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Septoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici, is among
the most threatening wheat diseases in Europe. Genetic resistance remains one of
the main environmentally sustainable strategies to efficiently control STB. However,
the molecular and physiological mechanisms underlying resistance are still unknown,
limiting the implementation of knowledge-driven management strategies. Among the
22 known major resistance genes (Stb), the recently cloned Stb16q gene encodes a
cysteine-rich receptor-like kinase conferring a full broad-spectrum resistance against
Z. tritici. Here, we showed that an avirulent Z. tritici inoculated on Stb16q quasi near
isogenic lines (NILs) either by infiltration into leaf tissues or by brush inoculation of
wounded tissues partially bypasses Stb16q-mediated resistance. To understand this
bypass, we monitored the infection of GFP-labeled avirulent and virulent isolates on
Stb16q NILs, from germination to pycnidia formation. This quantitative cytological
analysis revealed that 95% of the penetration attempts were unsuccessful in the
Stb16q incompatible interaction, while almost all succeeded in compatible interactions.
Infectious hyphae resulting from the few successful penetration events in the Stb16q
incompatible interaction were arrested in the sub-stomatal cavity of the primary-
infected stomata. These results indicate that Stb16q-mediated resistance mainly blocks
the avirulent isolate during its stomatal penetration into wheat tissue. Analyses of
stomatal aperture of the Stb16q NILs during infection revealed that Stb16q triggers
a temporary stomatal closure in response to an avirulent isolate. Finally, we showed that
infiltrating avirulent isolates into leaves of the Stb6 and Stb9 NILs also partially bypasses
resistances, suggesting that arrest during stomatal penetration might be a common
major mechanism for Stb-mediated resistances.

Keywords: Septoria tritici blotch, Stb16q, resistance, avirulence, leaf penetration, stomata

INTRODUCTION

Zymoseptoria tritici (telemorph Mycosphaerella graminicola) is the causal agent of Septoria tritici
blotch (STB), one of the most devastating diseases of wheat in Europe. This fungal pathogen
causes, on average, 10% of annual yield losses, representing a value of more than $800 (€720)
million despite the use of fungicides and resistant wheat varieties (Fones and Gurr, 2015;
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Torriani et al., 2015). Because of its economic importance, the
infection biology of this fungus has been extensively studied
(Cohen and Eyal, 1993; Kema, 1996; Duncan and Howard,
2000; Rohel et al., 2001; Shetty et al., 2003; Keon et al.,
2007; Jing et al., 2008; Siah et al., 2010; Fones et al., 2017;
Haueisen et al., 2019; Fantozzi et al., 2021). Under high-
humidity conditions, Z. tritici spores present on the leaf
surface germinate. The resulting hyphae initiate pathogenesis by
developing epiphytically before penetrating wheat leaf mainly
through stomata. After penetration, inner infectious hyphae
colonize the leaf apoplast. This extended invasive phase is defined
as the asymptomatic phase. Usually, after 7–14 days post infection
(dpi) in a growth chamber, chlorotic and necrotic lesions appear
and announce the beginning of the symptomatic or necrotrophic
phase. This phase is associated with the formation of pycnidia in
sub-stomatal cavities that finally release pycnidiospores through
the ostiole to initiate another infection cycle.

Genetic resistance is the main environmentally sustainable
and efficient strategy to control STB. Important advances in
the genetic architecture of wheat resistances against Z. tritici
have been made these past few years, with the mapping of
22 major Stb genes and more than 167 quantitative trait loci
(QTLs) spread throughout all chromosomes (Brown et al.,
2015; Yang et al., 2018). The Stb genes have been very
attractive for wheat breeding as they confer strong resistances
inherited from a single locus. However, the rapid emergence
of virulent isolates considerably limits their durability, as
illustrated by the rapid breakdown of most Stb-mediated
resistances largely deployed in the fields (McDonald and
Linde, 2002; Brown et al., 2015). Functional characterization
of the resistance mechanisms controlled by the Stb genes
is now needed for breeding efficient and durable wheat
resistances to STB.

During interactions between Z. tritici and resistant wheats,
little is known about when, where, and how non-pathogenic
isolates are stopped. In previous comparative cytological studies
between compatible and incompatible interactions, fungal
growth was reported to be stopped after penetration through
stomata, at different steps during resistant wheat apoplast
colonization (Cohen and Eyal, 1993; Kema, 1996; Shetty et al.,
2003; Jing et al., 2008; Siah et al., 2010). No hypersensitive
responses (HR) and no lignin or polyphenolic depositions
were observed (Cohen and Eyal, 1993; Kema, 1996). Cellular
autofluorescence (Cohen and Eyal, 1993; Duncan and Howard,
2000; Shetty et al., 2003), ROS, and callose accumulation (Cohen
and Eyal, 1993; Shetty et al., 2003) have been reported, but their
roles in resistance are unknown. Comparative proteomic (Yang
et al., 2015) and metabolomic (Seybold et al., 2020) analyses
revealed an early upregulation of carbohydrate metabolism, cell
wall reinforcement, and the production of defense proteins
and possible antifungal metabolites generating an apoplastic
environment stressful for the fungus. In all these studies,
exploration of wheat features linked to resistance relied on the
comparison between distinct genetic backgrounds for which
the underlying genetic determinism of resistance is unknown.
Thus, assignment of molecular or physiological events to Stb
genes or QTLs is not possible, which strongly limits our

understanding of the nature, diversity, and interaction of
resistance mechanisms against STB.

The recent cloning of the Stb6 and Stb16q genes (Saintenac
et al., 2018, 2021) is a valuable resource to fast forward
search for Stb-mediated resistance mechanisms. Both Stb genes
encode receptor-like kinases (RLKs), which, in plant immunity,
are thought to recognize invasion patterns in the apoplast
and transduce a defense signal (van der Burgh and Joosten,
2019). Stb6 controls a qualitative gene-for-gene resistance against
Z. tritici isolates carrying the matching AvrStb6 and encodes for a
wall-associated kinase (WAK) (Kema et al., 2000; Brading et al.,
2002; Saintenac et al., 2018). Many WAKs monitor plant cell wall
integrity and induce a broad range of host defense responses,
including the activation of MAPK cascades, the modulation
of hormones signaling, and the modification of cell wall
composition to prevent pathogen penetration (Stephens et al.,
2022). Stb16q, of particular interest as it confers qualitative broad-
spectrum resistance against a large panel of Z. tritici isolates,
encodes a cysteine-rich-receptor-like kinase (CRK) (Saintenac
et al., 2021). Most of the functional analyses of this RLK
family arise from studies on Arabidopsis thaliana, wherein CRKs
were shown to be involved in ROS signaling, modification of
phytohormonal pathways, cell death, and/or stomatal immunity
(Acharya et al., 2007; Bourdais et al., 2015; Yeh et al., 2015; Lee
et al., 2017; Yadeta et al., 2017; Kimura et al., 2020).

