  al. (2018) used Hu 
moments, Haralick texture, and color features for classifying 
papaya leaves based on random forest (RF). The classification 
accuracy of this method is approximately 70%. Shrivastava 
and Pradhan (2021) only used color features and SVM to 
classify the rice diseases, including bacterial blight, rice blast, 
sheath blight, and healthy leaves, with a classification accuracy 
of 94.65%. Xian and Ngadiran (2021) used features, such as 
Haralick texture, hue saturation value (HSV) histogram, and 
color moments to classify tomato leaves with an extreme 
learning machine. The classification accuracy of this method 
reaches 84.94%, which is better as compared to the method 
that uses the RF algorithm. The aforementioned methods for 
classifying plant pests and diseases based on machine learning 
are usually suitable for simple scenarios, such as single plant 
and single species of pests and diseases. However, these methods 
are unable to perform efficiently in complex real-world scenarios. 
In addition, the machine learning models are highly dependent 
on the training samples.

As compared with machine learning, the deep learning 
methods automatically realize feature learning based on given 
data. This enables the researchers to build end-to-end models 
for plant disease and pest detection (Noon et  al., 2020). Tian 
et  al. (2020) compared the results of deep learning and 

machine learning in the classification of citrus pests and 
diseases. The results show that the classification accuracy of 
convolutional neural network (CNN; 95.83%) was significantly 
higher than SVM (87.65%). Due to the strong generalization 
of deep learning, many researchers have realized the 
classification of plant leaf diseases and pests based on CNN, 
including, but not limited to tea, wheat, rice, ginkgo, walnut, 
coffee, cucumber, tomato, apple, and banana leaves, achieved 
high classification accuracy (Hu et al., 2019b; Anagnostis et al., 
2020; Esgario et  al., 2020; Karthik et  al., 2020; Li et  al., 
2020; Zhong and Zhao, 2020). In addition to the application 
of deep learning in the classification of plant leaf diseases 
and pests, various works have been presented for locating 
and assessing the damaged areas. Liu and Wang (2020) 
optimized YOLOv3 based on feature fusion and other methods 
for detecting tomato leaf diseases and pests with a mean 
average precision (mAP) of 92.39%. Fuentes et  al. (2017) 
used a faster region-based convolutional neural network (Faster 
RCNN), region-based fully convolutional network, and single-
shot multi-box detector for detecting the diseases and pests 
on tomato leaves. The results show that Faster RCNN performs 
better in multi-stress types. The transfer learning effectively 
shortens the training time and achieves suitable results without 
requiring large-scale datasets and has been widely used in 
plant disease detection (Selvaraj et  al., 2019). Currently, the 
research on plant diseases and pests mainly focuses on a 
leaf scale. There are very few works that consider the disease 
and pest detection at the canopy level. The leaf level detection 
of diseases and pests always requires leaf sampling, or taking 
tight shots of leaves, which limited its application in field 
scouting scenarios, such as using the near-ground unmanned 
aerial vehicle (UAV) system as demonstrated in our study. 
And the canopy level detection is able to provide the distribution 
information of disease/pest occurrence and incidence, which 
is important to guide the prevention practices, especially for 
smart sprayers. The key point of detection at the canopy 
scale is to realize the automatic identification of the range 
of diseases and pest lesions, and the estimation of damage 
ratio, which is conducive to determining the type of stress 
and the degree of incidence, so as to carry out precise 
prevention and control.

In the tea planting areas that are mainly used for green 
tea production, tea green leafhopper (GL) and anthracnose 
(AH) are the most frequent leaf disease and pest during the 
period of May–June. During the same period, the tea gardens 
are also susceptible to the damage of leaf sunburn (BR). This 
study focuses on the detection of three aforementioned tea 
plant stresses that can occur simultaneously in the tea garden 
that have similar symptoms. The core motivation is to propose 
an intelligent detection method of tea plant stresses on canopy 
level that is able to facilitate non-destructive high-throughput 
field scouting. The major contributions of this work are 
as follows:

 1. An image acquisition of tea plant diseases and pests including 
GL, AH, and BR is performed to form a dataset for multi-
scale recognition.

