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Flax (Linum usitatissimum L.) or linseed is one of the important industrial crops 

grown all over the world for seed oil and fiber. Besides oil and fiber, flax offers 

a wide range of nutritional and therapeutic applications as a feed and food 

source owing to high amount of α-linolenic acid (omega-3 fatty acid), lignans, 

protein, minerals, and vitamins. Periodic losses caused by unpredictable 

environmental stresses such as drought, heat, salinity-alkalinity, and diseases 

pose a threat to meet the rising market demand. Furthermore, these abiotic and 

biotic stressors have a negative impact on biological diversity and quality of oil/

fiber. Therefore, understanding the interaction of genetic and environmental 

factors in stress tolerance mechanism and identification of underlying genes for 

economically important traits is critical for flax improvement and sustainability. 

In recent technological era, numerous omics techniques such as genomics, 

transcriptomics, metabolomics, proteomics, phenomics, and ionomics 

have evolved. The advancements in sequencing technologies accelerated 

development of genomic resources which facilitated finer genetic mapping, 

quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), 

and genomic selection in major cereal and oilseed crops including flax. Extensive 

studies in the area of genomics and transcriptomics have been conducted 

post flax genome sequencing. Interestingly, research has been focused more 

for abiotic stresses tolerance compared to disease resistance in flax through 

transcriptomics, while the other areas of omics such as metabolomics, 

proteomics, ionomics, and phenomics are in the initial stages in flax and several 

key questions remain unanswered. Little has been explored in the integration 

of omic-scale data to explain complex genetic, physiological and biochemical 

basis of stress tolerance in flax. In this review, the current status of various omics 

approaches for elucidation of molecular pathways underlying abiotic and biotic 

stress tolerance in flax have been presented and the importance of integrated 

omics technologies in future research and breeding have been emphasized to 

ensure sustainable yield in challenging environments.
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Introduction

Flax (Linum usitatissimum L.) or linseed is one of the primeval 
crops domesticated for oil and fiber since beginning of civilization 
(Zohary and Hopf, 2000). It is believed to be originated in either 
the Middle East or Indian regions from where it spread to whole 
world (Vavilov, 1951; Green et al., 2008). Since ages, the oil from 
flax seed has been used in paints, varnishes, and polymer industries 
owing to its unique fatty acid composition (Przybylski, 2005; Shim 
et al., 2015) while the fiber extracted from flax stem has been used 
in textile industry to produce quality Linen fabrics. Nutritionally 
flaxseeds are very dense as they are packed with high amount of 
alpha linolenic acid (55–57%), proteins (upto 18.29%), fibers 
(27.3%), vitamin B1, and lignans particularly secoisolariciresinol 
diglucoside (SDG; 294–700 mg/100 g) making it among 
preeminent functional food (Singh et al., 2011; Goyal et al., 2014; 
Kajla et al., 2015). Flax seed consumption has proven beneficial 
effects on coronary heart disease, cancer, neurological/hormonal 
disorders, and atherosclerosis (Westcott and Muir, 2003; 
Hosseinian et  al., 2006; Bassett et  al., 2009). Presently, China 
occupies the paramount position in terms of flax consumption and 
is the largest importer valuing 31,108 M US$ in the past decade 
which accounts for 26.8% of total global flax import in the year 
2020. Canada is the leading producer and exporter of flax 
worldwide over the past decade, while India ranks seventh in terms 
of production and eleventh in terms of export (FAOSTAT, 2022; 
Figure 1). Biotic and abiotic stress factors have been the major 
constraints in increasing flax production worldwide. The 
productivity of fiber flax is severely affected by devastating fungal 
diseases such as Fusarium wilt, Alternaria blight, powdery mildew, 
rust, and pasmo in European countries, whereas the oil type 
linseed mainly cultivated in Asian countries, particularly India 
suffers from drought, salinity, and heat in conjugation to varied 
diseases and insect-pests. In addition, the warmer climate of these 
tropical countries is not suitable for fiber flax which requires a 

prolonged cool season for effective yields and fiber quality. As a 
result, yields have been stagnated in these countries. The renewed 
interest in flax consumption as functional food has led to the 
increase in consumer demand for flax-based products such as 
multigrain breads, ready-to-eat breakfast cereals, breakfast drinks, 
salad dressings, biscuits, crackers, soups, and cakes (Coşkuner and 
Karababa, 2007; Ayelign and Alemu, 2016). Moreover, with the 
recent advances in material science, the flax fiber has new range of 
industrial applications, such as geotextiles, biopolymers, specialty 
papers, composites, and biofuels (Diederichsen and Ulrich, 2009; 
Cullis, 2011), and has gained new attention because of its quality, 
biodegradability, and recyclability. Thus, the burgeoning interest 
revolving around health promoting effects and natural fiber 
industry has fueled for enhanced demand worldwide. The 
increased demand is reflected by the up-scaling trend in global 
production of linseed from 2.5 million tonnes to more than 3.5 
million tonnes as well as flax fiber from about 26,000 tonnes to 
approx. 1 million tonnes over past decade (FAOSTAT, 2022; 
Figure 1). However, environmental challenges, such as dwindling 
water resources, salinization or alkalinization of soil, extreme 
temperature fluctuations, fungal diseases, such as wilt, rust, and 
pasmo, have deleterious effects on plant growth resulting in huge 
yield loss in flax (Fofana et  al., 2006; Saha et  al., 2021; Zare 
et al., 2021).

Among abiotic stresses, drought is one of the most prevalent 
and detrimental constraints to agricultural production, that 
negatively affects the overall crop growth, yield, and quality 
causing more than 50% average yield loss (Fahad et al., 2017; Kole, 
2020). It is expected to wreak havoc on plant growth on more than 
half of arable land by 2050 (Jaggard et al., 2010). Western Canada, 
Russia, China, and India are important flax producing regions and 
during the last 100 years, annual precipitation has become less 
evenly distributed in these areas in addition to temperature change 
(Gitay et al., 2002). Scarcity of soil moisture can negatively impair 
the yield potential, oil content and fatty acid composition, and 

A B

FIGURE 1

(A) Trends in global production of linseed and flax fiber in past decade. (B) Flaxseed production in top 10 countries in the world.
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fiber quality traits in flax (Fofana et al., 2006; Abd El-Fatah, 2007; 
Heller and Byczyńska, 2015). Drought results in reduced leaf 
expansion, leaf senescence, abscission, oxidative damage, and 
increased membrane lipid peroxidation thereby disrupting normal 
metabolism (Hu and Xiong, 2014). Although flax tolerates 
drought better than many other oil and food crops due to its 
hardiness; however, at the same time, flax plants transpire very 
high amounts of water owing to high transpiration coefficient (the 
amount of water necessary to produce one unit of dry matter) 
value of 787–1,093 (Kozłowska, 2007; Heller and Byczyńska, 
2015). Therefore, fiber flax requires annual precipitation of at least 
600–650 mm for optimal yields, of which at least 110–150 mm of 
rain fall is essential in the vegetation period. Thus, water scarcity 
continues to be a significant impediment to flax production as it 
is a neglected crop in developing countries and is normally 
cultivated in rain-fed areas with poor management and low input 
conditions (Lisson and Mendham, 2000; Dash et al., 2014; Kaur 
et  al., 2017). Drought is an erratic and highly unpredictable 
environmental phenomenon; therefore, selection should target 
drought tolerant genotypes having yield potential. Accordingly, 
long-term traditional breeding programs and later development 
of transgenic flax were initiated to combat these constraints and 
improve flax production (Tawfik et  al., 2016). Since drought 
tolerance is a complex polygenic trait, understanding the adaptive 
mechanisms and identification of underlying genes/markers/
QTLs could pave a way for genetic enhancement and productivity 
of flax in arid and semi-arid regions. Only a few studies have been 
reported identifying drought resilient genotypes in flax 
(Diederichsen et al., 2006; Qi et al., 2010; Sharma et al., 2012; 
Asgarinia et  al., 2017) and genome-wide analysis of drought 
induced gene expression (Dash et al., 2014). The root system is 
shallow in flax compared to other oilseed crops such as rapeseed, 
sunflower, and safflower. Therefore, studying root system 
architecture is of pivotal importance for more efficient water 
acquisition in flax. The importance of root traits for efficient water 
and nutrient absorption under water scarce conditions have been 
realized recently in many crops, such as rice, wheat, and maize 
(Tuberosa et al., 2002; Manschadi et al., 2006; Gowda et al., 2011; 
Kaur et al., 2020); however, knowledge is still limited in flax (Soto-
Cerda et al., 2019, 2020).

