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As a developed economic region in China, the problem of heavy metals (HMs) pollution
in the Yangtze River Delta has become increasingly prominent. As an important
evergreen broad-leaved tree species in southern China, the camphor tree cannot only be
used as a street tree but also its various tissues and organs can be used as raw materials
for Chinese herbal medicine. In order to explore whether heavy metal contamination in
the region threatens the safety of camphor trees as pharmaceutical raw materials, we
collected the bark and leaves of the tree most commonly used for pharmaceuticals in
Yixing City. Based on the determination of HMs content, the health risks after human
intake are evaluated, the sources and contributions of HMs are analyzed, and then
the health risks of pollution sources are spatially visualized. The results showed that
under the influence of human activities, the camphor trees in the study area had obvious
enrichment of HMs, and the over-standard rate of Pb in the bark was as high as 90%.
The non-carcinogenic risks of bark and leaves are acceptable, but the carcinogenic risks
are not acceptable. The bark had the highest average carcinogenic risk, approaching
six times the threshold. The results of Pb isotope ratio analysis showed that the average
contribution rate of industrial activities to HMs in camphor trees in the study area was the
highest, reaching 49.70%, followed by fossil fuel burning (37.14%) and the contribution
of natural sources was the smallest, only 13.16%. The locations of the high-risk areas
caused by the three pollution sources in the study area are basically similar, mainly
concentrated in the northwest, northeast, and southeast, which are consistent with
the distribution of industries and resources in the study area. This study can provide a
reference for the precise prevention of HMs pollution of camphor and the safe selection
of its pharmaceutical materials.
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INTRODUCTION

In recent years, with the rapid development of industrialization
and urbanization, the accumulation of heavy metals (HMs) in
the environment has been increasing, especially in developed
economic regions (Yang S. H. et al., 2020). HMs are highly toxic,
refractory, and persistent pollutants. They will enter the soil
through various means such as atmospheric deposition, surface
runoff, and sewage irrigation, then get absorbed by plants, and
finally enter the human body through the food chain, thus
threatening human health (Cui et al., 2022). At present, a large
number of studies have paid attention to this problem, but
most of these research objects are polluted soil, sediment, and
atmospheric deposition (Men et al., 2020; Chen et al., 2021; Li
et al., 2022). In addition, some researchers have conducted source
analyses and health risk assessments of HMs in typical crops
(Xiang et al., 2021; Zulkafflee et al., 2022). However, studies on
HMs pollution of medicinal plants, especially medicinal higher
woody plants, are relatively few.

The camphor tree is a subtropical evergreen species that has
been cultivated in southern China for more than 1,500 years
(Chen et al., 2020). The canopy of this tree stretches and its
branches and leaves are luxuriant, making it an excellent tree
for the streets and soundproof forest belts. Camphor trees also
have important medicinal values. Its bark, roots, stems, leaves,
and fruits are all rich in terpenoids, which have important
pharmaceutical and industrial applications (Guo et al., 2016;
Jiang et al., 2016). For example, D-borneol, a key ingredient
in many traditional Chinese herbal formulas, is documented in
multiple editions of the Chinese Pharmacopeia (Huang et al.,
2016; Chai et al., 2019; Chen et al., 2019), can be used to treat
cardiovascular diseases, including stroke, coronary heart disease,
and angina pectoris (Yang Z. et al., 2020), and the market demand
is very large. However, as HMs pollution in cities becomes more
and more serious, are camphor trees also affected? A study
compared the HMs accumulation capacity of six plants frequently
seen on both the sides of the road and found that the camphor
tree had the highest HMs accumulation index (Zhai et al., 2016),
which intensified people’s concerns about the safety of camphor
tree bark or leaves as medicinal raw materials. Therefore, it is
necessary to carry out a health risk assessment and pollution
source apportionment of HMs in camphor trees.

