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Global warming in this century increases incidences of various abiotic stresses restricting
plant growth and productivity and posing a severe threat to global food production and
security. The plant produces different osmolytes and hormones to combat the harmful
effects of these abiotic stresses. Melatonin (MT) is a plant hormone that possesses
excellent properties to improve plant performance under different abiotic stresses. It
is associated with improved physiological and molecular processes linked with seed
germination, growth and development, photosynthesis, carbon fixation, and plant
defence against other abiotic stresses. In parallel, MT also increased the accumulation
of multiple osmolytes, sugars and endogenous hormones (auxin, gibberellic acid, and
cytokinins) to mediate resistance to stress. Stress condition in plants often produces
reactive oxygen species. MT has excellent antioxidant properties and substantially
scavenges reactive oxygen species by increasing the activity of enzymatic and
non-enzymatic antioxidants under stress conditions. Moreover, the upregulation of
stress-responsive and antioxidant enzyme genes makes it an excellent stress-inducing
molecule. However, MT produced in plants is not sufficient to induce stress tolerance.
Therefore, the development of transgenic plants with improved MT biosynthesis could
be a promising approach to enhancing stress tolerance. This review, therefore, focuses
on the possible role of MT in the induction of various abiotic stresses in plants. We
further discussed MT biosynthesis and the critical role of MT as a potential antioxidant
for improving abiotic stress tolerance. In addition, we also addressed MT biosynthesis
and shed light on future research directions. Therefore, this review would help readers
learn more about MT in a changing environment and provide new suggestions on how
this knowledge could be used to develop stress tolerance.
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INTRODUCTION

Plants are sessile organisms that face a variety of environmental
stress (drought, salinity, heat, cold stress, heavy metals stress,
and nutrient deficiency) (Rasheed et al., 2021a,b), which
have devastating impacts on their performance in terms of
growth and productivity (Sharma et al., 2019). These abiotic
stresses disrupt plant physiological and metabolic functioning
development processes (Jeandroz and Lamotte, 2017) and
induce the production of reactive oxygen species (ROS), lipid
peroxidation and accumulation of various osmolytes, and
significant yield losses (Arif et al., 2016; Singh et al., 2017;
Batool et al., 2022a,b; Imran et al., 2022). The intensity
of these abiotic stresses is steadily increasing due to rapid
climate change, and appropriate measures need to be taken
to address these stresses (Beebe et al., 2011; Jeandroz and
Lamotte, 2017; Ali et al., 2019). Therefore, plants have
developed diverse mechanisms to counter these abiotic stresses
(Rasheed et al., 2020a,b). Such tools include plant growth
regulators, different osmolytes synthesis, and accumulation to
protect against stress-induced damages for maintaining cellular
homoeostasis and optimum plant growth (Yancey, 2005; Burg
and Ferraris, 2008; Beebe et al., 2011; Liang et al., 2013;
Singh et al., 2017).

Melatonin (MT) is one such molecule considered a vital plant
growth regulator under stress conditions. It is a pineal molecule
discovered in bovine pineal glands (Lerner et al., 1958; Reiter,
1991). MT received its name in 1957 when it was reported to play
a role in the skin lightening of frogs and involves in controlling
circadian rhythms in diverse vertebrates (Lerner et al., 1958; Tan
et al., 2018). The maximum MT levels during the night indicate
its importance in nocturnal signalling (Reiter, 1991). In plants,
the MT presence was discovered in various monocot and dicot
families (Reiter et al., 2001; Nawaz et al., 2016). Its presence in
diverse plant parts (root, stem, leaves, fruit, flower, and seeds)
in apple, banana, cucumber, onion, rice, and tomato, indicates
its importance in plant growth and development across the plant
kingdom (Nawaz et al., 2016; Wei et al., 2018).

The MT role in response to different stresses has been
comprehensively studied (Debnath et al., 2019). MT plays an
important role in seed germination, biomass productivity,
photosynthesis, fruit maturation, membrane integrity,
osmoregulation, leaf senescence and plants responses to abiotic
stresses (Lee et al., 2014; Shi et al., 2015b). MT-mediated gene
expression regulation protects plants against stress conditions,
for example, the activation of antioxidant machinery of plants
(Debnath et al., 2019); thus, it is considered an essential bio-
stimulant to improve crop production in adverse conditions. MT
triggered an antioxidant defence system under stress conditions,
favouring ROS scavenging and acting as a stress protecting
molecule (Khan et al., 2020a). This property of MT makes it a
promising molecule that can be used for exogenous application
under stress conditions. In this review, we have explored
the physiological and biochemical role of MT under diverse
abiotic stresses. We also discussed the possible mechanism
of MT under different stresses. Moreover, we have also shed
light on engineered MT biosynthesis, its crosstalk with other

hormones, and future research to provide a complete picture of
MT-mediated abiotic stress tolerance.