Abbreviations: AH - Anthracnose: GL - Tea green leafhopper; BR - Leaf sunburn; 
Faster RCNN - Faster region-based convolutional neural network; YOLO - You 
only look once; UAV - Unmanned aerial vehicle; mAP - Mean average precision; 
OA - Overall accuracy; SVM - Support vector machine; RF - Random forest; 
CNN - Convolutional neural network; RCNN - Region-based convolutional neural 
network; RPN - Regional proposal network; IoU - Intersection over union; ReLU 
- Rectified linear unit; PR - Precision-recall: AP - Average precision; TP - True 
positive; FP - False positive; TN - True negative; FN - False negative
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 2. A canopy-level scab detection and segmentation strategy 
that synergizes deep learning and image processing 
is proposed.

 3. A specified Faster RCNN algorithm is proposed and compared 
with YOLO v3 for tea stresses detection.

 4. A new feature, the RGReLU, is proposed and used in stresses 
segmentation, which thus constituted a light-weighting 
strategy, and compared with other features based on RGB 
and HSI color space.

 5. The feasibility of transferring the established canopy level 
model to the UAV images is verified, which indicated a 
promising capability in automatic scouting and detecting 
of diseases, pests, and other stresses in tea gardens.

EXPERIMENTS AND METHODS

Data Collection
The tea leaf samples of GL, AH, and BR are collected from 
the experimental tea gardens of the Chinese Academy of 
Agricultural Sciences, Hangzhou, Zhejiang, China. The symptom 
of these three types of stresses is similar, i.e., irregularly shaped 
reddish-brown areas. However, as the control strategies are 
quite different, the confusion among them may lead to serious 
consequences. In this work, the RGB images of tea plant stresses 
are captured using MI 6 smartphone camera (Sony, with 
resolution of 4,032 × 3,016) and iPhone XR smartphone camera 
(Sony, with a resolution of 4,032 × 3,024) in the fields. Since 
the tea plant stress area is too small in the image, this study 
firstly crops the original image during preprocessing, as presented 
in Figure  1. The number of stressed RGB images obtained in 
this work are 122 (AH), 151 (GL), and 198 (BR). After cropping, 
2,375 images containing lesions are screened and retained, of 
which 681 are AH, 1042 are GL, and 652 are BR, as presented 
in Table  1. The dataset, i.e., TEAIMAGE, is divided into 
training, validation, and test sets according to the ratio of 7:2:1.

Construction of a Stepwise Segmentation 
Method for Tea Plant Stress at the Canopy 
Scale
In this work, a stepwise segmentation method of tea plant 
stresses is proposed by combining the object detection algorithm 
based on deep learning and image segmentation algorithm, 
as presented in Figure  2. In complicated real-world scenarios, 
the shape and size of the scabs are different among images. 
First, the object detection algorithm estimates the location of 
the scab. Then, the image processing technique is used to 
achieve fine segmentation of the scab area. This stepwise strategy 
effectively reduces the complexity of tea plant stress segmentation 
in practical scenarios. According to this strategy, the scab 
position in the image is first located, and the stress type is 
determined. Second, the scab images from the detected regions 
are extracted and used as the input data of subsequent lesion 

FIGURE 1 | The RGB image of tea plant stresses.

TABLE 1 | The RGB image information regarding tea plant stresses.

Stress type Number of 
original images

Number of images 
containing stress 

scabs

Camera model

AH 122 681 MI 6
GL 151 1,042 iPhone XR
BR 198 652 MI 6

FIGURE 2 | The workflow of the proposed method for detecting tea plant 
stresses at canopy level.
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FIGURE 3 | The demonstration of ideas in the specification of faster region-based convolutional neural network (Faster RCNN) in stress detection of tea plant 
canopy. The description of parts A–C is the title of its corresponding sub drawing.

segmentation module. Finally, the image is binarized to achieve 
fine scab segmentation using Otsu’s method. This stepwise 
strategy enables automatic detection and severity assessment 
of tea plant diseases, pests, and other stresses at the canopy level.

Object Detection Algorithm Based on 
Deep Learning
In the object detection step, the Faster RCNN algorithm was 
specified according to the traits of the tea plant canopy, and 
compared with the classical single-stage target detection 
algorithm, i.e., YOLO v3.