Soil salinity has risen exponentially in recent years due to a 
number of factors including excessive irrigation, low precipitation, 
high surface evaporation, rock weathering, ion exchange, and 
poor cultural practices (Bui, 2020; Dubey et  al., 2020). 
Approximately 20% of total cultivated and 33% of irrigated land 
is currently affected by saline conditions, and more than 50% of 
arable land is predicted to be salinized by 2050 (Jamil et al., 2011; 
Shrivastava and Kumar, 2015). In flax, soil salinity-alkalinity leads 
to delayed germination and emergence, low seedling survival, 
irregular crop growth, and lower yield (Dubey et al., 2020). Few 
studies have reported screening of flax germplasm against salinity-
alkalinity stresses (Kaya et al., 2012; Patil et al., 2015; Nasri et al., 
2017; El-Afry et al., 2018; Kocak et al., 2022) and identified salinity 
tolerant lines based on germination, seedling characteristics, and 

biomass and K+/Na+ ratio. Genes conferring salt tolerance by 
increasing root length, improving membrane injury and ion 
distribution in flax were identified by Wu et al. (2019a). Since flax 
can tolerate the pH up to 9, thus can serve to utilize agricultural 
land where other crops cannot be successfully grown.

Heat stress adversely affects the growth, development, and 
physiological processes, and thus yield particularly in tropical and 
subtropical regions (Ramirez-Villegas et al., 2020). A sustained 
period of heat stress (40°C for 5–7 days) during flowering might 
have a significant impact on pollen production, pollen viability, 
flowering, boll development, seed set, oil quality, and quantity in 
flax (Cross, 2002; Cross et al., 2003; Saha et al., 2019, 2021). Fiber 
flax does not require high temperatures. The largest and highest 
quality fiber flax yields are obtained in humid, cloudy, and 
relatively cool (18°C–20°C) conditions. High temperature 
particularly terminal heat is limiting for flax growth, resulting in 
low adaptation of elite fiber flax genotypes to warmer climes. 
Although few studies have been conducted on the effects of higher 
temperatures on growth, physiological processes, and yields in 
flax, the molecular dissection is hitherto unknown (Cross et al., 
2003; Pokhrel and Meyers, 2022).

Among biotic stresses, globally most widespread and 
devastating pathogen of flax is Fusarium oxysporum f. sp. lini 
which causes wilt disease and can result in an 80%–100% loss in 
yield (Rashid, 2003). The fungus infiltrates into the flax root cells 
and then advances intra-cellularly into vascular tissue. The fungal 
microconidia germinate and thus block the vascular vessels and 
prevent water and nutrient translocation resulting in epinasty 
followed by progressive wilting and death. Along with fusarium 
wilt, flax rust, caused by Melampsora lini is another important 
fungal disease limiting flax production worldwide. The gene-for-
gene relationship was initially described for the flax rust 
interaction (Flor, 1956). Since then, it has served as a model 
pathosystem to study underlying genetics in host-pathogen 
interaction in plants. Extensive work has been done on flax-rust 
interaction at molecular (resistance gene R) and pathogen effectors 
(avirulence genes Avr) level (Ravensdale et al., 2011); however, 
whole genome responses involving signaling and defense remains 
largely unexplored. In addition to wilt and rust, other widespread 
disease of flax is pasmo caused by Septoria linicola, while 
anthracnose and powdery mildew (caused by Colletotrichum 
lagenarium and Oidium lini, respectively) are less common and 
endemic in nature.

Flax occupies an important position in global economy due to 
its wide industrial utility as well as regional and niche preferences. 
However, unprecedent climate changes may have detrimental 
impact on flax productivity, and therefore in depth understanding 
of various diseases and environmental stresses assumes importance 
for future planning from the perspective of growth, equity and 
sustainability. Recent technological advances in DNA sequencing 
and molecular biology have expedited genomics and transcriptomic 
research and thus paved way for accelerated development of other 
domains of omics such as proteomics, metabolomics, and 
phenomics. Amalgamation of omics assisted multidisciplinary 
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FIGURE 2

An overview of integration of different omics approaches for flax improvement under various abiotic and biotic stresses.

approach is necessary for understanding and investigating complex 
stress tolerance mechanism to design climate resilient flax varieties. 
Despite multitudinous utility and being a model crop for research 
studies, there is scanty and scattered information regarding 
integration of omics approaches for flax improvement. Present 
review is intended to apprise the readers about the current status 
of omics interventions in flax in response to major biotic and 
abiotic stresses and underlying molecular pathways.

Integrated omics approaches in 
technological era

Major components of omics include genomics (generation of 
genetic and genomic resources, gene mapping, functional 
genomics, and genomic selection), transcriptomics (gene regulation 
and expression profiling), proteomics (protein identification and 
effects), metabolomics (metabolite profiling, regulation, pathway 
and intermediates), phenomics (automated study and analysis of 
phenotypic and physiological effects), and ionomics (elemental 
identification, composition, effects, and interactions). Different 
omics mechanism and their integration has pivotal role in 
understanding plant systems biology as elaborated in extensive 
reviews (Fukushima et al., 2009; Weckwerth et al., 2020; Pazhamala 
et al., 2021). Omics assisted technologies have been advocated and 
utilized for engineering stress tolerance in reviews on rice (Kumari 

et al., 2022), wheat (Shah et al., 2018), soybean (Chaudhary et al., 
2015), tomato (Chaudhary et al., 2019), and flax (Shivaraj et al., 
2019). However, relatively less efforts have been made to utilize the 
available genetic and genomic resources for flax improvement 
compared to other crops. The advanced tools like genome-wide 
association studies (GWAS) and genomic selection in conjugation 
with other omic technologies provide an opportunity to increase 
the precision of plant selection for flax improvement as suggested 
by Shivaraj et  al. (2019) and Akhmetshina et  al. (2020) while 
reviewing the utilization of high-throughput sequencing 
technologies and omics-assisted breeding for development of 
climate-smart flax. Therefore, a holistic approach involving diverse 
technologies can greatly facilitate the introduction of climate-
resilient traits into flax genotypes for sustainable productivity. A 
schematic view of integration of key omics approaches that can 
be utilized for the improvement of flax under various biotic and 
abiotic stresses is presented in Figure 2. In further sections of the 
review, we have elaborated the advancement made in various omic 
technologies and the amalgamation of omics data in future flax 
breeding for economic and sustainable yield.