BIOSYNTHESIS OF MELATONIN IN
PLANTS

In the MT biosynthesis pathway, the tryptophan (TTP)
precursor, which is also a precursor of indole-3-acetic acid
(IAA), comes from the shikimic acid pathway (Posmyk and
Janas, 2009; Arnao and Hernández-Ruiz, 2014; Nawaz et al.,
2016; Zhao et al., 2019). The TTP is converted in MT by
four enzymatic reactions catalysed by four diverse enzymes
(Figure 1). The enzyme tryptophan decarboxylase (TDC) firstly
changed TTP into tryptamine. After that, the enzyme tryptamine
5-hydroxylase (T5H) converts tryptamine into serotonin.
These two steps are crucial for the synthesis of serotonin
in plants. Nevertheless, in some plants, a different pathway
operates in which tryptophan is converted by tryptophan
5-hydroxylase (TPH) to 5-hydroxytryptophan, which is
then catalysed by tryptophan decarboxylase or aromatic
L-amino acid decarboxylase (TDC/AADC) to serotonin (Zuo
et al., 2014). Subsequently, arylalkylamine N-acetyltransferase
(AANAT) or N-acetyltransferase (SNAT) converts serotonin
into N-acetyl-serotonin. Moreover, SNAT can also convert
tryptamine into N-acetyl-tryptamine; however, T5H cannot
convert N-acetyl-tryptamine into N-acetyl-serotonin. In the
last step, N-acetyl-serotonin methyltransferase (ASMT) or
hydroxyindole-O-methyltransferase (HIOMT) catalysed the
N-acetyl-serotonin into MT. HIOMT can also convert serotonin
into 5-methoxytryptamine, converted into MT by SNAT (Zhang
et al., 2014; Tan et al., 2016).

Generally, MT and its intermediate accretion in different sub-
cellular sites depend on the order of enzymes reaction involved
in MT biosynthesis. For instance, the accumulation of serotonin
occurs in the endoplasmic reticulum when TTP is converted
into T5H, while serotonin accumulates in the cytoplasm in
the TDC enzyme. Likewise, the conversation of serotonin into
N-acetyl-serotonin occurs in the chloroplast, where serotonin
conversion into 5-methoxytryptamine by ASMT accumulation
occurs in the cytoplasm. Finally, MT synthesis occurs in the
chloroplast (Miller et al., 2010). The order of enzymes reaction
in MT biosynthesis alters the subcellular sites of intermediates
and MT formation (Back et al., 2016). For instance, the first and
second enzymatic reactions result in the formation of serotonin
in the cell endoplasmic reticulum (ER), while the third and
fourth enzymatic reaction leads to the formation of serotonin
in the cell cytoplasm (Back et al., 2016). The synthesis of MT
in the chloroplast occurs when the final step enzyme is SNAT
whereas ASMT/COMT is involved in the terminal reaction
that occurs in the cytoplasm. Nonetheless, depending on the
sites of biosynthesis, both MT and serotonin levels are strongly
affected by the capability of anabolic and catabolic flow (Back
et al., 2016). TTP and serotonin are significantly accumulated in
senesced leaves, while tryptamine and N-acetylserotonin are not
significantly increased (Back et al., 2016). Thus, these events can
be explained by the quick conversion of tryptamine to serotonin

Frontiers in Plant Science | www.frontiersin.org 2 June 2022 | Volume 13 | Article 902694

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-902694 June 8, 2022 Time: 11:45 # 3

Hassan et al. Melatonin Induced Protection Abiotic Stresses

FIGURE 1 | Mechanism of melatonin biosynthesis in the plant.

by T5H and serotonin conversion N-acetylserotonin by SNAT
(Kang et al., 2009a, 2010).