Specified Faster RCNN
The region-based convolutional neural network (RCNN) uses 
the selective search method to generate several candidate regions 
in an image. A CNN is then used to extract the features from 
each candidate region. Finally, these features are used as the 
input of SVM and linear regression model for category 
determination and position refinement, respectively. The Fast 
RCNN is a more sophisticated form of RCNN, which uses a 
multi-task loss function for performing classification and 
regression tasks based on CNN. As a simplified framework 

for target detection, the Faster RCNN adopts the region proposal 
network (RPN) instead of the selective search method. In this 
framework, a proposal window is generated in the convolutional 
feature layer of RPN by setting anchor boxes at different scales 
for achieving an end-to-end object detection (Ren et al., 2017). 
In this work, in order to improve the performance in terms 
of stress detection of tea plant canopy, the Faster RCNN is 
specified in three perspectives. First, intersection over union 
(IoU)-balanced sampling is added in the RPN stage. Second, 
ResNet101 is used as the backbone network. Third, the 
convolution kernels are replaced with the deformable convolution 
kernels, as presented in Figure  3.

Specification 1: Adopting IoU-Balanced Sampling in RPN 
Stage
As an important component of Faster RCNN, RPN implements 
the shared convolution features. This greatly improves the 
generation speed and localization accuracy of the detection 
boxes. The RPN in Faster RCNN is divided into two branches. 
The first branch classifies the anchor box to determine the 
positive or negative samples. The second branch calculates the 
offset of the anchor box, as presented in Figure  4. Please note 
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that the proposal layer combines the offset of the positive 
anchor box and the corresponding bounding box to generate 
a proposal box and filters is based on IoU. As the stress area 
usually only occupies a small portion of an image, while the 
background occupies a large proportion, the random sampling 
may select a large number of easy samples and small number 
of hard samples during the generation of candidate boxes. The 
selection probability for each sample under random sampling 
is expressed as follows:

 
p N

M
=

 
(1)

where, p denotes the selection probability, N denotes the 
number of negative samples, and M denotes the number 
of corresponding candidates. In order to increase the selection 
probability of hard negatives, this work adopts the 
IoU-balanced sampling method proposed by Pang et  al. 
(2019). This method starts by splitting the sampling interval 
into K bins based on IoU. It requires that the N negative 
samples are equally distributed in each bin. This guarantees 
a uniform selection of samples. The selection probability 
under the proposed IoU-balanced sampling is mathematically 
expressed as follows:

 
( )1 , 0,= × ∈k

k

Np k K
K M  

(2)

where, Mk denotes the number of sampling candidates in 
the interval denoted by k. The experimental results show 
that the model performance is not sensitive to k (Pang 
et  al., 2019). The parameter k is set to 3 based on the 
preliminary tests.

Specification 2: Selection of ResNet101 as the Backbone 
Network
The selection of backbone network is crucial for the performance 
of a model. In this work, ResNet101 is used as the backbone 
network of the Faster RCNN based on a preliminary analysis. 
Please note that the traditional backbone network degenerates 
as the number of layers in a network increases, i.e., with an 
increase in the depth of the network, the accuracy of the 
model saturates, and then begins to decline. The ResNet uses 
direct connections for connecting different layers of a network. 
This enables the network to overcome the loss of information 
caused during the forward propagation and ensures that a 
deeper network extracts more feature information as compared 
to a shallow network and avoids the gradient dispersion and 
network degradation caused due to the depth of the network 
(He et  al., 2016). As presented in Figure  3B, the residual 
block directly adds the output before the previous layer and 
the output of the current layer. This result is then used as 
the input of the activation function, and is expressed as:

 y x W xi= { }( ) + ,  (3)

where, x and y denote the input and output vectors, 
 = ( )W W x2 1σ  in which Ã  denotes the rectified linear unit 
(ReLU). The identity shortcuts in the residual blocks realize 
the combination of features at different resolutions and 
integrate the low-level semantics of a shallow layer and 
the high-level semantics of a deep layer to strengthen the 
model performance. On the other hand, the identity shortcuts 
allow the model to independently perform a non-linear 
transformation or transfer upper-layer information during 
the training process, or combine the two for building a 
more flexible network (Lin et  al., 2017).