This study aimed at deciphering the mechanisms involved
in Stb16q-mediated resistance. We performed a quantitative
phenotyping analysis between compatible and incompatible
interactions by brush-inoculating leaves. We also evaluated
the impact of inoculating spores either by infiltration into
leaf or by brush-inoculation on wounded tissues on Stb16q-
mediated resistance. We also questioned the effect of these
inoculation methods on Stb6- and Stb9-mediated resistances.
Using a comparative quantitative cytological approach, we
investigated when and where an avirulent isolate was stopped
during Stb16q-mediated resistance. Finally, we tested whether
stomatal immunity is involved in Stb16q-mediated resistance
using cytological and biochemical approaches.

MATERIALS AND METHODS

Plant and Fungal Materials
All experiments were performed using wheat Chinese Spring
(CS) near isogenic lines (NILs), carrying either no Stb gene
(named NILstb), or one of the following Stb genes Stb6, Stb9,
and Stb16q and named NILstb, NILStb6, NILStb9, NILStb16q,
respectively. NILstb and NILStb6 were obtained following five
backcrosses with the recurrent parent CS starting with F1
CS × Courtot. At each generation, plants were phenotyped
with Z. tritici isolate IPO323 and genotyped with SSR marker
gwm369 and Stb6 diagnostic SNP markers to maintain Stb6
heterozygosity in the progenies. A BC5F1 plant heterozygous
for Stb6 was self-fertilized. A BC5F2 carrying the resistance Stb6
haplotype 1 and a BC5F2 carrying the susceptible Stb6 haplotype
3 at the homozygous state were selected and named NILStb6

and NILstb, respectively. NILStb9 was developed by performing

Frontiers in Plant Science | www.frontiersin.org 2 June 2022 | Volume 13 | Article 921074

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-921074 June 21, 2022 Time: 12:27 # 3

Battache et al. Z. tritici Arrest During Stb16q-Mediated Resistance

five backcrosses, with the recurrent parent CS starting with F1
CS × Courtot. At each generation, the plants were phenotyped
with Z. tritici isolates IPO89011 and genotyped with SSR markers
barc129 and wmc317 to maintain Stb9 heterozygosity in the
progenies. A BC5F1 plant heterozygous for Stb9 was crossed
with NILstb, and a progeny heterozygous for Stb6 and Stb9 was
self-fertilized. A progeny carrying the resistance allele of Stb9
and the susceptible allele of Stb6 both at the homozygous state
was selected and named NILStb9. The NILStb16q was developed
similarly to NILStb9 by starting with F1 CS × TA4152-19 and
by using IPO9415 and Stb16q diagnostic markers cfn80044 and
cfn80045 (Saintenac et al., 2021).

Z. tritici isolates IPO9415 (avirulent on Stb16q and virulent
on Stb6 and Stb9) and CFZ008 (virulent on Stb6, Stb9, and
Stb16q) were collected in French wheat fields on cultivar
Premio in 2009 and cultivar Cellule in 2016, respectively.
The Stb9-avirulent IPO89011 isolate (avirulent on Stb16q)
was collected from a Netherlands wheat field (Brown et al.,
2001). The Stb6-avirulent IPO323 isolate (avirulent on Stb16q),
collected on cultivar “Arminda” in the Netherlands in 1981,
is the genome reference isolate (Goodwin et al., 2011). For
cytological analyses, plasmid pYSKH-4 was introduced into
Z. tritici isolates IPO9415 and CFZ008 using Agrobacterium
tumefasciens-mediated transformation (ATMT) according to
published protocols (Marchegiani et al., 2015). Plasmid pYSKH-
4 contains eGFP expressed under the control of a strong
constitutive promoter TEF1 and the ILV1-R gene, conferring
resistance to sulfonylurea (Sidhu et al., 2015). Transformants
resistant to sulfonylurea were purified by monospore isolation,
and their GFP fluorescence was assessed as previously described
(Marchegiani et al., 2015).

Plant and Zymoseptoria tritici Growing
Conditions
Except for cytological analyses, all experiments were performed
using the attached leaf assay (Lee et al., 2015b). The plants
were grown in 60 cm × 40 cm trays filled with 1/2 blond
and 1/2 brown peat mosses (Humustar soil, NPK 14-16-18,
SARL Activert, Riom, France) in the MTR30 growth chamber
(Conviron R©) equipped with fluorescent tubes (Master TL-D
Super 80 70 W/840; 480 mol. m−2.s−1; Philips, Amsterdam, the
Netherlands) under a 16-h photoperiod at 21/18◦C (day/night)
and 80% relative humidity (RH). For cytological analyses, the
plants were grown in a 10 cm × 10 cm pot filled with the
Floradur R© B soil (NPK 14-16-18; Floragard Vertriebs-GmbH,
Oldenburg, Germany) in a controlled growth chamber with
fluorescent tubes (Osram Lumilux L58W/830; 300 mol. m−2. s−1;
OSRAM GmbH, Munich, Germany), under a 16-h photoperiod
at 22/18◦C (day/night) and 80% RH.

Z. tritici isolates were grown in liquid YG with 100 mg/L
streptomycin and 100 mg/L ampicillin at 20◦C, 180 rpm, for
3 days and spread on YPD plates supplemented with the same
antibiotics at 20◦C for 4 days. A suspension of 1× 106 spores/ml
supplemented with 0.05% (v/v) Tween-20 was prepared to
inoculate attached leaves. For cytological analyses, Z. tritici
isolates IPO9415-GFP and CFZ008-GFP were grown on YPD

plates supplemented with 100 mg/L ampicillin at 18◦C, 70–80%
RH for 3 days, and spread again on new YPD plates for 4 more
days. A suspension of 3× 106 spores/ml supplemented with 10%
(v/v) gelatine was prepared to inoculate unattached leaves.

Inoculation Procedures
Six- to eight-centimeter sections of the second leaf of 14-day-
old NILs were inoculated with a paintbrush six times repeated
twice (or 3 times twice for cytological analyses) with spore
suspensions or water supplemented with 0.05% (v/v) Tween-
20 as control solution. Infiltration assays were performed by
infiltrating between 0.1 and 0.5 ml of spores suspensions or
control solution at three different locations in second leaves
using a needle-less syringe. The wounding assay was conducted
by gently scrapping 3 times the leaf surface using waterproof
abrasive paper (240 grit) before brush-inoculation. Following
inoculation, the plants were covered with transparent bags for
3 days before returning to normal conditions, except for the
100% RH experiment where the bags were maintained for
7 days. Disease severity of inoculated leaves was visually evaluated
every 2 days from 8 to 21 dpi by estimating the percentage
of the leaf surface covered with symptoms (chlorosis and
necrosis) and pycnidia. Results were obtained from three to eight
individual leaves per condition from one to two independent
experiments. The area under disease progression curve (AUDPC)
for symptoms and pycnidia was calculated using the “audpc”
function of the “agricolae” package in R software (version 4.1.0).