Moreover, a significant accumulation of serotonin is not
attained when enzymes competing for serotonin as a substrate
are present at the same sub-cellular site. For instance, serotonin
is quickly metabolised into phenylpropanoid amides (feruloyl
serotonin) by serotonin N-hydroxycinnamoyl transferase, which
is expressed in the cell cytoplasm (Kang et al., 2009b). Moreover,
MT can also be quickly metabolised into 2-hydroxymelatonin
(2-OHMel) and cyclic 3-hydroxymelatonin (3-OHMel) by MT-
2-hydroxylase (M2H) and melatonin 3-hydroxylase (M3H),
respectively, when MT is present in plant chloroplast and
cytoplasm, respectively (Byeon and Back, 2015; Lee et al.,
2016). In-plant chloroplast MT provides a significant defence
to plants against oxidative stresses. The plant chloroplast
and mitochondria are significant sites of MT biosynthesis,
and it does not preclude the possibility that some MT is
not also formed in cell cytosol (Tan and Reiter, 2019). The
diverse pathways, along with different sub-cellular sites for
MT production, play an important role in the steady-state

level of MT and in the induction of MT synthesis in
responses to various stresses to cope with adverse impacts
(Back et al., 2016).

MELATONIN: THE STRESS
PROTECTANT

Melatonin is an excellent antioxidant molecule with the
appreciable potential to scavenge ROS and improve stress
tolerance (Figure 2). Its exogenous application improves
various physiological and biochemical processes and plants’
responses to diverse abiotic stress conditions. It improves
chlorophyll contents, photosynthetic efficiency, protein
accumulations, and RuBisCO activities and triggers the
antioxidant defence system, inducing stress tolerance (Figure 2).
MT also stimulates different signalling pathways in response
to stress conditions. Here we briefly described the prominent
roles of MT mediated tolerance in plants against various
abiotic stresses.
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FIGURE 2 | MT being an amphiphilic molecule free crosses cellular membranes and directly scavenges the ROS by increasing the anti-oxidant activities. MT also
improves osmolytes accumulation, protects photosynthetic apparatus, maintains redox balance, and affects the signalling transduction and genes expression linked
with different stresses to induce stress tolerance.

MELATONIN INDUCES SALINITY
TOLERANCE IN PLANTS

Salt stress significantly limits crop growth and development and
threatens global food production. It mainly induces osmotic
stress, ionic and nutritional imbalance, and ROS, resulting in a
significant loss in plant growth (Abbasi et al., 2016; Dustgeer et al.,
2021; Sultan et al., 2021; Seleiman et al., 2022). Globally, many
plant growth regulators (PGR) reported improving salt tolerance
to achieve agricultural sustainability (Bastam et al., 2013). Salt
stress-induced a reduction in crop productivity by decreasing
the photosynthetic efficiency (Meloni et al., 2003). Reduced
photosynthetic efficiency can be caused by the closing of stomata
and the negative effect of salinity on photosynthetic parameters
(Meloni et al., 2003). However, MT application considerably
improved the effectiveness of PS-II (Table 1) for photochemical
and non-photochemical quenching, which favours increased
photosynthetic efficacy under salt stress (Li et al., 2017).

MT application regulates the ROS, protecting the
photosynthetic apparatus and improving the photosynthetic

efficiency and subsequent growth under salt stress, as shown
in maize (Chen et al., 2018). MT supply improves sugar
accumulation, chlorophyll biosynthesis, and protection of
PS-II under salt-stressed conditions (Zhang et al., 2021a).
MT supplementation enhances gene expression of various
antioxidant, photosynthesis and ROS scavenging enzymes,
confining salt tolerance in Phaseolus vulgaris and rice
(Yan et al., 2021).

Moreover, MT also substantially maintains the ionic balances
to counter the salt stress. For example, MT application increased
the K+ accumulation, decreased the Na+ accretion, and kept
the higher K+/Na+ ratio to induce salinity tolerance in maize
seedlings (Jiang et al., 2016). The improved ionic homoeostasis
in plants is linked with the upregulation of the transcription
of the different genes such as MdNHX1 and MdAKT1, which
substantially confer the salt tolerance in MT treated Malus
hupehensis seedlings (Li et al., 2012). Likewise, MT treatment
also increased the expression of NHX1 and SOS2 in rapeseed
seedlings which were associated with a lower Na+/K+ ratio
(Zhao et al., 2018). Moreover, the interaction of Ca2+/CaM
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TABLE 1 | Role of melatonin in inducing salt tolerance in different plant species.