FIGURE 4 | The structure of Faster RCNN.
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Specification 3: Replacement of Convolution Kernels With 
the Deformable Convolution Kernels
During the detection of tea plant stresses, the dynamic shape 
and size of the scabs often lead to poor stress detection. The 
traditional feature operators and data enhancement methods only 
assist the model to adapt the existing known geometric 
transformations but are barely used in the unknown scenarios. 
In order to effectively address this problem, this work uses the 
deformable convolution kernel to replace the original convolution 
kernel of ResNet, thereby allowing the sampling points to diffuse 
into irregular shapes, as presented in Figure 3C. The deformable 
convolution is mathematically expressed as follows (Zhu et al., 2019):

 
( ) ( )

1

K
k k k k

k
y p w x p p p m

=
= ⋅ + + ∆ ⋅∆∑

 
(4)

where, kp∆  and km∆  denote the learnable offset and modulation 
scalar for the k-th location, respectively. The wk and pk denote 
the weight and pre-specified offset for the k-th location. The 
x(p) and y(p) denote the features at location p from the input 
feature maps x and output feature maps y, respectively.

YOLO v3 Algorithm for Comparison
In addition to Faster RCNN, YOLO v3 algorithm is also used 
for performing detections. Contrary to the above two-staged 
object detection algorithm based on candidate regions, YOLO 
is a single-stage target detection algorithm that does not require 
the candidate regions. The core idea is to divide an image 
into an N × N grid. Each grid is responsible for detecting and 
localizing all the target objects existing inside it. In YOLO 
v3, DarkNet53 is used as the backbone network, which mines 
deep details in the image. Moreover, the former uses logistic 
regression instead of SoftMax classifier to achieve multi-label 
classification. Using the feature pyramid structure as a reference, 
YOLO v3 enlarges the size of the high-level feature maps and 
integrates it with the low-level feature maps. The new feature 
maps not only contain rich semantic information, but also 
have more pixels. Consequently, for small and dense targets, 
the detection effect is significantly improved, and the fast 
detection speed is achieved at the same time (Redmon and 
Farhadi, 2018).

Stress Segmentation Method Based on 
Image Processing Technology
In this part, the scab area will be  segmented based on the 
results of the above object detection algorithm, and the exact 
boundary of the scab will be  identified to enable further 
estimation of the damage ratio. The segmentation comprises 
the following steps: (1) Only images higher than the confidence 
threshold are extracted from the detection boxes for segmentation. 
The threshold obtained from the pre-experiment is 0.5. This 
value of threshold enables us to avoid a large number of pseudo 
image results. (2) Based on the images in the detection boxes, 
a new feature, i.e., RGReLU, is proposed for tea plant stress 
segmentation and other features, including H and RG, are 

generated for subsequent comparison. (3) The Otsu’s method 
is used to segment the scabs. (4) Lastly, the stress damage 
ratio of the whole image is estimated based on the results 
from each detection box. The flowchart of the scab segmentation 
method is presented in Figure  5.

It is noteworthy that the content of the images in the 
detection boxes is relatively diverse and may contain leaves, 
scabs, stems, leaf veins, and background. Moreover, the scab 
areas often have variable shapes, different sizes, and scattered 
distribution. Therefore, this work analyzes the sensitivity of 
scabs in different feature spaces based on color information 
for realizing a segmentation method with good performance, 
computational efficiency, and strong adaptability. The RGReLU 
feature is designed by computing the difference between the 
R channel and the G channel in the RGB color space. Then, 
ReLU is used to normalize the negative values to zero. The 
RGReLU is compared with two other features, including the 
features obtained after the difference between the R channel 
and the G channel (RG feature) and the feature of the H 
channel after converting the RGB image to the HIS image (H 
feature). In the RGB color space, the grayscale values of the 
three components are in the range of (0, 255). By calculating 
the difference between channels, the red component is 
strengthened whereas the green component is weakened in 
the RG feature. As a result, the difference between the lesion 

FIGURE 5 | The schematic diagram of the tea plant stress segmentation 
method at the canopy scale.
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and leaf area in the image is highlighted and is conducive to 
the subsequent classification combined with Otsu’s method. It 
is worth noting that the black background in the image often 
becomes the transition region in the RG feature space (the 
eigenvalue is close to zero). Here, the RG feature space is 
modified by introducing the ReLU function that is commonly 
used in deep learning. Therefore, all the negative eigenvalues 
are converted to zero to avoid the possible influence of the 
background in the scab segmentation according to Otsu’s 
method. The ReLU function is mathematically expressed 
as follows:

 
ReLU x

x x
x

( ) =
≥
<





,

,

 

 

0

0 0  
(5)

In order to perform tea plant stress segmentation, simple 
and efficient Otsu’s method is selected. The Otsu’s method is 
derived from the least square method based on the histogram 
of a gray image, which has the best segmentation in statistical 
terms. Let region A and B be  the two parts after threshold 
segmentation, ω0  and ω1  represent the probabilities of the 
occurrence of the A and B regions, respectively, and ∝0  and 
∝1  represent the average gray value of regions A and B, 
respectively. The expression for calculating the between-class 
variance is as follows:

 s k2
0 0

2

1 1

2( ) = −( ) + −( )ω µ µ ω µ µ  (6)

When the maximum value of s k2 ( )  is obtained, the value 
of k represents the optimal threshold value.

Transfer Learning From Canopy to UAV 
Detecting Scenario
The training process of deep learning models is expensive in 
terms of computations and requires large-scale datasets. In 
addition, the models usually require retraining for handling 
different scenarios, thus limiting the application of the models 
to a large extent. The transfer learning enables us to use 
previously learned knowledge to solve new problems (Pan and 
Yang, 2009). In transfer learning, only a few layers of a network 
are re-initialized, and the weights of other layers do not require 
training. The fine-tuning of network parameters makes it easy 
to adapt to new datasets. The transfer learning method proposed 
in this work consists of two stages. First, the detection model 
based on the TEAIMAGE dataset is obtained by fine-tuning 
the pre-trained model weights. Afterward, in order to investigate 
the effectiveness of the proposed tea plant stresses identification 
and segmentation strategy in terms of application, the above 
canopy model is transferred to the UAV image dataset to test 
the migration ability of the model.

Algorithm Evaluation
The algorithm evaluation is conducted on both the object 
detection and the scab segmentation parts. For object detection, 
the mAP is used as the model evaluation index, i.e., the average 

value of the area under the precision-recall (PR) curve of each 
category, when the IoU is 0.5. This indicator comprehensively 
expresses the detection performance of the model, and is a 
good indicator of precision and recall. At the same time, the 
average precision (AP) of each stress is also provided for 
comparative analysis. The AP and mAP are mathematically 
expressed as:

 
AP = ( ) ( )∫

0

1

P R d R
 

(7)

 
mAP =

( )=∑c
C c
C
1
AP

 
(8)

where, P denotes the precision, R denotes the recall, and 
C denotes the number of target categories.

In the scab segmentation part, the overall accuracy (OA) 
is used as the evaluation index of the algorithm. The tea leaf 
images are visually interpreted by manually extracting the scab 
areas to act as a ground truth. The proposed methods are 
compared with the ground truth to determine the number of 
correctly classified and misclassified pixels for generating a 
confusion matrix for accuracy evaluation.

 
OA TP TN

TP TN FP FN
=

+
+ + +  

(9)

where, TP, FP, TN, and FN represent the true-positive, false-
positive, true-negative, and false-negative pixels’ count in the 
segmentation result, respectively.

RESULTS AND DISCUSSION

Object Detection Algorithm Result 
Analysis
In terms of detecting the stress objects from tea canopy images, 
the Faster RCNN model achieves a higher accuracy 
(mAP = 76.07%) than YOLO v3 (mAP = 65.89%), as presented 
in Figure  6. The AP of Faster RCNN under three stress 
categories (GL: 80.53%, AH: 88.34%, and BR: 59.33%) is also 
higher as compared to YOLO v3 (GL: 73.62%, AH: 82.77%, 
BR: 41.28%). The prediction results of the two object detection 
algorithms are analyzed for all classes based on the methods 
provided by COCO.1 When the IoU criterion is relaxed from 
0.5 to 0.1, the mAP for both object detection algorithms 
improves significantly (Figure  7). Among them, Faster RCNN 
increased by 0.112, and YOLO v3 increased by 0.165. This 
means that both algorithms suffer from inaccurate localization; 
however, the effect on YOLO v3 is higher. In Figures  7A,B, 
the purple area has a larger proportion as compared to the 

1 https://cocodataset.org/#detection-eval

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://cocodataset.org/#detection-eval


Zhao et al. Tea Plant Stress Detection Segmentation

Frontiers in Plant Science | www.frontiersin.org 8 July 2022 | Volume 13 | Article 949054

blue area. The corresponding purple area of Faster RCNN and 
YOLO v3 is 0.087 and 0.143, respectively, indicating that both 
falsely detect the background area, but YOLO v3 has higher 
false detection of background area. In addition, the yellow 
areas of Faster RCNN and YOLO v3 are small, i.e., 0.04 and 
0.033, respectively, indicating that the two algorithms have 
low missed detections of ground truth. At the same time, the 
red and green areas of the two algorithms are approximately 
zero, indicating that there is almost no misclassification between 
stress categories in the two algorithms.