Genomics

In the initial years of the century, many molecular markers 
such as rapid amplification of polymorphic DNA (RAPD), 
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amplified fragment length polymorphism (AFLP), inter-simple 
sequence repeat (ISSR), and expressed sequence tags-simple 
sequence repeats (EST-SSR) were used to assess the genetic 
diversity in flax (Oh et al., 2000; Fu et al., 2002a,b, 2003; Green 
et al., 2008; Cloutier et al., 2009, 2011, 2012; Rajwade et al., 2010; 
Uysal et  al., 2010; Kaur et  al., 2018; Saroha et  al., 2022a). The 
substantial lead in the generation of genomic resources was made 
with the availability of whole genome sequence of flax (Wang et al., 
2012). Subsequently, the whole genome resequencing and reduced 
representation sequencing information has been effectively utilized 
to understand crop diversity, marker identification, linkage map 
construction and QTL identification in flax. Genome wide SNP 
discovery through genotyping-by-sequencing (GBS) approach has 
been used to identify 258,873 SNPs distributed on all 15 flax 
chromosomes (Kumar et al., 2012). SNPs linked to major agro-
morphological traits (Deng, 2013; Soto-Cerda et al., 2013, 2014; 
Xie et al., 2018; Saroha et al., 2022b), oil quality attributes (Soto-
Cerda et al., 2014, 2018; You et al., 2018b), fiber length and plant 
height (Xie et al., 2018), mucilage and hull content (Soto-Cerda 
et al., 2018), and disease resistance (He et al., 2019a,b) have been 
identified in flax through GWAS. For improving abiotic stress 
tolerance, GWAS has been reported in many recent studies to 
identify potential SNPs for different traits such as oil content, yield, 
or improved stress tolerance indices in sunflower (Mangin et al., 
2017), maize (Millet et al., 2016; Shikha et al., 2017), sorghum 
(Lasky et al., 2015; Badigannavar et al., 2018; Spindel et al., 2018), 
rice (Guo et al., 2018), and sesamum (Dossa et al., 2019). Although, 
a number of genes were discovered and functionally characterized 
for their role in abiotic stress tolerance in flax, for instance, 
NAC-domain transcription factor genes (LuNACs) associated with 
drought, salinity, cold and heat (Saha et al., 2021), putative heat 
shock factor (HSF) candidate genes for high temperature tolerance 
(Saha et al., 2019), transporter gene family detoxification efflux 
carriers (DTX)/multidrug and toxic compound extrusion (MATE) 
to mediate the response to abiotic stresses (Ali et al., 2020), and 
aquaporin (AQP) gene family in improving drought tolerance 
(Shivaraj et al., 2017), however, the progress is relatively slow in flax 
compared to other crops. Regarding biotic stress, Asgarinia et al. 
(2013) conducted QTL-analysis for powdery mildew resistance 
and detected loci by homology search in the whole-genome 
sequencing database using information about nucleotide sequences 
of ESTs and ВАС-clones. The de novo genome of flax rust pathogen 
Melampsora lini was sequenced and assembled and 16,271 putative 
protein coding genes were identified (Nemri et al., 2014). This 
could help to understand the previously unknown facts about 
number of virulence effectors, their function and degree of 
conservation. He et  al. (2019a) conducted GWAS to identify 
genetic regions associated with pasmo resistance in 370 flax 
accessions of Canadian core collection and detected 258,873 SNPs 
using GBS. They identified 500 putative QTL, 45 of which spanned 
85 resistance genes. Further, based on orthology with genes of 
Arabidopsis thaliana, two candidate genes, Lus10031043 and 
Lus10020016 for flax resistance to this pathogen were detected. 
Recently, You et al. (2022) performed both GWAS and GS analyses 

in 447 flax accessions comprising 372 core collection accessions 
and 75 breeding lines which were evaluated for powdery mildew 
resistance for 5–8 years across three locations. They identified a 
total of 349 QTNs (of which 44 were highly stable large-effect 
QTNs) and 445 candidate resistant gene analogs (RGAs) associated 
with powdery mildew resistance in flax. Interestingly, 45 of the 
identified QTNs were in RGAs of which 14 QTNs were with large 
effect (R2 = 10%–30%). Table 1 enlists various QTN/QTLs linked to 
major abiotic and biotic stresses in flax. However, much work has 
been done on agronomic and quality evaluation work while little 
attention has been paid to high throughput sequencing and GWAS 
for response to climatic threats and pathogen attack in flax. 
Therefore, comprehensive physiological, biochemical and 
molecular evaluation under different stress regimes followed by 
structural and functional genomics strategies as outlined in 
Figure 3 is required for improving biotic and abiotic stress tolerance 
in flax.

Genomic selection (GS) is a breeding approach that determines 
the genetic potential instead of identifying specific QTL and thus it 
overcomes restrictions involved in marker assisted selection (MAS) 
for speed breeding. GS has the potential to fix all the genetic 
variation of complex traits contrary to classical plant breeding 
approach which is slow in targeting the complex and low heritable 
quantitative traits. That is why it is emerging as promising technique 
exploiting molecular genetic markers to develop novel markers-
based models for genetic evaluation. It involves the precise 
phenotyping of a selected varied group of genotypes (training 
population) in multiple environments and genotyping to develop 
statistical model (GS model) which is employed for the estimation 
of genomic estimated breeding values (GEBVs) in the breeding 
population. GS method has many advantages over conventional as 
well as marker assisted breeding as it deals with minor effect of QTL 
(Crossa et al., 2017). As a result, GS has been advocated as the most 
effective method for predicting genetic values for selection by 
combining all available molecular markers with phenotypic data 
(Deshmukh et al., 2014; Chaudhary et al., 2015; Abed et al., 2018). 
GS studies conducted in flax resulted in increased genetic gain per 
unit time during the breeding cycle (You et al., 2016). They used 
three bi-parental populations developed by crossing high-yielding, 
high and low alpha linolenic acid content flax lines for QTL mapping 
to optimize GS model. He et  al. (2019b) developed a high-
throughput prediction model of genetic resistance of flax to Septoria 
linicola, which is one of the most accurate genomic prediction model 
for disease resistance in plants. The latest prediction model by You 
et al. (2022) has been constructed using 447 flax accessions as a 
training population and the powdery mildew ratings over 5 years at 
three locations. All the 349 QTNs identified through GWAS 
explained 96% of powdery mildew variation showing high predictive 
ability and the potential of this model in applied in genomic 
prediction. With the increased genetic and genomic resources in 
flax, more extensive GS research is expected in the near future which 
may contribute in releasing new cultivars tailored to specific needs. 
Presently the more extensive use of GS remains a challenge owing to 
higher expenses than MAS. However, the availability of low cost, 
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TABLE 1 Quantitative trait nucleotides/loci identified by Genome wide association studies for major abiotic and biotic stresses in flax.

Trait QTN/QTL Candidate gene Function References

Stress 

tolerance index

Lu6-17,376,408 Lus10019811 (probable cinnamyl alcohol 

dehydrogenase 1)

Drought tolerance Soto-Cerda et al., 2020

Lus10019781 (L-ascorbate peroxidase) Enhanced salt tolerance, drought, and cold tolerance

Lu14-23,517,150 Lus10014978 (aquaporin PIP2-2) Drought tolerance

Total root 

length stability

Lus-20,209,630 Lus10039723 (IAA amido synthetase GH3.6) Response to stress and root development

Lus10039747 (diacylglycerol kinase 5) Cold and drought stress tolerance

Lu6-19,733,117 Lus10021019 (allene oxide synthase 3) Stomatal closure and drought tolerance

Lus10020997 (S/T protein kinase SRK2E) Response to water deprivation and regulation of 

stomatal closure

Total root 

volume 

stability

Lu6-15,961,789 Lus10016017 (catalase isozyme C) Promotes drought stress tolerance and response to 

water deprivation

Root surface 

area stability

Lu5-4,774,423 Lus10034840 (calcium transporting ATPase 9, 

plasma membrane type)

Pollen development

Lu6-15,939,492 Lus10016017 (catalase isozyme C) Response to water deprivation, promotes drought 

stress tolerance and recovery

Bundle weight 

under drought 

stress

Chr9:4203006 Lus10040333 (3-ketoacyl-CoA synthase 19) Drought tolerance and biomass related traits Sertse et al., 2021