Yixing City is located in the southwest of Jiangsu Province,
west of Taihu Lake, and in the center of the Shanghai–
Nanjing–Hangzhou triangle. There are many factories,
convenient transportation, and a dense population in this
area. Therefore, economic development is good, but the problem
of environmental pollution is becoming more and more
prominent. Dingshu Town on the west bank of Taihu Lake is
the concentrated distribution area of pottery factories in Yixing
City. These factories produce a lot of HMs pollution during
the production process (Li et al., 2018). The cadmium content
of “Cadmium Red” and “Cadmium Yellow,” the raw materials
for producing ceramics, is as high as 40 g/kg (Lin et al., 2015).
Dingshu Town and Hufu Town are the concentrated distribution
areas of camphor trees. HMs pollution in these areas may pose a
threat to camphor trees and human health. Therefore, Dingshu

Town and Hufu Town in Yixing City were selected as the study
areas of this study.

The objectives of this study are: (1) to evaluate the health
risks of HMs exposure in camphor tree bark and leaves to
humans, (2) to analyze the source and contribution rate of HMs
pollution, (3) to quantify source health risks by combining source
apportionment with health risk assessment, and (4) to conduct a
spatial analysis of source health risks. Our research results will
help to effectively identify the high-risk areas caused by different
HMs pollution sources to camphor trees and provide a reference
for the priority treatment of different HMs pollution sources.

MATERIALS AND METHODS

Sample Collection and Determination
The study area is located in Dingshu Town and Hufu Town,
Yixing City, in the Yangtze River Delta, China. We set up 10
sampling sites to cover all the land use types in the study area
(Figure 1). A mixture of bark and leaf samples from three
camphor trees and the corresponding six soil samples from
the surrounding areas were collected at each sampling site.
The samples were brought back to the laboratory in time for
drying and grinding, and 100 mg was weighed for digestion.
Guaranteed reagents such as HNO3 and HClO4 were used to
digest HMs by graphene electric hot plate heating method. HMs
content was determined using an inductively coupled plasma
mass spectrometry (ICP-MS) (PerkinElmer SCIEX, Elan 9000).
Blank samples and parallel samples were used for quality control.

The Pb concentration of the sample was diluted to
approximately 30 ng/ml and the ratios of 208Pb/206Pb and
206Pb/207Pb were determined using ICP-MS. The equipment was
calibrated using standard reference material SRM981 [National
Institute of Standards and Technology (NIST), Gaithersburg,
MD, United States]. To ensure the precision and accuracy
of the measurements, the NIST SRM981 was used for
every two samples.

Human Health Risk Assessment
When humans ingest Chinese herbal medicines made from
camphor bark or leaves, the HMs in them may pose health risks to
humans. This study uses the human health risk assessment model
recommended by the United States Environmental Protection
Agency (USEPA) to characterize the non-carcinogenic and
carcinogenic risks (USEPA, 2011). The model calculation formula
is as follows:

ADI =
Ci × IR × EF × ED

BW × AT

where, ADI is the average daily exposure dose (mg/kg/day) of
directly ingested HMs; Ci is the concentration of HMs i in
Chinese herbal medicines with bark or leaves as raw materials
(mg/kg); IR is the maximum daily intake of the Chinese herbal
medicines rate (kg/d), is 0.015 kg/d (Shandong Province Standard
(SPS), 2012); EF is exposure frequency (d/a); ED is exposure
duration (a); BW is average body weight (kg); and AT is the
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FIGURE 1 | Study area and sampling sites.

average exposure time (d); the values of the above parameters are
shown in Supplementary Table 1.