For three stress types, both algorithms performed best in 
detecting AH, then followed by GL and BR, as presented in 
Figure  6. The results show that the inaccurate localization and 
false detection of the background area significantly influence 
the accuracy of the model, as presented in Figures  7C–H. For 
instance, in Faster RCNN, the AP losses of AH, GL, and BR 
due to inaccurate localization are 4.5%, 9.9%, and 19.5%, 
respectively; the AP losses due to the false detections of background 
area are 4.2%, 6.6%, and 15.3%, respectively; and the AP losses 
due to missed detections are the lowest, i.e., 3%, 3%, and 5.9%, 
respectively. This may be  caused by the fact that the scab areas 
of AH are relatively large with clear edges, which is beneficial 
for efficient detection. On the other hand, the scab areas in 
the GL image are generally small and there exist some thin-
striped scabs, which pose challenges to the detection model. 
The presence of scabs with relatively blurry boundaries in the 
BR stress area makes it difficult for the model to locate scabs 
accurately. In addition, in BR canopy, there are some withered 
leaves showing similar characteristics with BR, which causes 
confusion for the model. Therefore, inaccurate localization and 
the false detection of background area have a great impact on 
the accuracy of YOLO v3, as presented in Figure  7.

Generally, the detection accuracy of Faster RCNN is higher 
as compared to YOLO v3. This may be  because the RPN yields 
more balanced positive and negative samples in the model. As 
a two-staged object detection algorithm, Faster RCNN splits the 
foreground and background in the RPN and performs preliminary 
target localization. After obtaining the foreground and background 
regions, the IoU-balanced sampling method is used to screen 
out the more balanced positive and negative samples (Pang et al., 
2019). Then, the obtained proposal boxes are classified and more 

accurate border regression is performed. On the contrary, as a 
single-stage algorithm, YOLO v3 tends to generate too many 
negative samples and very few positive samples, which makes 
it difficult for the network to learn effective information. The 
detection results of the two algorithms at the canopy scale are 
presented in Figure  8. Among them, Faster RCNN performs 

FIGURE 6 | The accuracy of the object detection algorithm.

FIGURE 7 | The error analysis of the object detection algorithm for each 
stress. The analysis of the object detection model includes seven PR curves. 
Due to the gradual relaxation of evaluation requirements, each curve 
represents a higher AP as compared to the curve presented on the left. The 
evaluation requirements of each PR curve are presented as: (1) C75: PR at 
IoU = 0.75, area under the curve corresponds to AP IoU = 0.75; (2) C50: PR at 
IoU = 0.50, the white area between C50 and C75 represents the AP gain due 
to the relaxation of IoU from 0.75 to 0.5; (3) Loc: PR at IoU = 0.10 (localization 
errors are ignored, but the duplicate detections are not ignored), the larger the 
blue area between Loc and C50, the lower is the performance of localization; 
(4) Sim: PR after supercategory false positives (fps) are removed. The larger 
the red area between Sim and Loc, the higher is the degree of confusion 
between super categories; (5) Oth: PR after all class confusions are removed. 
The larger the green area between Oth and Sim, the higher is the degree of 
confusion between subclasses; (6) BG: PR after all background (and class 
confusion) fps are removed. The larger the purple area between BG and Oth, 
the greater is the number of false detections in the background area; (7) FN: 
PR after all remaining errors are removed (trivially AP = 1). The larger the 
orange area between FN and BG, the more ground truth boxes are missed. 
The category labels of subgraphs (A–H) can be obtained in each gray box.
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efficiently and completes the identification and localization of 
different stress lesions, while YOLO v3 does not perform well 
under such a complex scenario. For instance, in case of very 
small scabs (GL-1), irregular thin strips (GL-2), and scabs with 
blurry edges (BR-2), the detection performance of Faster RCNN 
is better as compared to YOLO v3. This may be an effect caused 
by the use of deformable convolution kernels in the backbone 
network of Faster RCNN. The deformable convolution allows 
the sampling points to diffuse into irregular shapes, which better 
adapts the complex image geometric transformations, and shows 
advantages for targets with irregular sizes and shapes of tea 
plant stress. In addition, this work uses IoU-balanced sampling 
algorithm in RPN, which enables the Faster RCNN to learn 
more hard samples. When the scabs are in abnormal states, 
such as shadow (AH-1), blur (AH-2), and dry (BR-1), the model 
still achieves ideal detection results. While the mAP of HRNet-
based Faster RCNN without IoU balance sampling and deformable 
convolution is 74.64%. Therefore, the specified Faster RCNN is 
used as the object detection algorithm in this work. It is worth 
noting that although the accuracy of the specified Faster RCNN 