Lus10040335 (ankyrin repeat-containing protein 

ITN1)

Salt and drought susceptibility index and biomass 

related traits

Chr8:16534117 Lus10004554 (poltergeist like 1) Root and Shoot development

Chr12:6352775 Lus10016846 (two-component response regulator 

ARR1-related)

Shoot development and drought tolerance

Lus10016831 (early growth response gene 1) Seed development and drought tolerance

Canopy 

temperature 

under drought 

stress

Chr2:23123754 Lus10013240 (xyloglucan endotransglucosylase/

hydrolase protein 27)

Leaf size, veins, and drought susceptibility index

Chr3:9279281 Lus10019365 (stromal cell derived factor 2) Heat stress and better stress tolerance indices

Chr9:18937269 Lus10024816 (cytochrome p450, family 81, 

subfamily d, polypeptide 8)

Moisture stress tolerance

Seeds per boll Chr9:15446958 Lus10021766 mitogen-activated protein kinase 

kinase kinase 5

Drought susceptibility index

Grain yield Chr11:3972867 Lus10042229 (CBL-interacting protein kinases) Drought response

Lus10042231 (translocon at the inner envelope 

membrane of chloroplasts 110)

Heat shock and drought susceptibility index

Thousand seed 

weight under 

drought stress

Chr1:7029139 Lus10029127 (Kelch repeat F-box) Ovule development and stress tolerance index

Lus10029115 (ribosomal pentatricopeptide repeat 

protein 4)

Seed development and stress tolerance

Chr12:10910146 Lus10030137 (nuclear factor Y subunit A1) Seed development and drought stress tolerance

Lus10030142 (nuclear pore anchor, translocated 

promoter region)

Flowering, auxin signaling

Plant height 

under drought 

stress

Chr5:1375386 Lus10029690/1 (cellulose synthase interactive 3) Flax fiber and stress tolerance index

Lus10029692 (AFI) Xylem development and stress tolerance

Chr8:2514743 Lus10025166 (PIN-LIKES 3) Plant height and drought tolerance

Lus10025172 (set domain protein 25) Flowering time

Chr14:205508 Lus10009472 (agamous-like 12) Drought tolerance, root growth

Lus10009476 (C-terminally encoded peptide 

receptor 2,)

Biomass and N uptake

Lus10009480 (wax inducer 1) Cell wall structure

Lus10009481 (agamous-like MADS-box protein 

AGL11)

Plant height

Yield Chr12:20557728 Lus10031398 (inositol Monophosphatase 1) Drought tolerance

(Continued)
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flexible and high-density marker system, cheaper NGS technologies 
are expected to make the whole genome re-sequencing feasible and 
cost effective for the GS in near future (Bhat et al., 2016). The current 
status of GS studies in crop plants, and perspectives for its successful 
implementation in the development of climate-resilient crops has 
been reviewed by Budhlakoti et al. (2022) who emphasized that the 
studies on genetic architecture under drought and heat stress can 
significantly accelerate the development of stress-resilient crop 
varieties through GS.

Transcriptomics

Transcriptome profiling provides a comprehensive overview 
of gene expression, regulation and helps in identification of key 

genes involved in stress tolerance mechanism. Various approaches 
are used to study transcriptome such as expressed sequence tags 
(ESTs), spotted micro arrays, sequencing along with suppression 
subtractive hybridization, Affymetrix GeneChips and 
RNA-sequencing depending upon the availability of genomic 
resources generated and plant type. With the rapid advancement 
in next-generation sequencing technologies, RNA-sequencing has 
become the most efficient, cost-effective and high-throughput 
transcriptomic method. So far, ample of transcriptomics studies 
has been carried out in oilseed crops such as flax (Wu et al., 2018), 
sesame (Dossa et al., 2019), soybean (Leisner et al., 2017), Jatropha 
(Cartagena and Marquez, 2021), and sunflower (Moschen et al., 
2017) to ascertain the effect of drought and salinity.

The flax genome sequencing and availability of genetic maps 
(Wang et al., 2012; You et al., 2018a; Cullis, 2019; Akhmetshina 

Trait QTN/QTL Candidate gene Function References

Pasmo 

resistance

QTL45/Lu9-

6,270,376

Lus10031043 (leucine-rich repeat receptor kinase) Bacterial pathogen associated molecular pattern 

(PAMP) receptor

He et al., 2019a

Lus10031058 (elongation factor) Effector triggered immunity

Fusarium wilt 

resistance

afB13 -- -- You and Cloutier, 2020

Powdery 

mildew 

resistance

QPM-crc-LG1 

(Lu2698-

Lu2712)

-- -- Asgarinia et al., 2013;  

You and Cloutier, 2020

QPM-crc-LG7 

(Lu2810-

Lu2832)

QPM-crc-LG9 

(Lu1125a-

Lu932)

- Pm1 Rashid and Duguid, 2005

Lu4-12,432,479 Lus10036891 RGA (WRKY transcription factor) You et al., 2022

Lu5-1,534,998 Lus10004727 RGA (receptor like kinases: RLK)

Lu5-1,535,619 Lus10004726 RGA [toll/interleukin receptor (TIR)-NBS-LRR: 

TNL]

Lu5-1,569,098 Lus10004719 RGA [toll/interleukin receptor (TIR)-NBS-LRR: 

TNL]

Lu5-3,006,723 Lus10032303 RGA (WRKY transcription factor)

Lu5-3,224,350 Lus10032351 RGA (receptor like kinases: RLK)

Lu5-13,271,207 Lus10029860 RGA [toll/interleukin receptor (TIR)-NBS-

LRR:TNL]

Lu6-1,883,039 Lus10017649 RGA (receptor like kinases: RLK)

Lu12-16,614,785 Lus10027903 RGA (receptor like protein: RLPs)

Lu13-4,531,367 Lus10019708 RGA [toll/interleukin receptor (TIR)-NBS-LRR 

(TNL)]

Lu14-1,171,479 Lus10028639 RGA (coiled coil-NBS-LRR: CNL)

Lu14-17,203,266 Lus10039211 RGA [toll/interleukin receptor (TIR)-NBS-LRR 

(TNL)]

Lu15-50,397 Lus10007610 RGA (receptor like kinases: RLK)

Lu15-3,991,048 Lus10012678 RGA (WRKY transcription factor)

TABLE 1 Continued
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et  al., 2020) laid the foundation for significant number of 
transcriptomic studies and identification of genes underlying 
traits of agronomic and economic importance. High-throughput 
sequencing had been carried out for studying flax response to 
drought (Dash et al., 2017), alkalinity and salt (Yu et al., 2014, 
2016; Dmitriev et al., 2019), metal stress (Dmitriev et al., 2016a; 
Zyablitsin et al., 2018), and nutrient stress (Melnikova et al., 2015, 
2016). Transcriptome study from a moderately drought tolerant 
flax cultivar (T-397) of Indian origin was conducted by Dash et al. 
(2017) and expression profiling helped to identify loci/markers for 
selection of drought resilient varieties. Using transcriptome 
analysis data, Shivaraj et al. (2017) demonstrated high expression 
of integral membrane proteins, mostly aquaporins and low 
expression of integral nodulin-26-like proteins leading to better 
understanding of their physiological functioning. Another study 
reported overexpression of drought responsive element binding 
protein 2A (DREB2A) gene imparting drought tolerance in 
transgenic line of flax cv. Blanka (Tawfik et al., 2016). Similarly, for 
high temperature stress, few genes have been discovered and 
functionally characterized in flax. Saha et al. (2019) reported the 