Quantification of Fungal Biomass
The inoculated leaves were harvested 10 h after the light turned
on every day from 0 to 10 days post inoculation (dpi) and
at 14 dpi. The collected leaves were snapfrozen and stored at
–80◦C. Total DNA was isolated using the CTAB method (Fabre
et al., 2019), treated with 10 mg/ml RNase A (Sigma-Aldrich) at
37◦C for 1 h and quantified using the Hoechst 33258 method
(Thermo Fisher Scientific), with the Tecan’s Infinite M1000
microplate reader. Real-time quantitative PCR was performed
with the LightCycler R© 480 SYBR Green I Master Mix (Roche) on
25 ng total DNA in a final volume of 15 µL, using the Z. tritici
IGS primers (Forward: 5′-CGACGGCGTATCGTAATTT-
3′/Reverse: 5′-CAACAAATCGAGCCGACGT-3′) to monitor
fungal biomass and the wheat 18S primers (Forward: 5′-
CCATCCCTCCGTAGTTAGCTTCT-3′/Reverse: 5′-CCTGTCG
GCCAAGGCTATATAC-3′) to monitor plant biomass. Reactions
were run in triplicate with the following thermal cycling profile:
95◦C for 10 min, followed by 45 cycles of 10 s at 95◦C, 15 s at
60◦C, and 15 s at 72◦C and completed with a melting curve
analysis program. The relative expression was calculated with
the 2−11Ct method (Livak and Schmittgen, 2001). Results were
obtained from ten individual leaves per condition from two
independent experiments.

Sporulation Assay
The sporulation assay was performed as described previously
(Lee et al., 2015a) with few modifications. At 24 dpi, 6-cm
sections of inoculated leaves were excised and placed individually
in sterile 15-ml Falcon tubes containing compresses saturated
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with water. The tubes were incubated at 15◦C for 48 h in the
dark. Two milliliters of water supplemented with 0.05% Tween
20 were added in each tube, which were then vortexed for
30 s to wash pycnidiospores off the leaves. The spores were
counted using the Malassez counting chamber. Results were
obtained from nine individual leaves per condition from two
independent experiments.

Cytological Analysis
Two-centimeter sections of infected leaves were harvested at
2, 4, 6, 9, and 13 dpi. These sections were stained 30 s with
0.1% Calcofluor White M2R (Sigma-Aldrich) in water, briefly
rinsed in water, set on slides with double-side adhesive tape and
mounted in Perfluorodecalin (Sigma-Aldrich). Stained samples
were observed using a Leica DM5500 B fluorescent microscope
with GFP (ex: 450–490 nm, em: 500–550 nm) and UV filters
(ex: BP, 340–380 nm, em: LP, 425 nm) to visualize the GFP
transgenic fungal line and Calcofluor White M2R, respectively.
Five random Z-stack images of 621 µm × 466 µm for each 2-
cm leaf sections were acquired under a 20×/0.5 dry objective
using the LAS AF software (version 3.2.0.9652). Images were
then analyzed for quantification of the spores germination rate
(number of germinated spores relative to the total number of
spores), the percentage of stomata reached by epiphytic hyphae
(number of stomata in contact with at least one hypha relative
to the total number of stomata), the percentage of penetration
attempts (number of stomata with hyphae extremity, often
with appressoria-like structures, diving into its ostiole relative
to the total number of stomata), the percentage of successful
penetrations events (number of stomata with a penetration
attempt on their ostiole and with infectious hyphae in their
sub-stomatal cavities relative to the total number of stomata),
the percentage of secondary sub-stomatal cavities colonization
(number of stomata with hyphae only in the sub-stomatal cavity,
without hyphae above the ostiole relative to the total number
of stomata), the percentage of early-stage pycnidia (number
of stomata with branching and ring-forming hyphae in the
sub-stomatal cavity relative to the total number of stomata),
and the percentage of young and mature pycnidia (number of
stomata with a densified hyphal structure, in the form of GFP
halo, relative to the total number of stomata) (Supplementary
Figure 3). The remainder of stained-infected leaves was mounted
in Perfluodecalin and was observed with a Leica SPE confocal
under a 40X/1.15 APO OIL objective. Samples were illuminated
sequentially with 488 nm (detection range, 500–554 nm) and
405 nm (detection range, 436–475 nm) lasers for GFP and
CalcoFluor White M2R visualization, respectively. Images were
acquired with the LAS AF software (version 3.1.3). Results were
obtained from six individual leaves per condition from two
independent experiments.

Stomatal Aperture Assays
Imprints of leaves were made using the Aquasil R© Ultra + LV
DENTSPLY SIRONA dental resin (Henry Schein). Transparent
nail polish was applied on imprints, transferred on slides, and
observed using an Axio Observer Z1 (Zeiss) microscope, with
phase contrast under a × 16 magnification. Tiles images of

0.5 cm2 were acquired with Zeiss Zen 3.1 software (Blue edition)
and then analyzed with the Fiji package of ImageJ (version 2.3.0).
Stomatal aperture was then evaluated differently according to the
different assays. To study stomatal behavior during 3 consecutive
days, 3 tiles images per leaf were acquired, and the ratio ostioles
areas over stomata areas of 50 stomata was measured for
each tile images using the “freehand” tool of Fiji. Results were
obtained from two individual leaves at each time point from
one experiment. To observe the impact of Stb16q on stomatal
opening, imprints were made at midday. One experiment was
conducted in a controlled MTR30 Conviron R© growth chamber
as described above, and one in a growth chamber with a
halogen lightening (Powerstar HQI-TS 250W/D Pro; 250 mol.
m−2.s−1; OSRAM GmbH, Munich, Germany). To artificially
open stomata, 4 µM fusicoccin (Sigma-Aldrich) or 4 µM
coronatine (Sigma-Aldrich) prepared in water supplemented
with 4% (v/v) DMSO was sprayed at midday evenly on second
leaves using a micro-diffuser sprayer (Ecospray). Imprints were
made 30 min, 2 h or 4 h post application. To evaluate Stb16q
and toxins impact on stomatal opening, one tile image per leaf
was acquired, and all unblurred stomata on each image were
classified into “closed” or “opened” categories using the “cell
counter” plugin of Fiji. Results were obtained from three to five
independent leaves per condition from one experiment.

Statistical Analyses
Statistical analyses were carried out using the R software version
4.1.0. Data are expressed as mean ± standard error of the
mean. The differences in fungal biomass were analyzed using
a linear mixed model with a Tukey’s multiple range test. To
evaluate the impact of Stb16q on stomatal aperture, proportions
of closed stomata were analyzed for each day post inoculation
independently using a linear mixed model. Analysis of cytological
data was performed using the one-way non-parametric Van
der Waerden test from “agricolae” package, combining wheat
genotype, day post inoculation, and treatment in a single factor.
Spores concentrations, AUDPC, and the proportions of closed
stomata following 100% RH or toxin application were analyzed
using the non-parametric multi-factorial method Aligned Rank
Transformation (ART) ANOVA with the ART function of
the ARTool package. All p-values < 0.05 were considered
to be significant.