THI =
∑

HIi =
∑ ADIi

RfDi

TCR =
∑

CRi =
∑

(ADIi × SFi)

where, HIi is the non-carcinogenic hazard index of heavy metal i,
THI is the non-carcinogenic hazard index of all the HMs; RfDi
is the non-carcinogenic daily reference dose of heavy metal i;
HI/THI < 1 indicates that the non-carcinogenic risk of HMs is
acceptable, otherwise there is a non-carcinogenic risk, CRi is the
carcinogenic risk for heavy metal i, TCR is the total carcinogenic
risk (TCR) for all the HMs, and SF is the carcinogenic slope
factor. The RfD and SF values of different heavy metal elements
are shown in Supplementary Table 2. The acceptable risk level of
CR/TCR recommended by the USEPA is 10−6 to 10−4 and higher
than 10−4 indicates a significant carcinogenic risk (USEPA,
2001).

Source Apportionment Based on the Pb
Isotopes Ratio Analysis
Isosource is a stable isotope analysis software that is often used to
calculate source contributions. Compared with binary or ternary
mixed models, the advantage is that even when there is only
one isotopic system and more than three types of pollution
sources, the model can still obtain the most likely range of ratios
contributed by different pollution sources (Chen et al., 2018b).

Input the Pb isotope ratio of potential pollution sources in the
study area and the Pb isotope ratio of each sample into Isosource
and the calculation formula is as follows:

Rm =
n∑

i = 1

PiRi

I =
n∑
i

Ri

where, Rm is the isotopic ratio, Pi is the percentage contribution
of source i, and Ri is the isotopic ratio of source i. There
are two isotopic ratios and six possible sources in this study
(Supplementary Table 3).

RESULTS

Characteristics of Heavy Metal Contents
in Bark and Leaves of the Camphor Tree
The contents of different heavy metal elements in the bark
and leaves of the camphor tree are shown in Table 1. The
concentration of HMs in the bark is higher than that in leaves,
which confirmed the findings of a study by Sawidis et al. (2011).
The coefficient of variation (CV) of HMs in bark, except Cd, is
higher than those of leaves; the CV of all the heavy metal elements
in the bark is greater than 36%, which belongs to high variation;
the CV of As, Cr, Ni, and Zn in leaves is between 16 and 36%,
it belongs to moderate variation, while Cu, Cd, and Pb belong
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TABLE 1 | Heavy metal content in bark and leaves of the camphor tree.