genome-wide identification of 34 putative HSF genes from the flax 
genome. Heat shock factors and NAC domain transcription 
factors bestow distinct expression patterns under heat stress. Wu 
et al. (2019a) identified two salt-tolerant genes homologous with 
Arabidopsis Senescence-Associated Gene 29 (SAG29) having 
putative role in enhancing salt tolerance by increasing root length, 
improving membrane injury and ion distribution. Transcriptome 
of response of flax to unfavorable soil pH led to revelation of genes 
with altered expression profiles (Yu et al., 2014; Dmitriev et al., 
2016b, 2020; Wu et al., 2019b). Flax response to non-optimal soil 
acidity (increased pH) and zinc deficiency revealed genes involved 
in ion transport, cell wall biogenesis and photosynthesis through 
transcriptomics (Dmitriev et al., 2019). The induction of several 
pathogen related dominant genes in high pH tolerant flax cultivars 
were associated to overcome unfavorable effects of reduced Zn 
content. Melnikova et  al. (2016) identified 96 conservative 
homologs of microRNA belonging to 21 families, and reported the 
role of seven microRNAs (miR168, miR169, miR395, miR398, 
miR399, miR408, and lus-miR-N1) in the regulation of gene 
expression and metabolism in plants under nutrient stress. 

FIGURE 3

Genomics enabled strategies for flax improvement in response to adverse climatic conditions and pathogenic invasion.
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Changes in the expressions of miR319, miR390, and miR393 
associated with significant increase of gene expression in 
glutathione-S-transferase and UDP-glycosyl-transferase provided 
insight into putative role of these genes in providing protection 
against aluminum stress via scavenging of reactive oxygen forms 
and modification of the cell wall (Dmitriev et al., 2017). Similarly, 
altered expression profiles of lus-miR-N1 and miR399 under 
phosphate deficiency (Melnikova et al., 2015) were detected. Yu 
et al. (2016) reported differentially expressed genes (DEGs) and 
saline-alkaline tolerant miRNAs in flax (Lus-miRNAs) for the first 
time and selected 17 known lus-miRNA and 36 new lus-miRNA 
after assessment of the DEG profiles to predict the target genes. It 
was suggested that the miR398 and miR530, coding for superoxide 
dismutase and transcription factors of the WRK family could play 
significant roles in flax stress resistance. Genome-wide annotation 
of miRNAs and phasiRNAs encoding genes along with sRNA 
transcriptomics (reproductive stage) showed downregulation of 
phasiRNAs in flax reproductive organs under heat stress (Pokhrel 
and Meyers, 2022).

Pathogen attack also triggers alterations in the transcriptional 
and translational profile of plants leading to activation of a number 
of genes and metabolic pathways as defense mechanism. Kostyn 
et al. (2012) evaluated the gene response in early stages of infection 
by Fusarium and identified 47 genes including genes responsible for 
phenylpropanoid pathway enzymes and antioxidant biosynthesis in 
flax. Transcriptome of dominant Canadian cv. CDC Bethune, an oil 
type flax resistant to Fusarium wilt and sensitive variety, Lutea 
identified 100 genes that were differentially expressed in response 
to early pathogenesis (Galindo-Gonzalez and Deyholos, 2016). 
Among these, several key genes that are involved in activation of 
pathogenesis-related (PR) interactions, secondary metabolism and 
lignin formation had increased transcript abundance in congruence 
with other pathogenesis related studies done earlier. Similarly, in 
another study, transcriptome of four fibrous flax cultivars (two 
resistant and two susceptible) as well as two resistant BC2F5 
populations with respect to Fusarium wilt, showed predominant 
overexpression of numerous genes involved in defense response 
such as PR protein encoding genes, ROS production, and related to 
cell wall biogenesis (Dmitriev et al., 2017). Recently, Boba et al. 
(2020) reported that upregulation of the terpenoid pathway leading 
to increased ABA content upon Fusarium infection in flax activates 
the early plant’s response and PR genes especially chitinase and 
β-1,3-glucanase play an essential role for resistance. Earlier study 
reported that transgenic flax plants overexpressing the β-1,3-
glucanase gene showed lower susceptibility to this pathogen 
(Wróbel-Kwiatkowska et al., 2004). The transcriptomal response of 
the resistant flax cultivar was found to be quicker and more effective 
allowing translation to a higher number of activated and repressed 
genes in response to infection by F. oxysporum lini (Boba et al., 
2021). The numbers of the differentially expressed PR genes in 
resistant variety were higher initially (24 hpi) but similar later 
(48 hpi) in comparison to susceptible variety further established 
that the degree of the response plays deciding role in the differential 
resistance reaction, even though the similar qualitative response. 

RNA-Seq analysis of M. lini transcriptome was performed during 
early establishment of disease in flax and the expression profiles of 
Avrs and effector genes revealed 58 previously uncharacterized 
genes encoding secreted proteins (Wu et al., 2019b).

Major transcriptomic studies revealing genes that were 
upregulated/downregulated in response to different abiotic and 
biotic stresses in flax are listed in Tables 2 and 3. Flax transcriptome 
sequences and gene expression information are available in NCBI 
Sequence Read Archive and NCBI Gene Expression Omnibus 
databases.1 Flax microRNA data are deposited in miRbase database, 
wherein sequences of 124 microRNA of L. usitatissimum are 
presented along with primary and secondary structures and 
localization in flax genome.2 Importantly, there are more research 
publications regarding tolerance to abiotic stresses in comparison to 
resistance to the biotic stress in the area of flax transcriptomics, 
which may be due to targeted traits under breeding programs for 
specific regions. Most of the transcriptomic studies were limited to 
only one or two cultivars, however more number of diverse 
genotypes should be investigated for the comparative analysis and 
gene function annotation. Study of microRNAs and their role is in 
the initial stages in flax and several key questions remain unanswered. 
Further knowledge in this domain will assist scientists to develop 
artificial microRNA as effective tools to regulate gene expression.

Metabolomics

Metabolic profiling gives the precise depiction of biological 
and physiological state of an organism as metabolites are the end 
products of gene expression and integration of metabolomics has 
pivotal role in understanding plant systems biology (Weckwerth, 
2003; Ghatak et al., 2018; Pontarin et al., 2020). However, the 
actual size of the plant metabolome being unknown, and owing to 
the greater diversity of metabolites in plants than other organisms, 
metabolomic analysis faces some challenges as reviewed by Hall 
(2006), Schauer and Fernie (2006), and Harrigan et al. (2007). 
Several analytical platforms have been used to identify and 
quantify the wide range of primary and secondary metabolites in 
response to stress, these include a group of well-established 
analytical techniques, namely, nuclear magnetic resonance (NMR) 
and mass spectrometry (MS)-based techniques such as GC–MS 
(Gas Chromatography–Mass Spectrometry), CE-MS (Capillary 
electrophoresis-Mass spectrometry), LC–MS (Liquid 
Chromatography – Mass Spectrometry), and FTIR (Fourier 
transform infrared; Schripsema, 2010; Kaspar et al., 2011; Putri 
et  al., 2013; Simó et  al., 2014). NMR requires limited sample 
preparation and medium to high abundance metabolites are 
usually detected using this technique. Further, the recent 
advancements in field strength in NMR superconducting magnets 
have resulted in improved spectral resolution and detection 