RESULTS

Stb16q-Mediated Resistance Establishes
During the Asymptomatic Phase
Stb16q wheat quasi near-isogenic lines (NILStb16q and NILstb)
were inoculated with the Stb16q-avirulent IPO9415 and the
Stb16q-virulent CFZ008 isolates using the brush-inoculation
method, which mimics natural infection. In the compatible
IPO9415/NILstb interaction, symptoms and pycnidia appeared at
10 and 12 dpi, respectively. Two- and 4-day delays in symptoms
emergence were observed for isolate CFZ008 on NILstb

and NILStb16q, respectively, compared to the IPO9415/NILstb
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interaction. For all three compatible interactions, the leaf
surface covered with symptoms and pycnidia gradually increased
until almost full coverage at 21 dpi (Figures 1A,D). By
contrast, no symptoms were observed in the incompatible
IPO9415/NILStb16q, except rare chlorosis (< 3% of the leaf
surface). Moreover, pycnidia were not observed at any time
during this interaction, and pycnidiospores could not be detected
in our sporulation induction assay (Supplementary Figure 1B).
In addition, the growth of the IPO9415 isolate on both Stb16q
NILs was monitored using real-time qPCR. Until 6 dpi, no
significant increase in fungal biomass was observed neither in
compatible nor in incompatible interactions (Supplementary
Figure 1A). Then, fungal biomass increased by a factor 2–3
every day from 7 to 14 dpi in the compatible interaction, while
it remained unchanged in the incompatible interaction. These
results showed that Stb16q-mediated resistance establishes before
7 dpi, during the asymptomatic phase.

Infiltration and Wounding Allow Avirulent
Zymoseptoria tritici to Partially Bypass
Stb16q-Mediated Resistance
In parallel to brush-inoculation, artificial infiltration of spores
of isolates IPO9415 and CFZ008 directly into the apoplast of
Stb16q NILs was performed. Symptoms and pycnidia appeared
as soon as 8 and 10 dpi, respectively, simultaneously in the three
compatible interactions, and gradually extended until reaching
81% ± 1% and 73% ± 4%, respectively, of leaf coverage at 21 dpi
(Figures 1B,D). Despite a delay in symptoms emergence between
infiltration and brush-inoculation, no significant differences

in the area under disease progression curve (AUDPC) were
observed (Supplementary Figure 2A). Interestingly, in the
incompatible IPO9415/NILStb16q interaction, symptoms and
pycnidia were observed at 8 and 12 dpi, respectively (Figure 1B).
However, in the incompatible interaction, the leaf surface covered
with symptoms and pycnidia did not extend over 28 and
7%, respectively, at 21 dpi (Figure 1D and Supplementary
Figure 2A). Isolates IPO9415 and CFZ008 were also inoculated
on Stb16q NILs leaves gently wounded with abrasive paper.
Wounding alone (mock) induced chlorosis and necrosis on leaves
of both NILs (Figures 1C,D and Supplementary Figure 2B).
In the three compatible interactions, pycnidia were observed
at 10 dpi with 35% ± 20% of leaf coverage, and extended up
to 57% ± 15% by 21 dpi (Figures 1C,D). In the incompatible
interaction, pycnidia appeared at 14 dpi and covered 23%
of the leaves at 21 dpi (Figures 1C,D and Supplementary
Figure 2B). Together, these results showed that Stb16q-mediated
resistance is partially bypassed when using inoculation methods
(wounding and infiltration) that circumvent the penetration
process, suggesting that this resistance essentially operates during
Z. tritici penetration into a wheat leaf.

Stb16q-Mediated Resistance Arrests
Avirulent Zymoseptoria tritici During
Stomata Penetration
To investigate whether Stb16q stops Z. tritici during its
penetration into leaves, the infection processes of GFP-labeled
IPO9415 and CFZ008 isolates inoculated on Stb16q NILs were
quantitatively monitored using epifluorescence and confocal

FIGURE 1 | Evolution of symptoms (chlorosis + necrosis) and regions bearing pycnidia of NILStb16q (black) and NILstb (gray) inoculated with control solution
[water/Tween-20, 0.05% (v/v); = Mock, circles], the CFZ008 virulent (squares) or the IPO9415 avirulent (triangles) Z. tritici isolates using brush-inoculation (A), leaf
infiltration (B) or brush-inoculation after wounding (C). (D) Images of two representative second leaves at 21 dpi. Values are means ± SEM [n = 8 for (A,B); n = 3 for
(C)].
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microscopies (Supplementary Table 1). Inoculated leaves were
stained with the fungal chitin dye calcofluor to distinguish
between epiphytic hyphae located on the leaf surface (both GFP-
fluorescent and calcofluor-stained) and infectious hyphae located
inside the leaf (only GFP fluorescent).

To assess the epiphytic phase, we calculated (i) the
spore germination rate (Supplementary Figure 3A), (ii)
the percentage of stomata reached by epiphytic hyphae
(Supplementary Figure 3B), and (iii) the percentage of
penetration attempts (Supplementary Figure 3C). In the three
compatible interactions, approximatively half (44% ± 12%) of
the spores germinated at 2 dpi, reaching 78% ± 1% by 6 dpi
(Figure 2A). It was not possible to assess the spore germination
rate after 6 dpi, as too many epiphytic hyphae were present on
the leaf surface. By 2 dpi, epiphytic hyphae have already reached
18% ± 8% of stomata, and, by 4 dpi, they were in contact
with 40% ± 11% of stomata (Figure 2B). Among these reached
stomata, half (which represented 19% ± 7% of total stomata)
underwent a penetration attempt by 4 dpi (Figure 2C), which
was frequently associated with fungal appressoria-like structures
located on stomata ostiole. The epiphytic hyphal growth did
not visually increase from 6 to 9 dpi in the three compatible
interactions. The percentages of reached stomata and penetration
attempts also remained almost stable at 6 and 9 dpi. Epiphytic

development could not be assessed in the compatible interactions
after 9 dpi due to massive infectious growth and degradation of
the host tissues.

The percentage of successful penetration events was calculated
by counting the number of stomata, with a penetration attempt
on their ostiole and with infectious hyphae in their sub-stomatal
cavities relative to the total number of stomata (Figure 2E and
Supplementary Figure 3D). At 4 dpi, infectious hyphae were
observed in the sub-stomatal cavities of 3% ± 1% of stomata.
At 6 dpi, hyphae successfully penetrated 12% ± 1% of stomata.
By 9 dpi, this percentage reached 22% ± 6%, which showed
that almost all penetration attempts resulted in a successful
penetration event (Figure 2D). These penetration events led
to primary sub-stomatal cavities colonization, i.e., colonization
from penetrating/primary infectious hyphae.

From the successful penetration events, secondary infectious
hyphae colonized the mesophyll following two patterns. The first
pattern relied on an extensive growth of branched hyphae around
plant cells. The second pattern relied on the formation of straight
hyphae, almost not branched, called runner hyphae (Rohel et al.,
2001; Shetty et al., 2003; Haueisen et al., 2019). These linear
runner hyphae grew longitudinally between the epidermis and
the mesophyll, up to 1 cm from the primarily colonized sub-
stomatal cavity and branched at regular intervals. The secondary