is not very high (mAP = 76.07%), most tea plant stresses are 
successfully detected. The deviation of detected boxes may account 
for a certain error rate. However, the goal in this step is to 
identify where the stresses occur in the canopy, instead of 
obtaining the precise locations of the detection boxes. Therefore, 
such deviation does not affect the practical application of the 
detection results. Moreover, more precise scab regions are generated 
in the subsequent image analysis step, which only requires a 
rough location of the detected boxes.

Stress Segmentation of Tea Plant Based 
on Image Analysis
The images extracted from the detection boxes are analyzed 
to obtain accurate scab segments for calculating the damage 
ratio of each stress type. The different features used in this 
study show different performance in scab segmentation, as 
presented in Figure  9. The algorithm based on RGReLU 
features has the highest accuracy (OA = 88.85%), followed 
by RG (OA = 86.67%), and H features (OA = 80.44%). Please 
note that the features based on RGB color space show high 
sensitivity to stress, as they capture the visual traits of scabs 
under real environment. The analysis of image information 
in the detection box shows that the boxes mainly include 
stress scabs (basically red, brown, and pink), normal leaves 
(green), and background areas (black). Therefore, by taking 
the difference between the R and G channels, the red channel 
feature in the image is strengthened (the red corresponds 
to the RG feature value of 255), while the green channel 
feature is weakened (the green corresponds to the RG feature 
value of −255), and the black channel feature becomes the 
middle zone in the RG color feature (the black corresponds 
to the RG feature value of 0) for effectively separating the 
scabs, leaves, and the background. However, the actual situation 
is often more complicated, and, sometimes, there are no 
ideal red, green, and black areas, as presented in Figure  10. 
For example, when the color of the scab is white due to 
illumination, reflection, etc., the red channel feature is weakened 
and the RG eigenvalue is reduced, thus making it difficult 
for the Otsu’s method to effectively distinguish the scab from 
the background (such as AH-B3 and BR-B1). It is worth 

FIGURE 8 | Some difficult scenarios in tea plant stress detection.

FIGURE 9 | The overall accuracy of scab segmentation.
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noting that even for canopy images with complicated 
circumstances, the RGReLU feature proposed in this work 
still achieves satisfactory performance in segmenting the 
stressed regions. This may be  because the negative part of 
the RG eigenvalue is uniformly changed to zero by using 
the ReLU function, so the eigenvalues of the regions where 
the red channel feature is weaker than the green channel 
feature (leaf areas, leaf veins, etc.) are all zeroed, thus 
integrating into the background region, which is beneficial 
for the subsequent extraction of the damaged area by using 
the Otsu’s method (2.18% higher than the RG feature accuracy). 
In addition, Figure  10 shows that the RGReLU feature has 
better segmentation performance for three types of stress 
scabs as compared to the other two features under different 
detection backgrounds, which delineates the scab edges 
effectively. Contrary, the H and RG features yield large 
segmented scab areas, such as GL-B1, GL-B2, GL-B3, AH-B1, 
and BR-B2.

The segmentation effect of each stress type is analyzed. The 
results show that the three features have the best segmentation 
ability for GL (OA over 90%), followed by AH, and BR. This 
is because the GL contains a single color that is closer to red 

and has high sensitivity in RG features. There are some brown 
and bright yellow scabs in the AH samples, which degrade 
the detection results. For BR stress, the color of the scab area 
is moderate, without clear edges, and the lesion is prone to 
dry and blackening, resulting in the loss of some accuracy.