1 https://www.ncbi.nlm.nih.gov/geo/

2 https://www.mirbase.org/textsearch.shtml?q=Linum
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sensitivity. Contrary to NMR, high and ultra-high resolution mass 
spectrometers used in current MS-based approaches yield higher 
sensitivity when analyzing complex plant metabolite mixtures. 
Ibáñez et al. (2013) presented an overview of recent novel direct 
ionization or desorption/ionization techniques developed and 
combined for applications in food metabolomics in their review 
article. The beneficial effect of metabolites such as lignans, 
polyunsaturated fatty acids (PUFA), specifically ω-3 fatty acids 
have been well documented for nutritional enhancement and 
prevention of certain ailments (McCann et al., 2005; Kouba and 
Mourot, 2011). Flaxseed being an important source of bioactive 
compounds of interest in human health (lignans and ω-3 fatty 
acids) and have multitudinous applications in food industry, 
Ramsay et al. (2014) developed an NMR metabolomics-based tool 
for selection of flaxseed varieties with better nutrient profile. In 

addition to metabolomics of nutritional compounds, the detection 
of the accumulation of many secondary metabolites such as 
proline, glycine betaine, sugars, and inorganic ions has been 
reported in oilseeds to help adaption of plant to abiotic stress (El 
Sabagh et al., 2019). Metabolites, such as β-Aminobutyric acid 
(BABA), have proven role in inducing drought tolerance in 
Arabidopsis (Jakab et al., 2005), spring wheat (Du et al., 2012), 
apple (Macarisin et  al., 2009), rice (Garg et  al., 2002), tomato 
(Cortina and Culianez-Macia, 2005), and potato (Bengtsson et al., 
2014). The overexpression of BABA resulted in enhanced 
accumulation of osmoprotectants namely anthocyanins and 
proline, overexpression of the pathogenesis related genes PR1, 
PR2, and PR5 in Arabidopsis (Jakab et al., 2001; Singh et al., 2010; 
Wu et al., 2010), trehalose biosynthesis induced drought tolerance 
in tobacco (Romero et  al., 1997). In flax, BABA causes 

TABLE 2 Global transcriptomic analysis revealing gene expression profiles in response to major abiotic and biotic stresses in flax.

Trait/tissue Platform/tool DEGs/DEUs Key points References

Flax seed responses to salt stress Illumina HiSeq 2000 7,736, 1,566, and 452 in alkaline 

salt stress, neutral salt stress and 

alkaline stress, respectively

Wax biosynthesis, pathogen-related proteins, 

and photosynthesis related genes

Yu et al., 2014

Illumina high throughput 

sequencing

33,774

Upregulated-18,040

Downregulated-15,734

Provide high resolution gene expression 

profile

Wu et al., 2019a

Flax leaf responses of drought 

sensitive and tolerant varieties

PacBio Iso-Seq

RSEM

In cv. Z141 (drought tolerant)

Upregulated-3,245

Downregulated-4,167;

In cv. NY-17 (drought sensitive)

Upregulated-2,381

Downregulated-3,515

Proline biosynthesis and DNA repair from 

ROS damage

Wang et al., 2021

Flax (seed, root, and shoot) under 

drought stress

CombiMatrix 90 K Array 183

Upregulated-72

Downregulated-111

Maintain growth and homeostasis Dash et al., 2014

Flax seeds under normal and PEG 

induced osmotic stress

Illumina platform 3,922

Upregulated-1,487

Downregulated-2,432

Biochemical and signal transduction pathway Wu et al., 2018

Flax seedlings (root) under high soil 

acidity and aluminum stress

Illumina platform Compartmentalization of Ca2+ in vacuoles 

and intracellular regulation

Zyablitsin et al., 

2018

Flax rust (leaf tissue) under 

pathogenic stress (Melampsora lini)

Illumina genome analyzer II 16,271 Hydrolysis and uptake of nutrients and plant 

pathogenicity related gene encoding

Nemri et al., 

2014

Illumina HiSeq 2,500 58 Avirulence and effector genes and genes 

encoding secreted proteins

Wu et al., 2019b

Response to Fusarium wilt (Fusarium 

oxysporum)

Illumina HiSeq 2000 100 Reception and transduction of pathogen 

signals

Galindo-

Gonzalez and 

Deyholos, 2016

47 Defense response, defense signaling, stress 

response, and primary and secondary 

metabolism regulation

Kostyn et al., 

2012

NextSeq 500 high-

throughput sequencer 

(Illumina)

pathogenesis-related protein encoding, ROS 

production, and cell wall biogenesis

Dmitriev et al., 

2017

DEGs, differentially expressed genes; DEUs, differentially expressed unigenes; qRT-PCR, quantitative real time-polymerase chain reaction; RNA, Ribonucleic acid; PEG, polyethylene 
glycol; ROS, reactive oxygen species; and RSEM, RNA-seq by expectation–maximization.
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accumulation of proline and non-structural carbohydrates and 
reduction in aspartate content and inorganic solutes in response 
to water stress (Quéro et al., 2015). Proline and glycine-betaine 
contents were found to be relatively high under salinity stress in 
flax (Qayyum et al., 2019) and rice (Cha-um et al., 2006). Total 
soluble sugars, total protein content and compatible solutes, such 
as proline, betaine were found to increase with increasing salinity 
in flax genotypes, suggesting that they may play a role in adjusting 
osmotic stress under PEG induced water stress and saline-alkaline 
environments (Guo et al., 2012, 2014; Naz et al., 2016). Differential 
level of lipid peroxidation and metabolic profile of MDA in wild-
type and PLR-RNAi transgenic flax has been reported under 
salinity and or osmotic stress (Qayyum et  al., 2019; Hamade 
et al., 2021).

Pathogen attack also triggers alterations in the translational 
profile of plant resulting in synthesis of many secondary 
metabolites such as flavonoids, catecholamines, polyamines, 
lignins, terpenoids, tannins, phenolic, and phenylpropanoic acids 
as defense mechanism. Metabolomics studies have been carried 

out extensively in rice to find key metabolic products and pathways 
in response to various biotic stress (Vo et al., 2021). These studies 
were aimed to understand the induction of defense mechanism 
involving Pathogen associated molecular pattern (PAMP)-
triggered immunity (PTI) and effector triggered immunity (ETI) 
in model crop rice. The first report to describe metabolites of early 
flax to Fusarium infection was by Kostyn et  al. (2012) who 
determined the level of metabolites produced in phenylpropanoid 
pathway (flavonoids and phenolic acids) by GC–MS. Wojtasik et al. 
(2015) identified for the first-time genes involved in polyamine 
synthesis pathway and reported increase in content of polyamines 
putrescine, spermidine, and spermine during Fusarium infection 
in flax. The main polyamine identified was putrescine. 
Furthermore, differential content of polyamine was measured in 
response to infection by pathogenic and non-pathogenic Fusarium 
strains in flax which indicate different defense mechanisms. Thus, 
stress induces drastic changes in the metabolic profile of a plant 
and therefore complete metabolite profiling may provide valuable 
insights into stress tolerance mechanisms (Supplementary Figure 1). 

TABLE 3 Important genes which are upregulated and downregulated in response to various biotic and abiotic stresses in flax.

Trait Upregulated/downregulated genes References

Drought NAC domain proteins Saha et al., 2021

Ribulose biphosphate carboxylase/oxygenase activase-2, lipid transfer protein, photosystem I reaction center, 

EF-tu, Cell wall synthesis genes, r2r3-MYB transcription factor, LEA5, dehydrin, BRU1 precursor, cell modulin 

binding heat-shock protein, cytochrome P450 family proteins, histone h2b, AP2/ERF domain containing 

transcription factor, and brassinosteroid insensitive I-associated receptor kinase 1.