FIGURE 2 | Quantitative cytological assessment of the different stages of infection of the CFZ008 virulent (dotted bars) or the IPO9415 avirulent (stripped bars)
Z. tritici GFP-labeled isolates inoculated on NILStb16q (black bars) and NILstb (gray bars). (A) Germination (= number of germinated spores relative to the total number
of spores). (B) Reached stomata (= number of stomata with hyphae in contact relative to the total number of stomata). (C) A penetration attempt (= number of
stomata with hyphae diving into the ostiole relative to the total number of stomata). (D) Successful penetration (= number of stomata with hyphae going through the
ostiole and in the sub-stomatal cavity relative to the total number of stomata). (G) Secondary sub-stomatal cavities colonization (= number of stomata with hyphae
only in the sub-stomatal cavity, without hyphae above the ostiole, relative to the total number of stomata). (H) Early-stage pycnidia (= number of stomata with
branching and ring-forming hyphae in the sub-stomatal cavity relative to the total number of stomata). (I) Young and mature pycnidia (= number of stomata with
densified hyphae structure, in the form of the GFP halo, relative to the total number of stomata). Values are means ± SEM (n = 6). Different letters indicate
significantly different values (Van der Waerden test, p < 0.05). Representative confocal images of penetration events at 6 dpi for NILstb (E) and NILStb16q (F),
inoculated with the GFP-labeled IPO9415 isolate (green) and stained with the fungal surface-dye calcofluor (blue). Red and pink arrows indicate hyphae on the leaf
surface (green and blue) and internal hyphae (only green), respectively. Bar = 50 µm.
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infectious hyphae invaded novel sub-stomatal cavities (i.e.,
secondary colonization) and colonized deeper in the mesophyll
apoplast. To evaluate mesophyll colonization, the percentage
of secondary sub-stomatal cavities colonization was quantified
(Supplementary Figure 3E). By 9 dpi, 61% ± 3% of sub-
stomatal cavities were infected by secondary infectious hyphae
(Figure 2G). Since 22% of sub-stomatal cavities were colonized
by penetrating/primary infectious hyphae, a total of 83% of sub-
stomatal cavities were colonized at 9 dpi, reflecting massive
mesophyll colonization. These results, therefore, indicated that,
at 9 dpi, a single penetration event leads to the colonization of 3.8
sub-stomatal cavities.

Asexual reproduction was initiated by penetration/primary or
secondary infectious hyphae, forming internal rings inside sub-
stomatal cavities and aggregating to further develop into young
pycnidia. These young pycnidia filled up the sub-stomatal cavities
and ultimately matured by growing in size and differentiating
pycnidiospores expelled by the stomata ostiole. We quantified (i)
the percentage of early-stage pycnidia, which is the number of
sub-stomatal cavities, containing ring-forming and aggregating
hyphae, relative to the total number of stomata (Supplementary
Figure 3F) and (ii) the percentage of young/mature pycnidia
(Supplementary Figure 3G). These young/mature pycnidia
displayed an intense GFP fluorescence halo, reflecting a dense
hyphal structure. At 9 dpi, 26% ± 4% of sub-stomatal cavities
were filled with early-stage pycnidia (Figure 2H). At 13 dpi,
47% ± 14% of sub-stomatal cavities were filled with early-stage
pycnidia (Figure 2H), and 8% ± 4% of sub-stomatal cavities
carried young or mature pycnidia (Figure 2I).

In the incompatible IPO9415/NILStb16q interaction, the spore
germination rate, the percentages of stomata reached by epiphytic
hyphae and of penetration attempts were similar to those
observed in the three compatible interactions. However, only few
successful penetration events were observed up to 13 dpi (2 and
1% of total stomata at 9 and 13 dpi, respectively) (Figures 2D,F).
Since 29 and 36% of stomata displayed penetration attempts in
the incompatible interactions at 9 and 13 dpi, respectively, this
means that only 3–5% of these attempts resulted in a successful
penetration. Still, these few penetration events differed from
those of compatible interactions since almost all penetrating
infectious hyphae were stopped in the sub-stomatal cavity
(Figures 2G–I). Overall, we only observed a single event, over
304 analyzed, in which a penetrating hypha grew in the apoplast
and colonized a few neighboring sub-stomatal cavities, without
initiating pycnidia formation. These results showed that Stb16q-
mediated resistance arrests the avirulent isolate during stomata
penetration but also most likely prevents hyphae mesophyll
colonization from the few successful penetration events.

Stb16q Induces an Early and Transient
Stomatal Closure in Response to
Avirulent Zymoseptoria tritici
We investigated whether Stb16q induces stomatal closure, a well-
known resistance mechanism limiting pathogens penetration
into plant tissues (Grimmer et al., 2012). Stomatal aperture
variations of NILStb16q were assessed along three consecutive

days to identify the most relevant time to study Stb16q impact
on stomatal closure. Stomatal opening follows a circadian cycle
with a maximal opening at midday (Figure 3A). Based on this
observation, the percentage of closed stomata (Supplementary
Figure 4) for both Stb16q NILs inoculated with isolates
IPO9415 and CFZ008 was then calculated at 2, 4, 6, and
8 dpi at the maximum stomatal opening time. There were
no significant differences in the percentages of closed stomata
between mock-inoculated NILs, between the Z. tritici- and mock-
inoculated NILstb or between the CFZ008- and mock-inoculated
NILStb16q at any time points (Figure 3B). By contrast, at 2
and 4 dpi, the percentages of closed stomata were significantly
1.6 to 2.6-fold higher in the IPO9415/NILStb16q in compatible
interaction compared to CFZ008/NILStb16q and mock/NILStb16q

interactions. As stomatal opening is highly dependent on
environmental signals (Fan et al., 2004), the percentage of closed
stomata on Stb16q NILs inoculated with the avirulent IPO9415
isolate was assessed again in a growth chamber equipped with
different lights and a different humidity control system. The
variations in the percentages of closed stomata were almost
similar to the previous experiment, i.e., an early stomatal closure
in the incompatible interaction (1.8-fold higher) compared to
the mock/NILStb16q interaction, but with a 2-day delay (at 4
and 6 dpi) (Figure 3C). In conclusion, these data demonstrated
that Stb16q triggers a temporary stomatal closure only when
challenged by an avirulent isolate.

Fusicoccin Does Not Elicit Stomatal
Opening on NILStb16q Upon Infection
With Avirulent Zymoseptoria tritici
To study the role of stomatal closure in Stb16q-mediated
resistance, we investigated whether artificial stomatal opening
could promote a bypass of Stb16q-mediated resistance by an
avirulent isolate. To this end, two strategies were tested. First, 14-
day-old NILStb16q was grown at 100% relative humidity (RH), a
condition known to attenuate stomatal closing in many species
(Fanourakis et al., 2020). Second, NILStb16q was sprayed with
coronatine or fusicoccin that are bacterial and fungal toxins
known to force stomatal opening, respectively, in A. thaliana
and in several species, including durum wheat (Turner and
Graniti, 1969; Ricciardi et al., 2003; Melotto et al., 2006). Seven
days after 100% RH atmosphere, stomatal behavior of NILStb16q

was similar to our standard conditions (3 days at 100% RH,
followed by 4 days at 80% RH) (Figure 4A), most likely because
RH in our standard condition was already quite high. Among
toxins, only fusicoccin promoted significantly stomatal opening,
since 15% more stomata were opened compared to the control
(Figure 4B). This effect was transient and only observed at
2 h post application. To evaluate the impact of this artificial
opening on Stb16q-mediated resistance, fusicoccin was sprayed
on NILStb16q inoculated with CFZ008 or IPO9415 isolates.
The spray was made twice with 4-h interval at 4 dpi, which
corresponded to the beginning of the penetration stage in Stb16q-
compatible interactions (Figure 2D). Treatment with fusicoccin
alone on non-inoculated leaves did not induce foliar symptoms.
Treatments of Z. tritici-inoculated leaves with fusicoccin did not
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FIGURE 3 | Behavior of wheat stomata in different conditions. (A) Stomatal aperture (the ratio of ostiole area/stomata area) calculated from the second leaves of
non-inoculated NILStb16q along 3 consecutive days. (B,C) Percentage of closed stomata of NILstb (gray bars) and NILStb16q (black bars) brush-inoculated with
control solution [water/Tween-20, 0.05% (v/v); empty bars], the CFZ008 virulent (dotted bars) or the IPO9415 avirulent (stripped bars) Z. tritici isolates in a Conviron R©

growth chamber (B) or in a different growth chamber (C). Values are means ± SEM [n = 2 for (A); n = 5 for (B,C)]. Statistical analyses were performed independently
for each day. Different letters indicate significantly different values (ART ANOVA, p < 0.05).