The deep learning and image processing stepwise recognition 
strategy proposed in this work at the canopy scale overcomes 
the difficulties faced by a single image processing technique 
in dealing with various complex local changes in the canopy, 
such as illumination, shadow, blur, occlusion, etc. In addition 
to automatic segmentation of the scab areas, the proposed 
method also provides the proportion of stress infection, which 
is an important indicator for prevention practice. The proportion 
of scabs for AH, BR, and GL samples are 0.83%, 0.94%, and 
1.34%, respectively, as presented in Figure  11. On the other 
hand, as compared to the mask detection deep learning approach, 
the proposed method only requires the labeled boxes for 
training, instead of providing the exact object boundaries. In 
this way, the detailed edge information of stressed regions is 
obtained in a computationally efficient manner, which facilitates 
the derivation of canopy level scab proportion.

Transfer Learning From Canopy to UAV 
Detecting Scenarios
In this work, in order to evaluate the application potential of 
the proposed method in large-scale scenarios, the UAV (DJI 
Mavic) is used to collect the RGB images of AH, the UAV 
height is 3 m, and the UAV camera is Hasselblad (L1D-20c) 
with a resolution of 5,472 × 3,648. After cropping the original 
image, 100 sub-images containing scabs are obtained for fine-
tuning the model, as presented in Figure  12. The model is 
fine-tuned for the UAV image dataset based on the Faster 
RCNN network parameters. The results show that the model 
converges quickly and achieves an appropriate accuracy 
(mAP = 86.48%). The segmentation results of the resulting model 
for the UAV images are presented in Figure  13. The entire 
image is uniformly fragmented and the resulting sub-images 
are analyzed. The transparent red regions show that the 
corresponding image pieces are infected by stresses. Then, the 
scabs in each infected image piece are segmented based on 
the aforementioned image processing technique. The resulting 
scab regions are used for computing the damage ratio of the 
entire UAV image. Please note that the transferred model 
achieves rapid detection of stresses, differentiation of stress 
types, and scab recognition, which indicates a strong 
generalization ability of the proposed method. The model 
application of such a strategy using the UAV images enables 
the automatic scouting of stresses in a wide area of tea garden. 
With the fast development of UAV systems, the automatic 
UAV techniques are getting more and more mature and cost-
effective. This promotes the application of the tea plant stress 
detection method in multiple scenarios, such as early warning 
and control of diseases and pests, plants phenotyping for 
breeding, etc. Moreover, similar strategies and approaches can 
also be  introduced in stress detection in orchards and other 
economic crops planted in open areas.

FIGURE 10 | The segmentation results of tea plant stress by using different 
features. GL-B, AH-B, and BR-B denote the detection box images of tea 
green leafhopper, anthracnose, and sunburn, respectively.
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CONCLUSION

Aiming at automatic scab segmentation and damage ratio 
assessment of tea plant canopy images for tea stress detection, 
this work proposes an intelligent segmentation strategy that 
synergizes deep learning and image processing. The proposed 
method achieves automatic recognition, differentiation of 
different types of stresses, and obtains the precise  
boundaries of all stress scabs for deriving the accurate 
damage ratio. The specified Faster RCNN presented in this 
work uses deformable convolution kernels and IoU-balanced 
sampling to effectively detect the three typical tea plant 
stresses of tea green leafhopper, anthracnose, and sunburn. 
And the performance of the specified Faster RCNN 
(mAP = 76.07%) is better as compared to YOLO v3 
(mAP = 65.89%) under complicated scenarios (illumination, 

shadow, blur, occlusion, etc.) In order to extract the 
boundaries of tea plant scabs in the detection box, the 
RGReLU feature is used in an image processing procedure, 
which enhances the difference between the background and 
the stressed area. This stepwise strategy effectively reduces 
the complexity of tea plant stress segmentation in practical 
scenarios. And the generated canopy-scale model can 
be transferred to the UAV images, which shows the potential 
to apply the proposed model for scouting stresses in large-
area tea gardens.
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FIGURE 11 | The illustration of tea plant stress segmentation at canopy scale.

FIGURE 12 | The demonstration of unmanned aerial vehicle (UAV) image and image fragmentation of tea plant stress.
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