Dash et al., 2014

PEG induced osmotic 

stress

Transcription factors such as NAC, LEA, WRKY, ERF, and bZIP Wu et al., 2018

Salinity-alkalinity NAC family members, HSP70, WRKY, MAPKKK, ABA, and PrxR Yu et al., 2014

miRNA targeted genes Lus-miRNAs Neutelings et al., 2012; 

Melnikova et al., 2014; Yu 

et al., 2016

Myb domain protein, Transcription regulators, Auxin signaling F-box, UBE2 gene, and mitochondrial 

transcription termination factor family protein

Barvkar et al., 2013;  

Yu et al., 2016

Heat Heat shock factors Saha et al., 2019

miRNAs and phasiRNAs Pokhrel and Meyers, 2022

Heat shock factors (HSP101B:GUS) Young, 2003

GUS activity showed in sepals, petals, and pistils Cross, 2002

Nutrient stress WRKY, JAZ, HARBI1, and ING1 families Dmitriev et al., 2016b

lus-miR-N1, miR399, miR168, miR169, miR395, miR398, miR399, miR408, and lus-miR-N1 Melnikova et al., 2015, 2016

Aluminum stress miR319, miR390, miR393, glutathione-S-transferase, and UDP-glycosyl-transferase Dmitriev et al., 2017

High soil acidity and 

Aluminum stress

CAX3-Ca2+/H+ antiporter Zyablitsin et al., 2018

Fusarium wilt (Fusarium 

oxysporum f. sp. lini)

PAL, PCBER, SRG1, UGT73C3, AAA-ATPase ASD, mitochondrial (AATPA), glucan endo-1,3-beta-

glucosidase, MYB transcription factors, ERD dehydrins, and Auxin-responsive protein SAUR, WKY3, 

WRKY70, WRKY75, MYB113, and MYB108

Hano et al., 2008; Galindo-

Gonzalez and Deyholos, 2016; 

Dmitriev et al., 2017

Fusarium culmorum PAL, CCR, CAD, UGT, and TD Kostyn et al., 2012

Rust (Melamspora lini) Avrs and CWDEs Wu et al., 2019b

NAC, nascent polypeptide-associated complex; MYB, myeloblastosis; LEA, late embryogenesis–abundant; ERF, ethylene responsive factors; bZIP, basic-leucine zipper; BRU1, brassino-
steroid regulated protein; HSP, heat shock proteins; MAPKKK, mitogen activated protein kinase; AP2/ERF, APETALA2/ethylene responsive factor; UBE2, ubiquitin-conjugating enzyme 
E2; JAZ, jasmonate ZIM-domain; HARBI1, harbinger transposase-derived nuclease; ING1, inhibitor of growth 1; UGT73C3, UDP-glycosyltransferase 73C3; EF-tu, Elongation factor 
thermal unstable; GUS, b-glucuronidase; SRG1, senescence related gene 1; PCBER, phenylcoumaran benzylic ether reductase; PAL, phenylalanine ammonia lyase; CCR, cinnamoyl CoA 
reductase; CAD, cinnamyl alcohol dehydrogenase; UGT, UDP-glycosyltransferase; TD, tyrosine decarboxylase; AVRs, avirulence genes; and CWDEs, cell wall degrading enzymes.
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The prior knowledge of metabolomics in conjugation with other 
allied omics technologies such as genomics, transcriptomics and 
proteomics is essential to understand the complete overview of 
biochemical and molecular mechanisms in response to various 
biotic and abiotic stress elicitors. However, this is a new research 
area and no metabolomic databases with reference to 
environmental stress are available until now.

Proteomics

Proteomics is the study of the structural and functional 
characteristics of all proteins in a living organism in real-time. It 
includes two-dimensional (2-D) gel electrophoresis, mass 
spectrometry (MS), ELISA, Western Blotting, and matrix-assisted 
laser desorption ionization-time of flight (MALDI TOF) along with 
various bioinformatic tools (Baggerman et al., 2005; Gevaert and 
Vandekerckhove, 2011; Chaudhary et al., 2019). Recent achievement 
in proteomics has reduced the errors in protein assessment and 
provided new possibilities for high-throughput proteome analyses. 
Mostly proteomic investigations have been focused on rice, wheat, 
barley, maize, potato, and soybean, all of which have whole genome 
sequences available in public domain. In oilseeds, proteomic studies 
on Indian mustard (Alvarez et al., 2009), flax (Hradilová et al., 2010; 
Klubicová et al., 2011), and sunflower (Balbuena et al., 2011) have 
been reported recently. The proteome analyses revealed that 
continuous higher level of stress responsive proteins (that includes 
transcriptional regulators such as SWIB/MDM2 protein, Myb 
protein, B-Peru-like protein involved in anthocyanin biosynthesis) 
in tolerant plants help them to cope up with adverse effects of stress 
compared to sensitive counterpart (Pang et al., 2010; Wendelboe-
Nelson and Morris, 2012). Enhanced level of specific proteins, 
lipoxygenase (LOX), several chaperons (HSP70, HSP90, CPN60-α, 
β, and cyclophilin A), and glutathione-S-transferase (GST) were 
found in drought tolerant barley and wheat varieties with respect to 
sensitive counterpart (Kosová et al., 2014). Another study reported 
reduction in RubisCo (smaller and larger subunits) as well as 
calcium cycle enzymes such as phosphoribulokinase (PRK), 
phosphoglycerokinase (PGK) and transketolase in wheat under salt 
(Caruso et  al., 2008), drought (Caruso et  al., 2009) and low 
temperature (Rinalducci et al., 2011). Similarly, changes in OEE1 
and OEE2 proteins were frequently found in barley under salt stress 
(Rasoulnia et  al., 2011; Fatehi et  al., 2012) and drought stress 
(Ghabooli et al., 2013). Also, in developing wheat grains subjected 
to a heat phase, a rise in many minor HSP proteins, as well as HSP82 
from the HSP90 family was detected in the endosperm (Skylas et al., 
2002; Majoul et al., 2004). Similarly, proteome analysis conjugated 
with physiological response in two maize varieties resistant to 
drought stress reported the role of HSP to be important in protecting 
plants from drought stress (Li et al., 2021b). Lately, Halder et al. 
(2022) reviewed the role of proteomics for abiotic stress tolerance in 
wheat and presented a summary of proteomic studies on salinity, 
drought stress tolerance, and root system architecture conducted in 
the last decade.

Proteomic analysis of biotic stress has been advantageous to 
describe the proteome of plants and pathogens infected tissues. 
The global proteomics studies investigating biotic stress responses 
in rice have been extensively reviewed (Vo et al., 2021) and many 
potent metabolites responsible for resistance have been enlisted. 
The changed proteome response in response to biotic stress has 
been elucidated in many crops such as grapevine resistance to 
downy mildew (Milli et al., 2012; Palmieri et al., 2012), tomato 
infected with Botrytis cinerea (Shah et  al., 2012), avocado 
resistance to root rot (Acosta-Muniz et al., 2012), and resistance 
related proteins mainly involved in pathogenesis response were 
identified. Proteomic analysis has also been used to explore plant-
virus interaction to unravel proteins corresponding to enzymes 
involved in photosynthesis, primary metabolism, and defense (Di 
Carli et  al., 2010). On a similar note, proteomics and 
phosphoproteomics analyses may assist in identification of 
candidate protein under various stress conditions in flax 
(Figure 4). Presently, this domain has been explored to a very 
limited extent in flax (Hradilová et  al., 2010; Klubicová 
et al., 2011).