modify the outcome of the infection as symptoms were similar
between control and fusicoccin-treated leaves (Figure 4C).
Similar results were obtained when spraying fusicoccin at other
kinetic points of the infection (once at 2 or 4 or 6 dpi and once
per day every 2 days between 2 and 6 dpi—data not shown).
These experiments showed that fusicoccin did not allow avirulent
Z. tritici to bypass the Stb16q-mediated resistance mechanism. In
parallel, the effect of fusicoccin on stomatal opening of IPO9415-
inoculated NILStb16q was evaluated at 4 dpi, 2 h after the second
spraying. The proportion of opened stomata was similar between
control and fusicoccin-treated leaves (Figure 4D). Overall,
our results indicated that, while promoting transient stomatal
opening on non-inoculated NILStb16q, fusicoccin was not able to
open stomata of NILStb16q infected with avirulent isolate.

Infiltrated Avirulent Zymoseptoria tritici
Partially Bypasses Stb6 and
Stb9-Mediated Resistances
Brush-inoculations and infiltrations of avirulent (IPO323 and
IPO89011) and virulent (IPO9415) isolates were performed on
Stb6 and Stb9 NILs. Following brush-inoculation, symptoms
and pycnidia appeared at 10 and 12 dpi, respectively, in
all the compatible interactions, and gradually extended up
to full coverage of the inoculated leaf area at 21 dpi
(Figures 5A,B). With the infiltration method, symptoms and
pycnidia appeared at 8 and 10 dpi, respectively, and extended
gradually over the infiltrated area, covering 50–75% of the leaf

at 21 dpi in all the compatible interactions (Figures 5C,D).
In the incompatible IPO323/NILStb6 and IPO89011/NILStb9

interactions, no symptoms nor pycnidia were observed at any
time point when spores were applied by brush-inoculation
(Figures 5A,B). By contrast, when using the infiltration method,
symptoms and pycnidia were observed at 8 and 16 dpi,
respectively, in the incompatible IPO323/NILStb6 interaction
(Figure 5C). In the infiltrated incompatible IPO89011/NILStb9

interaction, symptoms and pycnidia were observed at 8
and 12 dpi, respectively (Figure 5D). In both incompatible
interactions, symptoms and pycnidia did not exceed 40 and 13%
of leaves coverage, respectively, which roughly corresponds to
the infiltration spots (Figures 5E,F). In conclusion, these results
indicated that, similar to Stb16q, avirulent isolates partially bypass
Stb6 and Stb9-mediated resistances when infiltrated.

DISCUSSION

Quantitative Cytological Analysis of the
Zymoseptoria tritici Infection Process
The Z. tritici infection cycle has been mostly studied using
qualitative or semi-quantitative cytological analyses (Cohen and
Eyal, 1993; Kema, 1996; Duncan and Howard, 2000; Rohel et al.,
2001; Shetty et al., 2003; Jing et al., 2008; Siah et al., 2010;
Steinberg, 2015; Fones et al., 2017; Haueisen et al., 2019; Fantozzi
et al., 2021). Here, we presented a quantitative cytological analysis
over the entire infection process. In agreement with previous
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FIGURE 4 | Impact of 100% relative humidity (RH) and toxins on NILStb16q stomatal aperture and disease development. (A) Percentage of opened stomata on the
second leaf of non-inoculated 14-day-old NILStb16q grown 3 days at 100% RH, followed by 4 days at 80% RH (standard conditions) or 7 days at 100% RH.
(B) Percentage of opened stomata on the second leaf of non-inoculated NILStb16q, 30 min, 2 h or 4 h after being sprayed with water/4% DMSO (v/v) (Control),
coronatine (Cor) or fusicoccin (Fusi). (C) Symptoms (chlorosis and necrosis) and pycnidia evaluated as the area under disease progression curve (AUDPC) from the
second leaves of NILStb16q brush-inoculated with control solution [water/Tween-20, 0.05% (v/v), Mock], the CFZ008 virulent or the IPO9415 avirulent Z. tritici
isolates and sprayed twice at 4-h interval at 4 dpi, with water/4% DMSO (v/v) (empty bars) or with fusicoccin (stripped bars). (D) Percentage of opened stomata on
the second leaves of NILStb16q brush-inoculated with the Z. tritici IPO9415 isolate and 2 h after the second spray of water/4% DMSO (v/v) (Control) or fusicoccin
(Fusi). Values are means ± SEM [n = 4 for (A,C); n = 3 for (B,D)]. Different letters indicate significantly different values (ART ANOVA, p < 0.05).

observations, we showed that penetration is a continuous and
slow process as it occurs between 4 and 9 dpi, increasing in
intensity with 25% of successful penetrations (relative to the
number of stomata observed) reached at 9 dpi. To compare
our results with previous studies, we calculated the penetration
efficiency as the number of stomata with successful penetration
events relative to the number of germinated spores. The
penetration efficiencies in this study varied from 1% ± 1% at
4 dpi to 7% ± 2% at 6 dpi. Due to a dense hyphal network
on the leaf surface, the number of germinated spores could not
be assessed at 9 dpi. Assuming that this number has reached a
maximum by 6 dpi, as reported before (Shetty et al., 2003; Siah
et al., 2010; Fones et al., 2017), we estimated an efficiency of
penetration of 14% at 9 dpi. Previously, Siah et al. (2010) have
shown that Z. tritici penetrates into leaf through stomata from
2 dpi, with an efficiency of 7%, to 10 dpi, with a maximum
penetration efficiency of 25%. In the study of Shetty et al. (2003)
penetration ofZ. tritici into leaves only started at 5 dpi with a 3.5%
efficiency, reaching 6% by 7 dpi. In the study of Fones et al. (2017)
few successful penetration events were observed at 2 dpi, but
penetration mainly started after a 10-day epiphytic growth, with

an efficiency increasing from 4% at 10 dpi up to 40% by 12 dpi.
While kinetics and penetration efficiencies are quite similar
between the two first studies and our experiment, the study of
Fones et al. (2017) differs noticeably, likely reflecting differences
in experimental conditions, as proposed by the authors . In other
plant pathogenic fungi entering into leaves through stomata,
the penetration occurs between 1 and 6 dpi, with efficiencies
ranging from 27 to 85% (Yirgou and Caldwell, 1963; Stubbs
and Plotnikova, 1972; Kochman and Brown, 1976; Lazarovits
and Higgins, 1976; De Wit, 1977; Liu and Harder, 1996). While
most of these fungal pathogens develop specialized penetrating
structures, known as appressoria, which probably speed up
and enhance penetration efficiency, Cladosporium fulvum, which
lacks appressoria, penetrates into tomato leaves from 4 dpi, with a
30% efficiency, to 6 dpi, reaching 50–70% in efficiency (Lazarovits
and Higgins, 1976; De Wit, 1977). In this regard, with a maximum
penetration efficiency of 14% by 9 dpi, Z. tritici penetration
strategy appears slow and relatively underperforming.