Crops Salinity stress MT
application

Effects References

Cotton 150 mM 20 µM MT supplementation enhanced germination, hypocotyl length, endogenous MT,
and regulated the ABA and GA synthesis by mediating the expression of these
hormonal-related genes

Chen et al.,
2021

Soybean 100 mM 0.10 mM MT supply increased the chlorophyll synthesis and PS-II activity, upregulated
the anti-oxidant defence system and glyoxalase functioning, and reduced MDA
accumulation, electrolyte leakage, and lipoxygenase activity

Alharbi et al.,
2021

Sugar beet 600 mM 100 µM MT application improved the seedling growth, root yield, sugar contents,
chlorophyll contents, the efficiency of PS-II, and increased the H+-pump
activities, Na+ efflux, K+ influx, anti-oxidant activities, and reduced H2O2

accumulation

Zhang et al.,
2021a

Cucumber 150 mM 300 µM MT application improved photosynthetic efficiency, reduced accumulation of
MDA and ROS, and increased the expression of antioxidant genes

Zhang et al.,
2020a

Rice 150 mM 200 µM MT pre-treatment enhanced the seedling biomass production K+/Na+ ratio,
reduced the electrolyte leakage, and increased the activity of nitric oxide
synthase (NOS). Moreover, MT also increased the polyamine contents,
endogenous MT contents, H+-pumps, K+ influx, and Na+ efflux activities

Yan et al., 2020

Tomato 150 mM 150 µM The exogenous MT reduced the ROS production maintained the functioning of
PS-II, and increased the scavenging of ROS by stimulating antioxidant enzymes

Yin et al., 2019

Oat 150 mM 100 µM MT application reduced the H2O2 and MDA accumulation and increased the
chlorophyll contents, leaf area, APX, CAT, POS, and SOD upregulated the gene
expression

Gao et al.,
2019

Wheat 100 mM 1 µM MT supplementation improved biomass production, IAA content,
photosynthetic efficiency, chlorophyll contents, endogenous MT and polyamine
contents, and decreased the H2O2

Ke et al., 2018

(Ca2+/Calmodulin) and MT is also considered to be involved
in overcoming the harmful effects of salt stress. Ca and MT
interaction induces long-distance signalling, bringing salt stress
tolerance in Dracocephalum kotschyi (Vafadar et al., 2020).

Additionally, MT supplementation also caused a reduction
in ROS production (Table 1; Wang et al., 2016a; Zheng et al.,
2017) through enhanced activities of antioxidant enzymes (APX,
CAT, GR, GPX, POD, and SOD) under salt stress (Jiang et al.,
2016; Chen et al., 2018). It also increased the actions of the
H+-pump, which subsequently promoted the K+ influx and
Na+ efflux. It enhanced the activity of antioxidants (APX, CAT,
POD, SOD, AsA, and GSH) and the accumulation of soluble
sugars, proline, and glycine betaine, favouring the increase in
salt tolerance (Zhang et al., 2021a). In conclusion, MT improves
plant growth under salt stress by enhancing photosynthetic
efficiency, K+ influx, and Na+ efflux, reducing ROS production,
improving antioxidant activities, and accumulating compatible
solutes. Therefore, exogenous application of MT can improve salt
stress in crops.

MELATONIN INDUCES DROUGHT
TOLERANCE IN PLANTS

Drought is another significant abiotic stress that considerably
limits crop growth and global food production (Hassan et al.,
2017, 2020; Mehmood et al., 2021). The reduced water availability
induces severe alterations in plant physiological processes, which
consequently cause severe yield losses (Hassan et al., 2019,
2021). Melatonin is a potential PGR that confers tolerance in

plants against different stress conditions, including drought stress
(Meng et al., 2014; Kabiri et al., 2018). Melatonin regulates
various physiological, biochemical, and molecular processes
(Table 2), which improves the plant’s resistance to stand
drought conditions (Campos et al., 2019). The regulation of
photosynthetic processes and antioxidant defence system are the
main processes controlled by MT under drought stress (Liang
et al., 2019). Melatonin protects the photosynthetic apparatus
from the effects of drought, which, therefore, improves the
photosynthetic efficiency (Meng et al., 2014; Liang et al., 2018).

Melatonin also prevents chlorophyll degradation during
drought and improves stomatal conductance and photosynthetic
efficiency (Liang et al., 2018; Karaca and Cekic, 2019). Moreover,
enhanced photosynthetic rate by MT supplementation is
attributed to improved PS-II efficiency and better electron
transport rates (Zhang et al., 2013; Liang et al., 2018).
MT application also protects the chloroplast structure from
oxidative stress damage resulting in a substantial increase in
photosynthesis (Cui et al., 2017). MT supply also suppressed
the expression of chlorophyll degradation genes [pheophorbide
a oxygenase (PAO)], which improves the chlorophyll synthesis
under stress conditions. MT also increases the expression
of photosynthetic genes (RBCS2), thereby improving overall
photosynthetic efficiency, assimilating production and crop
growth under drought stress (Cherono et al., 2021).