As Cr Ni Cu Zn Cd Pb

Barks Min (mg/kg) 0.68 1.38 1.38 5.66 28.60 0.18 2.62

Max (mg/kg) 1.92 11.02 11.16 26.33 250.79 1.07 60.95

Mean (mg/kg) 1.19 5.84 4.58 15.51 125.30 0.75 28.95

SD 0.45 2.86 2.88 6.05 68.62 0.35 20.08

CV (%) 37.80 49.00 62.97 39.00 54.76 47.44 69.37

OSR (%) 0 / / / / 0 90.00

Leaves Min (mg/kg) 0.44 0.83 1.47 3.87 24.2 0.04 1.12

Max (mg/kg) 1.02 2.12 3.18 12.82 48.39 0.24 4.7

Mean (mg/kg) 0.78 1.59 2.09 6.72 33.34 0.10 2.33

SD 0.19 0.37 0.52 2.56 8.13 0.06 1.03

CV (%) 24.22 23.34 25.07 38.14 24.39 55.40 44.10

OSR (%) 0 / / / / 0 0

ISO (mg/kg) 4.00 / / / / 2.00 10.00

to high variation. A larger CV indicates a greater influence from
human activities (coal burning, traffic burning, sewage irrigation,
industrial activities, etc.) (Shi and Lu, 2018). According to the
“Chinese Medicine—Limits of HMs in Chinese Herbal Medicine”
published on the website of the International Organization for
Standardization (ISO), the maximum reference values of Pb,
As, and Cd in Chinese herbal medicine are 10.00, 4.00, and
2.00 mg/kg (International organization for standardization (ISO),
2015). It was determined that in all the samples, only the
concentration of Pb in bark exceeded the limit value and the
over-standard rate (OSR) was as high as 90.00%. Studies have
shown that Populus canescens has a strong ability to accumulate
Pb, which is an important reason for the high content of Pb in
plants. However, high concentrations of Pb lead to a decrease
in plant photosynthetic rate and biomass (Shi et al., 2021). As
a potential carcinogen, Pb has been implicated in the etiology
of many diseases, especially those related to the cardiovascular,
renal, nervous system, and skeletal diseases (Järup, 2003). Some
studies found that the average accumulation capacity of Black
Locust, Poplar, and Ginkgo for HMs was Cd > Zn > Cu > Pb
(Zhan et al., 2014) and the accumulation capacity of tea tree for
Pb was also less than other HMs (She et al., 2020). Although
the enrichment capacity of Pb is relatively small, in this study
area, only the Pb in the bark has the largest variation coefficient
(69.37%) and the highest OSR, which indicates that the camphor
trees in the study area have been obviously polluted by Pb.

Human Health Risk Assessment of
Heavy Metals in the Camphor Tree
The total non-carcinogenic risk (THI) of HMs in the bark and
leaves of the camphor tree in the study area was acceptable
(THI < 1.0), but the TCR was unacceptable (TCR > 1 × 10−4)
(Figure 2). For THI, Pb in bark contributed the most, reaching
56.00%, followed by As (26.86%); on the contrary, As in leaves
contributed the most to THI, reaching 67.61%, followed by Pb
(17.25%). Nonetheless, the THI of bark and leaves was still within
the acceptable range, and it is worth noting that the THI of
bark was already close to the threshold. For TCR, As in leaves
still dominates, and the order of the contribution rate of HMs

is As (44.82%) > Cr (30.35%) > Cd (24.07%) > Pb (0.76%);
the contribution rate of HMs in bark was Cd (48.74%) > Cr
(30.23%) > As (18.49%) > Pb (2.55%). Pb and Cd in the bark
were the most likely to cause harm to humans, and similarly, As
in leaves. Overall, the bark is more likely to be enriched with HMs
than leaves, which poses a higher risk to human health and should
be a major concern.

Source Apportionment of Heavy Metals
The results of Pearson correlation analysis showed that Pb in
bark showed a very strong correlation with Cu, Zn, and Cd,
respectively (r > 0.8), Pb-Cr was strongly correlated, Pb-As
was moderately correlated, and only Pb-Ni was very weak or
had no correlation (Supplementary Figure 1). The stronger the
correlation, the more likely these HMs are from the same pathway
(Wang et al., 2020). Therefore, the source of Pb in the bark can
reflect the source of most HMs. The correlation between Pb in
leaves and other HMs is not as strong as that in the bark; however,
Pb-Cr also shows a strong correlation (0.6 ≤ r < 0.8), Pb-As
is moderately correlated (0.4 ≤ r < 0.6), and Pb-Ni and Pb-Zn
are weakly correlated (0.2 ≤ r < 0.4). According to the analysis
results in Figure 2, the HMs in the bark that has a larger impact
on health risks are Pb, Cd, Cr, and As; similarly, As, Cr, Cd, and
Pb in leaves have a larger impact on health risks.

A comparison of Pb isotopic composition in barks and leaves
with potential sources is shown in Figure 3. A total of 18 of
the 20 samples as well as the corresponding soils had Pb isotope
ratios close to five anthropogenic sources (traffic emissions, coal
burning, sewage, battery factories, and tanneries). A total of 5 of
the 6 corresponding soil samples were close to the anthropogenic
sources mentioned above. However, the Pb isotope ratio of the
uncontaminated soil was far from the Pb isotope ratio of the
samples. This suggests that uncontaminated soil has less impact
on HMs in barks and leaves. Conversely, anthropogenic sources
may be an important contributor to HMs pollution.