Duncan and Howard (2000) observed that, after
penetration, some infectious hyphae originating from a
single penetration event colonized multiple sub-stomatal cavities
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FIGURE 5 | Evolution of symptoms (chlorosis + necrosis) and regions, bearing pycnidia of NILstb, NILStb6, and NILStb9 using brush-inoculation (A,B) or leaf
infiltration (C,D). (A,C,E) NILstb (gray) and NILStb6 (black) inoculated with control solution [water/Tween-20, 0.05% (v/v); = Mock, circles], the IPO323 avirulent
(squares) or the IPO9415 virulent (triangles) Z. tritici isolates. (B,D,F) NILstb (gray) and NILStb9 (black) inoculated with control solution (= Mock, circles), the IPO89011
avirulent (squares) or the IPO9415 virulent (triangles) Z. tritici isolates. (E,F) Images of two representative second leaves at 21 dpi. Values are means ± SEM (n = 6).

(Duncan and Howard, 2000). Here, we provided quantitative
evidence of this observation, as we showed that 3.8 sub-
stomatal cavities, on average, are colonized by infectious
hyphae originating from one penetration site. This massive
mesophyll colonization observed from 6 to 9 dpi is consistent
with the exponential increase in fungal biomass starting at 6 dpi
(Supplementary Figure 1A). These results suggest that the low
penetration efficiency of Z. tritici might be counterbalanced by
a very high efficiency of apoplastic and sub-stomatal cavities
colonization. The long Z. tritici runner hyphae (up to 1 cm),
which were already described (Rohel et al., 2001; Shetty et al.,
2003; Haueisen et al., 2019), may play a substantial role in this
efficient colonization.

Penetration Through Stomata: A Critical
Stage for Stb-Mediated Resistances
We have previously reported that Stb16q-mediated resistance
stops the avirulent Z. tritici isolate 3D7 early in the infection
process (Saintenac et al., 2021). Here, we provided quantitative
evidences that epiphytic development of the avirulent isolate

IPO9415, from germination to penetration attempt, is not
affected by Stb16q up to 9 dpi. By contrast, we showed that the
avirulent isolate is specifically blocked during the penetration
stage through stomata when inoculated on NILStb16q. While
almost 100% of the penetration attempts were successful by
9 dpi in all the compatible interactions, in the incompatible
IPO9415/NILStb16q interaction, only few penetration attempts
(3–5%) were successful up to 13 dpi. These infectious hyphae did
not further colonize the leaf. In addition, we demonstrated that
leaf infiltration of avirulent isolate IPO9415 partially bypasses
Stb16q-mediated resistance. Our results revealed that Stb16q-
mediated resistance is mainly acting on avirulent isolates during
stomata-mediated penetration. Furthermore, we demonstrated
that leaf infiltration of avirulent isolates also partially bypasses
Stb6- and Stb9-mediated resistances. This suggests that blocking
the fungus during its penetration into leaf may be a common
mechanism in Stb-mediated resistances.

Previous cytological studies have compared the Z. tritici
infection process on resistant and susceptible wheat cultivars
(Cohen and Eyal, 1993; Kema, 1996; Shetty et al., 2003; Jing
et al., 2008; Siah et al., 2010). In line with our observations,
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similar germination rates and epiphytic development were
reported between compatible and incompatible interactions
(Cohen and Eyal, 1993; Kema, 1996; Shetty et al., 2003; Jing
et al., 2008; Siah et al., 2010), which suggest that these stages
are not affected by wheat resistance mechanisms. In the most
comprehensive study, Jing et al. (2008) reported three arrest
patterns in the incompatible interactions between 24 Triticum
monococcum accessions and 9 Z. tritici isolates. The first pattern
(B) corresponded to infectious hyphae stopped in-between
collapsed mesophyll cells. The second pattern (C) corresponded
to an arrest of hyphal growth in the intercellular space adjacent
to the mesophyll cells surrounding the penetration site. In
the third pattern (D), hyphae were stopped immediately after
stomata penetration and did not develop in the corresponding
sub-stomatal cavity. According to our results, the arrest of
the avirulent isolate on NILStb16q is very similar to Pattern D
described by Jing et al. (2008).

The genetic and molecular nature of the wheat resistances
analyzed in these previous cytological studies is unknown.
Therefore, it is not possible to link cytological observations and
arrest stages of avirulent isolates with Stb- or QTL-mediated
resistances as we did for Stb16q. A parallel between cytological
observations of Z. tritici infection and macroscopic symptoms
can still be drawn. Kema (1996) reported that the intermediate
resistance (40% necrosis and 5% pycnidia) of cv. “Shafir” to
the IPO235 isolate involved more mesophyll colonization, i.e.,
Pattern B, than the more-resistant response (5% necrosis and
1% pycnidia) of cv. “Kavkaz/K4500 L6.A.4” to the IPO87016
isolate, which was characterized by hyphae occasionally seen in
the vicinity of sub-stomatal cavities, i.e., Pattern C. Studies of
Shetty et al. (2003) and Siah et al. (2010) showed that avirulent
isolates IPO323 and T0372 were stopped at the penetration site
or in its vicinity, i.e., Pattern C, during infection of the resistant
cv. “Stakado” and cv. “Scorpion,” respectively. These two cultivars
showed strong resistances as infected leaves did not display any
visible pycnidia, but only few chloroses. Altogether, these data
emphasize the importance of quantitative cytological studies for
categorizing wheat resistance mechanisms to STB. Furthermore,
these studies suggest that major resistances result primarily in
the arrest of the pathogen during penetration (Stb16q, Pattern
D, and, possibly, Stb6 and Stb9) or during early mesophyll
colonization (Kavkaz, Stakado and Scorpion, Pattern C), while
more quantitative resistances seem to block the pathogen later
on during mesophyll colonization (Shafir, Pattern B).