Melatonin application as pre-treatments significantly
improved seed germination, delayed senescence, and enhanced
root growth under drought stress, resulting in improved plant
development and final production (Wang et al., 2013; Zhang
et al., 2013). Moreover, MT application also reduced the
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TABLE 2 | Role of melatonin in inducing drought stress tolerance in different plant species.

Crops Stress
conditions

MT
application

Effects References

Soybean 30% field
capacity

100 µM MT application improved the photosynthesis and reduced the ABA, MDA, and
H2O2 accumulation by triggering the activities of APX, CAT, POD, and SOD

Imran et al.,
2021b

Coffee 40% field
capacity

100 µM MT reduced the chlorophyll degradation, MDA accumulation, electrolyte
leakage by increasing the activities of CAT and SOD. Moreover, MT suppressed
the expression of chlorophyll degradation gene PAO and upregulated the gene
AREB encoding ABA-responsive element-binding protein

Cherono et al.,
2021

Maize 40% field
capacity

100 µM MT application increased biomass production by reducing the ROS production
and increasing the photosynthetic activity and activities of APX, CAT, and POD
and accumulation of soluble proteins and proline

Ahmad et al.,
2019

Moringa oleifera Drought stress
was imposed
by skipping
irrigation at 45
and 60 days
after sowing

150 µM Foliar application of MT improved moringa’s growth, yield, and quality by
enhancing the photosynthetic pigments, phenolic contents, IAA accumulation
and reducing the MDA and ROS accumulation by increasing the APX, CAT, and
SOD activities

Sadak et al.,
2020

Flax 50% field
capacity

7.5 mM MT application improved the growth, yield, photosynthetic activities, IAA
contents, soluble sugars, free amino acids, and activities of CAT and POD

Sadak et al.,
2020

Wheat 40% field
capacity

500 µM MT improved the photosynthetic rate, efficiency of PS-II, water holding capacity,
and activities of APX, DHAR, GPX, GST, and genes expression of these
antioxidant enzymes

Zhang et al.,
2017a

Alfalfa Drought stress
was imposed
by withholding
irrigation for
seven 7 days

10 µM MT application reduced the MDA contents ROS production and increased the
activities of APX, CAT, GR, and SOD and genes expression

Antoniou et al.,
2017

Maize Drought stress
was imposed
by withholding
irrigation for
7 days

100 µM MT application improved the photosynthetic activities, stomatal conductance,
turgor potential and reduced the MDA and H2O2 by increasing anti-oxidant
activities

Ye et al., 2016

drought-induced impacts on growth by improving stomatal
conductance, photosynthetic efficiency, leaf water status,
reducing the electrolyte leakage and H2O2 accumulation, and
increasing soluble sugars and proline accumulation (Liang et al.,
2018; Ahmad et al., 2021). The MT mediated protection of the
plants from damaging impacts of drought-induced oxidative
stress is linked with increased ROS scavenging. The triggered
ROS scavenging by MT is due to the stimulated antioxidant
defence system under drought stress (Liu et al., 2015b; Cai et al.,
2017; Gao et al., 2018; Campos et al., 2019). Water scarcity
induced a significant increase in ABA accumulation in plants.
Increased ABA level in plants increased oxidative stress linked
with lipid peroxidation, electrolyte leakage, and chlorophyll
degradation (Jiang et al., 2020). MT supplementation reduced the
ABA accumulation under drought stress by downregulating the
genes linked with ABA biosynthesis and upregulating the genes
involved in ABA catabolism (Jiang et al., 2020). Additionally, in
drought-stressed plants, MT appreciably increased the activities
of antioxidants (APX, CAT, DHAR, GPX, GR, MDHAR, POD,
and SOD) which declined the ROS production safeguarded the
plants from drought-induced oxidative stress (Galano et al.,
2013; Li et al., 2015; Kabiri et al., 2018; Campos et al., 2019).
To summarise, MT improves photosynthetic efficiency, reduces
drought-induced ROS production, ABA accumulation, and
increases antioxidant activities and proline accumulation, which

confer drought tolerance and can be used as a stress protectant
under drought stress.