The calculation results showed that the influence patterns of
different pollution sources on barks and leaves were different
(Figure 4). Coal burning, battery factories, and traffic emissions
contributed relatively high HMs in barks, all exceeding 20%
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FIGURE 2 | Contribution of heavy metals (HMs) to human total non-carcinogenic risk (THI) and total carcinogenic risk (TCR).

FIGURE 3 | Comparison of Pb isotope composition between samples and
potential pollution sources.

(Figure 4A). However, the contribution rate of the three to leaves
is not a lot different from that of other pollution sources, and
they all remain between 15 and 18% (Figure 4B). In order to
further improve the efficiency of the initial control of pollution
sources, we classified the six pollution sources in the study area
into three categories. Classify coal burning and traffic emission
as fossil fuel burning; classify sewage, battery factories, and
tanneries as industrial activities; and classify uncontaminated
soil as a natural source. In general, the order of contribution
of pollution sources in barks is industrial activities (48.20%),
fossil fuel burning (42.08%), and natural sources (9.72%); the
order of contribution of pollution sources in leaves is industrial
activities (51.20%), fossil fuel burning (32.20%), and natural
sources (16.60%) (Figure 4C).

Spatial Distribution of Health Risks From
Heavy Metal Pollution Sources
The carcinogenic risk of camphor tree barks and leaves in the
study area caused by different pollution sources is different, but
except for Figure 5F (HMs from nature in leaves), the high-
risk distribution areas corresponding to each source are basically
the same (Figure 5). Among them, the high-risk areas of barks
caused by industrial activities are distributed in the northwest,
northeast, and southeast of the study area (Figure 5A); the high-
risk areas of fossil fuel burning sources are basically the same
as the former (Figure 5C); the difference is that it affects the
northeast more than the former. This may be due to the fact that
there is the G25 “Changchun–Shenzhen” expressway running
from the northwest to southeast of the study area. Studies have
shown that the combustion of gasoline and diesel can increase
the concentrations of Zn, Cu, and Pb in the environment (Fan
et al., 2022). Natural sources posed much less risk than the other
two sources, with high-risk areas only reaching a threshold for
carcinogenic risk (Figure 5E). The high-risk areas for leaves from
industrial activities (Figure 5B) and natural sources (Figure 5F)
also just exceeded the threshold, and it is worth noting that the
high-risk areas for natural sources are distributed in the due
north of the study area, which is an urban residential area. In
terms of non-carcinogenic risk, the impact of the three heavy
metal pollution sources on the entire study area was within
an acceptable range, and their relatively high-risk distribution
areas were consistent with those with high carcinogenic risk
(Supplementary Figure 2).

DISCUSSION

The concentrations of Zn, Pb, Cd, and Cu in normal plants
ranged from 10 to 150, 0.1 to 41.7, 0.2 to 0.8, and 3 to
30 mg/kg, respectively (Padmavathiamma and Li, 2007). The
concentrations of Zn, Pb, Cd, and Cu in this study ranged
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FIGURE 4 | Contribution of different pollution sources to heavy metals (HMs) in barks (A) and leaves (B).

from 24.20 to 250.79, 1.12 to 60.95, 0.04 to 1.07, and 3.87 to
26.33 mg/kg, respectively. Except for Cu, the other three HMs
all exceeded the normal range. Some researchers investigated
the HMs content in the bark and leaves of camphor trees in
Hefei, China. Through comparison, we found that the mean
values of Pb and Cd in the bark and leaves of camphor
trees in this study were generally consistent with the former
(Fang et al., 2021). Typical concentrations of Cd in plants
are less than 10 mg/kg (Tomašević et al., 2004) and the
concentrations of Cd in this study ranged from 0.04 to
1.07 mg/kg. Overall, some camphor trees in the study area have
been contaminated with HMs.