Ionomics

Ionomics is the study of an elemental composition of metal, 
metalloids and non-metal of the various types of plant species, 
with a focus on high-throughput detection and measurement 
(Supplementary Figure 2). Ionomic profile of plant species can 
be  detected using high-throughput technologies such as 
Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and 
Inductively Coupled Plasma-Atomic Emission Spectrometry 
(ICP-AES; Salt et al., 2008). It provides the important role in 
understanding the different composition of elements along with 
their involvement in plant biochemistry, physiology, and 
nutrition. Plants have evolved with a variety of element uptake 
abilities owing to numerous soil types and other edaphic factors 
associated with growth and development (Fujita et al., 2013). 
Additionally, ionomic profile of a crop is affected by element 
availability, uptake ability of roots, transport, and environmental 
stress. A wide range of investigations have been carried out in 
the realm of ionomics. The ionome of wild and cultivated barley 
subjected to different salt tolerance levels revealed a substantial 
negative relationship between the amount of accumulated Na+ 
and metabolites involved in glycolysis and tricarboxylic acid 
(TCA) cycle (Wu et al., 2013). Studies performed in wheat (Guo 
et al., 2009) and other grasses, such as Aneurolepidium chinense 
(Shi and Wang, 2005), and Setaria viridis (Guo et al., 2011) and 
flax (Guo et  al., 2014) showed that concentration of Na+ 
increases with increasing alkalinity stress as plants accumulate 
significant levels of Na+ in their vacuoles to reduce cell water 
potential. Under PEG induced water stress in flax, the main 
inorganic ions involved in osmotic adjustment were K+, Na+, 
Ca2+, and Cl− thereby increasing drought resistance (Guo et al., 
2012). However, no significant differences were observed 
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between the effects of salinity and alkalinity stress on the 
concentration of Na+ and K+ in shoots in case of flax (Guo et al., 
2014). This suggests that the adaptive mechanism of flax shoots 
to the alkaline stress may differ from that of other plants such 
as barley (Guo et  al., 2009) and Chloris virgata (Yang et  al., 
2010) where K+ concentration of shoots was found to be lower 
under alkaline stress. Another study in flax showed significant 
increase in the uptake of Cl−, H2PO4

−, and SO4
2, whereas the 

levels of NO3− decreased in flax shoots under salt stress. This 
depicts that these anions build up in the vacuoles to counteract 
the input of Na+ and together they keep the cell hydrated (Parida 
and Das, 2005). Also, the concentrations of inorganic anions 
were much lower under alkali stress than under salt stress with 
the same osmotic potential, implying that the high pH of alkali 
stress may block anions such as NO3

−, H2PO4
−, and SO4

2− 
absorption in flax (Guo et al., 2013, 2014). Application of many 
inorganic elements can result in enhanced tolerance to abiotic 
stress, for example, Silicon has proven beneficial against 
drought, salinity, heat, heavy metals and UV-b (Liang et al., 
2007; Pilon-Smits et  al., 2009; Deshmukh et  al., 2014). 
Hyperaccumulation of manganese (Mn) in the leaves of 
grapevine has been reported to delay pathogen spread and thus 

induction of powdery mildew resistance (Yao et  al., 2012). 
Therefore, studying the elemental profile can aid to better 
understanding of stress tolerance mechanism. However, 
ionomics studies are yet to get more attention in flax.

Phenomics

Phenomics is the study of set of all phenotypes involving 
genotype, phenotype and environment (GxPxE) interactions in 
specific environmental conditions using high-throughput 
analysis (Ichihashi and Sinha, 2014; Tardieu et al., 2017; Zhao 
et al., 2019; Weckwerth et al., 2020; Ninomiya, 2022). Therefore, 
phenotype provides ultimate association between environment 
and plant genotype. In the last decade, advances in sequencing 
technologies have increased genotyping efficiency, but 
phenotypic characterization has proceeded more slowly, 
limiting the identification of quantitative features, particularly 
those related to stress tolerance (White et al., 2012). Due to 
complicated biosynthetic processes that address response of 
plants to external stimuli, phenotyping in response to abiotic 
stress remains a big challenge (Pratap et  al., 2019). In the 

FIGURE 4

A comprehensive overview of proteomics and phosphoproteomics analysis under different stresses.

https://doi.org/10.3389/fpls.2022.931275
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yadav et al. 10.3389/fpls.2022.931275

Frontiers in Plant Science 14 frontiersin.org

postgenomic era, the importance of precise phenotyping has 
become more important owing to dependence of genomic 
approaches such as GWAS, GS and QTL on the high-
throughput phenotyping for the improvement of targeted traits 
(Walter et al., 2015). Phenomics combined with other omic 
techniques has the greatest potential for plant breeding. 
Therefore, non-invasive technologies such as color imaging of 
biomass, far infrared imaging of the canopy, lidar (includes 
RBG digital imaging) to assess growth parameters and 
magnetic resonance imaging (MRI) have been explored to 
estimate above ground canopy and hidden half (root system) 
of the plants (Yang et  al., 2021), few examples include 
PHENOPSIS (an automated platform to examine water stress 
in Arabidopsis (Granier et al., 2006) and soil-filled rhizoboxes 
for study of root system architecture using RGB imaging in 
wheat (Bodner et  al., 2017), RGB digital imaging for 
phenotyping of plant shoots (Humplík et al., 2015), infrared 
thermography to validate role of stomatal conductance in 
barley and wheat seedlings under salinity stress (Sirault et al., 
2009) and chlorophyll fluorescence imaging to screen abiotic 
stress response in tobacco, canola and cotton (Saranga et al., 
2004; Baker, 2008) have been explored. X-ray, computed 
tomography (CT) and nuclear magnetic resonance (NMR) has 
been used for 3D visualization of root architecture in situ. To 
automate the analysis of root traits, there has been a 
proliferation of semi-automated such as SmartRoot, 
GROWSCREEN_ROOT, EZ-Rhizo, and automated softwares 
WinRhizo, Root Reader 3D and GiaRoots in recent years. 
Advanced phenomics platforms for a larger range of crop 
plants such as state of the art “The Australian Plant Phenomics 
Facility” (APPF),3 multispectral and fluorescence imaging for 
physiological phenotyping4 and many others covering ground-
based proximal phenotyping to aerial large-scale remote 
sensing have been developed. Li et al. (2021a) have elaborated 
the current developments, configurations, novelties, as well as 
strengths and weaknesses of diverse high-throughput plant 
phenotyping platforms in a recent review. Few online databases, 
such as http://www.plant-image-analysis.org are available to 
assist users in image processing. Thus, high-resolution IR/NIR 
cameras, fluorescence imaging systems, laser scanners, 
hyperspectral imaging systems and high throughput advance 
plant phenotyping platforms are modern tools to get real time 
phenome in response to external environment, nutrients and 
disease. However, deep learning tools are needed to extract 
phenome information through advanced algorithms from huge 
datasets generated while phenotyping. In addition, 
comprehensive management of platforms and softwares are 
considerable challenges limiting this application to few major 
crops such as rice, maize and wheat.

3 https://www.plantphenomics.org.au/

4 https://www.lemnatec.com/

Conclusion

Globally, enormous data are being rapidly generated and 
annotated to better understand the complicated biological 
pathways involved in stress tolerance of plants. The availability 
of diverse genomic resources, such as whole genome sequences, 
transcriptomes, molecular markers, and linkage maps, has 
increased significantly in many crops including flax over the 
last decade. These resources can be efficiently utilized for wider 
climatic adaptability and biotic stress tolerance in flax through 
varietal improvement program. Flax being a high value 
economic crop, finds wide range of uses in the culinary, 
bioenergy, nutritional, nutraceutical industries. Different omic 
tools and integrated approaches discussed in the present review 
provide glimpses of current scenarios and future perspectives 
for the effective management of abiotic stress and disease 
resistance in flax. Under integrated approach of omics 
utilization, the techniques of genomics, transcriptomics, and 
metabolomics have been employed in flax, but other significant 
areas such as proteomics, phenomics, and ionomics are yet to 
be explored. Deeper insight into genetic architecture, signaling 
pathways, and adaptation under stress through the lenses of 
different omics technologies are critical to understand the 
stress response and the underlying regulatory mechanism. 
Integration of these omics technologies on diverse flax 
genotypes with substantial trait variation are expected to 
unravel hitherto unknown factors in flaxseed which would 
pave way for the breeding of stress tolerant varieties for the 
larger good.
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