Mechanisms Involved in
Stb16q-Mediated Resistance
As natural openings, stomata are essential for the penetration
of many pathogens (bacteria, fungi, and oomycetes) in plant
tissues. To prevent pathogens invasion and sporulation, plants
have deployed stomatal immunity, a defense mechanism that
includes guard cell death and stomatal closure (Chen and
Howlett, 1996; Grimmer et al., 2012; Pujol et al., 2016; David
et al., 2019; Nogueira Júnior et al., 2020; Ye et al., 2020; Yang
et al., 2021). For instance, the dicotyledonous species Arabidopsis
thaliana and Vitis vinifera induce stomatal closure in response

to infection by the bacteria Pseudomonas syringae and by the
oomycete Plasmoparaviticola, respectively (Melotto et al., 2017;
Nogueira Júnior et al., 2020). At CRKs, the best characterized
CRKs, so far, have been associated with stomatal immunity
as some of them modulate stomatal aperture in response to
bacterial invasion (Bourdais et al., 2015; Yeh et al., 2015; Lee
et al., 2017; Kimura et al., 2020). In this context, we investigated
the role of stomatal closure in Stb16q-mediated resistance and
observed a transient stomatal closure specific to the incompatible
interaction. However, the similar degree of stomatal closure
of this incompatible interaction compared to the compatible
interactions on NILstb at 4 dpi and our failure to artificially
open stomata during the incompatible interaction preclude any
conclusions on the role of the Stb16q-triggered stomatal closure
in the arrest of Z. tritici at the stomata.

Although the dental resin is a powerful tool to assess stomatal
aperture, we were unable to detect fungal hyphae on captured
images. Data presented herein are, therefore, a global assessment
of all stomata, including those without a penetration attempt. Our
cytological assay revealed that 25% of stomata were subjected
to a penetration attempt in the incompatible interaction.
However, this experiment was performed with a three-time more
concentrated inoculum than in the stomatal assay. Assuming a
possible linear relationship between penetration attempts and
inoculum concentration, we hypothesize that only 8% of stomata
were subjected to penetration attempts in our stomatal assay.
This percentage is consistent with the percentage of increase in
stomatal closure in the incompatible interaction, which suggests
an Stb16q-dependent localized stomatal closure in response to
penetrating hyphae. This hypothesis deserves more investigation
but requires optimized techniques to visualize both stomatal
aperture and fungal hyphae simultaneously.

Guard cells are highly specialized cells integrating complex
environmental signals to modulate stomatal aperture (David
et al., 2019). Guard cell perception of the external signals occurs
mainly via plasma membrane-localized receptor-like protein
kinases. For instance, the RLK FLS2 recognizes a conserved
domain of the bacterial flagellin. This recognition triggers
stomatal closure within 1–2 h, which is dependent of the BAK1
and BIK1 kinases (David et al., 2019). The Arabidopsis SIF2
malectin-like receptor-like kinase promotes stomatal closure in
response to bacterial infection (Chan et al., 2020). By contrast, the
Arabidopsis lectin receptor kinase LecRK-V.5 negatively regulates
stomatal closure upon Pst DC3000 infection. Interestingly, these
three RLKs are overexpressed in the guard cells, following
pathogens infection (Desclos-Theveniau et al., 2012; Beck et al.,
2014; Chan et al., 2020). The expression and tissue localization
of the plasma membrane-associated STB16 protein is still
unknown, but these data question whether it follows the same
pattern as these RLKs from Arabidopsis, which will reinforce the
hypothetical role of Stb16q in stomatal immunity.

As proposed by Ye et al. (2020) guard cell death, ultimately
leading to stomatal closure, is among the mechanisms underlying
stomatal immunity to limit pathogen invasion. During the non-
host resistance response of Brassica juncea to Leptosphaeria
maculans, an autofluorescence and a rapid collapse of guard
cells were associated with the arrest of avirulent isolates at the
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stomata (Chen and Howlett, 1996). Similarly, the infection of
resistant wheat carrying the 7AL locus by Puccinia graminis f.
sp. tritici resulted in guard cell-localized autofluorescence and
Trypan blue coloration, suggesting that the resistance conferred
by the 7AL locus involves guard cell death (Pujol et al., 2016).
In the Z. tritici/wheat pathosystem, stomata cell death and
autofluorescence have been reported during the infection of
the resistant wheat cv. “Kavkaz/K4500 L.6.A.4,” but not during
the infection of the susceptible wheat cv. “Shafir” (Cohen and
Eyal, 1993). However, whether these responses were localized
at the penetration sites and whether they were involved in
resistance were unassessed. Another study reported a localized
autofluorescence at 7 dpi for 65% of the stomata subjected to
penetration and penetration attempts during the infection of the
resistant wheat cv. Stakado (against 2% during the infection of
the susceptible wheat cv. Sevin), but without induced cell death
(Shetty et al., 2003). Overall, these data and our results emphasize
a potential cellular response of stomata during wheat defense
against avirulent Z. tritici isolates.

Despite a strong arrest at penetration, avirulent Z. tritici
managed to penetrate 2% of NILStb16q stomata. With an average
stomatal density of 3,200/cm2 on the Stb16qNILs, this means
that 64 successful penetrations per cm2 occurred on NILStb16q.
The infectious hyphae resulting from these successful penetration
events were arrested inside or near the infected sub-stomatal
cavities. In addition, we observed that the bypass of Stb16q-
mediated resistance following infiltration of an avirulent isolate
is only partial, as symptoms and pycnidia did not extend beyond
the infiltrated spots. Together, these results suggest that Stb16q-
mediated resistance also takes place in the apoplast. Mechanisms
involved in restricting Z. tritici during incompatible interactions
have been suggested, including (i) cell wall reinforcement and
remodeling (Cohen and Eyal, 1993; Shetty et al., 2009; Yang
et al., 2015; Seybold et al., 2020), (ii) production of PR antifungal
proteins (Shetty et al., 2009; Yang et al., 2015), and (iii) generation
of a stressful apoplastic environment (Shetty et al., 2003; Yang
et al., 2015). In addition, wheat CRK TaCRK3 has been shown
to display in vitro antifungal activity (Guo et al., 2021; Wu et al.,
2021), like other DUF26 containing proteins (Miyakawa et al.,
2014; Ma et al., 2018; Guo et al., 2020), suggesting that a direct
antifungal effect of Stb16q on Z. tritici should not be excluded.

CONCLUSION

Since little is known about the mechanisms involved in Stb-
mediated resistance, we intended to identify when and where
avirulent isolates were stopped by the Stb16q gene. Using
wheat unique genetic resources and relevant phenotyping
methodologies, we showed that Stb16q-mediated resistance
mechanism initiates before 7 dpi during the asymptomatic
phase. Then, we showed that the avirulent isolate is mainly
stopped during the penetration through the stomata as only
5% of penetration attempts were successful compared to almost
100% in the compatible interactions. These penetrating infectious
hyphae are not able to colonize the apoplast, suggesting the
presence of an Stb16q-dependant apoplastic resistant response.

In response to infection by the avirulent isolate, a transient
stomatal closure was observed only in the wheat NIL carrying
Stb16q. However, more investigation is needed to determine if
a local stomatal closure at the site of fungal penetration could
explain the arrest of the avirulent isolate. We further confirmed
that penetration is the main arrest stage of the avirulent isolate
by Stb16q as infiltration of the avirulent isolate directly into
wheat leaf apoplast partially bypasses Stb16q-mediated resistance.
As observed for Stb16q, avirulent isolates infiltrated on wheat
NILs carrying either the Stb6 or the Stb9 genes are able to
partially bypass Stb6 and Stb9 resistance mechanisms. These
results suggest that arrest of the avirulent isolates during stomata
penetration might be a shared resistance mechanism mediated by
Stb genes.
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