As a tall tree that easily accumulates HMs, the camphor tree
can be used to remediate HMs-contaminated soils (Zhou et al.,

2019). Therefore, when HMs-contaminated bark or leaves are
brought into the market as medicinal raw materials, they may
pose a risk to human health. The HMs in the camphor tree
enter the human body through human ingestion, which will
cause different degrees of non-carcinogenic and carcinogenic
risks (Nag and Cummins, 2022). The results of the human health
risk assessment showed that the average non-carcinogenic risk
of camphor bark and leaves in the study area was within an
acceptable range, but its carcinogenic risk was unacceptable,
especially for the bark. The average carcinogenic risk of the bark
is already close to six times the threshold and some high-risk
areas may be higher.

The Pb isotope ratio analysis, as an efficient and accurate
method for heavy metal tracer, has been applied to the
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FIGURE 5 | Effects of pollution sources on the carcinogenic risk of camphor barks and leaves.

fields of ecology and environmental science in recent years
(Beaumais et al., 2022; Dong et al., 2022). This study innovatively
applied Pb isotopes to the source apportionment of HMs in the
bark and leaves of the camphor tree and combined the source
contribution with the human health risk assessment model to
calculate the non-carcinogenic and carcinogenic risks of each
pollution source to the camphor tree. The results showed that
for bark, industrial activities mainly caused high risk to the
northeast and southeast of the study area, while fossil fuel
burning mainly caused high risk to the northwest of the study
area. High-risk areas from natural sources are distributed around
the edge of the study area, but their risk values are much lower
than the former. Some studies have found that among different
functional areas of the city, the HMs content of the camphor

tree bark is the highest in industrial areas and the lowest in
commercial areas, which was consistent with the results of this
study. However, the average value of HMs in the bark in the
commercial area is still much higher than that in this study
(Zhang, 2019). The distribution of high risk areas caused by
pollution sources to leaves is similar to that of bark, with the
difference that the former has a lower risk value. The coastal
areas of the West Taihu Lake and the northwestern part of the
study area have high health risks, possibly due to the dense
distribution of refractories, catalysts, and ceramic manufacturing
plants in the area, which produce wastewater and exhaust gases
containing large amounts of HMs (Chen et al., 2018a). The G25
Changchun–Shenzhen expressway in the study area is another
important factor contributing to the high-risk area mentioned
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above. Hu et al. (2014) observed that the average concentration
of HMs on the main road increased with the increase in traffic
flow; Cd and Cu would be generated from automobile engine
and brake pad wear, Pb would be generated from automobile
exhaust, and Zn would be generated from lubricating oil and
tire wear (Yin et al., 2011). In general, the distribution area of
camphor bark with high carcinogenic risk in the study area is
consistent with the distribution of industry and resources in the
area. Therefore, the prevention and control of HMs pollution
should be focused on this region.

CONCLUSION

This study found that camphor trees in the study area have been
contaminated by HMs, and high-risk areas should be avoided
when using the barks or leaves of camphor trees in the study
area to make Chinese herbal medicine. Pb and Cd are the major
HMs that pose increased health risks. Although the THI of
barks and leaves was within the acceptable range, the THI of
barks was close to 1.0 and the contribution rate of Pb was as
high as 56.00%. TCR should be given more attention. The TCR
of the bark has been as high as 5.95 × 10−4 (>1.0 × 10−4),
of which the contribution rate of Cd was 48.74%; the TCR of
leaves was 1.62 × 10−4 (>1.0 × 10−4). The HMs pollution in
the study area mainly came from industrial activities and fossil
fuel burning and the average carcinogenic risk of the two barks
reached an unacceptable level: 2.85 × 10−4 and 2.54 × 10−4,
respectively. The areas most affected by various pollution sources
in the study area were basically the northwest, northeast, and
southeast. This distribution pattern was related to the industry,
population, and transportation resources in the study area. The
conclusion of this study can provide a reference method for
the source apportionment of HMs pollution in higher plants in

developed economic areas and also provide a new perspective for
environmental management departments to control and prevent
HMs pollution of camphor trees.
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