MELATONIN INDUCES COLD
TOLERANCE IN PLANTS

Cold stress also has devastating impacts on plants and
considerably limits crop growth and production (Mishra et al.,
2011). Cold stress induces substantial changes in plants’
physiological, molecular, and metabolic activity, altering the
membrane permeability and antioxidant activity (Bajwa et al.,
2014; Hu et al., 2016). Therefore, MT application improved the
cold tolerance of Bermuda grass by increasing ROS scavenging
(Table 3) through increased antioxidant activities (Shi et al.,
2015a). Similarly, spraying the rice seedlings with different MT
concentrations (0, 20, or 100 µM) significantly improved the rice
growth by preventing ROS MDA accumulation and increasing
the efficiency of PS-II (Liu et al., 2015a). The application of MT
at lower concentrations (10 and 30 µm) appreciably improved
root growth, shoot growth, and biomass production (Bajwa et al.,
2014). The application of MT upregulated the cold-responsive
genes (COR15a) and antioxidant genes (ZAT10 and ZAT12),
which increases the cold tolerance (Bajwa et al., 2014). MT supply
also reduced the cold-induced reduction in photosynthetic
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TABLE 3 | Role of melatonin in inducing cold stress tolerance in different plant species.

Crops Stress
conditions

MT
application

Effects References

Pistachio −4◦C 0.5 µM MT supplementation reduced the H2O2 and MDA accumulation, electrolyte
leakage, chlorophyll degradation, and activities of APX and GSH

Barand et al.,
2020

Tea −5◦C 100 µM MT foliar spray improved the photosynthetic rate of chlorophyll contents and
reduced the ROS accumulation by increasing the anti-oxidant activities and
redox homeostasis

Li et al., 2018

Tomato Day/night
temperature of
15/6◦C

100 µM The application of MT reduced the damage to photosynthetic apparatus,
increased electron transport, the efficiency of PS-I and PS-II, and protected the
membranes from the cold-induced oxidative harms

Yang et al.,
2018

Rice 12◦C 100 µM MT alleviated the ROS and MDA accumulation and increased the
photosynthetic activity, the efficiency of PS-II, and increased the actions of both
enzymatic and non-enzymatic anti-oxidants

Han et al., 2017

Tomato 4◦C 100 µM MT reduced the MDA contents, EL, and increased the activities of antioxidant
enzymes and cold-responsive genes

Ding et al.,
2017

Barley 4/2◦C
day/night
temperature

10 mM MT application increased the endogenous MT and increased the
photosynthetic efficiency, electron transport, and activities of anti-oxidants

Li et al., 2016b

Bermuda grass 4◦C 100 µM MT treatment enhanced the photosynthetic fluorescence parameters and
increased carbohydrates and amino acids’ accumulation

Hu et al., 2016

Wheat Day/night
temperature of
5/2◦C

1 mM MT application increased the photosynthetic activities, RuBisCO expression,
accumulation of soluble proteins, carbohydrates, and proline and reduced the
MDA and ROS accumulation

Turk et al.,
2014

efficiency by increasing the antioxidant potential and redox
homoeostasis, as shown in pea plants (Li et al., 2018). Foliar spray
of MT (200 µM) helps in the alleviation of cold-induced growth
suppression by improving stomatal conductance, photosynthetic
efficiency, the quantum yield of PS-II, and reducing MDA
accumulation by increasing CAT, POD, and SOD activities
and increasing the expression of antioxidant genes including
CmSOD, CmPOD, and CmCAT (Zhang et al., 2017d). The maize
seedlings treated with MT (1 mM) under cold stress effectively
mitigated the cold stress as shown by enhanced RWC, chlorophyll
contents, activities of antioxidants, and lower MDA and H2O2
accumulation (Turk and Erdal, 2015). Moreover, MT application
also induced a significant increase in uptake of nutrients like
boron, calcium, copper, iron, potassium, phosphorus, sulphur,
and zinc, which generated a considerable increase in maize
growth under cold stress (Turk and Erdal, 2015). In conclusion,
MT improved cold tolerance by improving photosynthetic
activities, stomatal conductance, nutrient uptake, and reduced
MDA and H2O2 through enhanced antioxidant activities and
expression of antioxidant genes and has the potential to be used
as a stress protectant under cold stress onset.

MELATONIN INDUCES HEAT
TOLERANCE IN PLANTS

Heat stress (HS) severely restricts plant growth, causes a
severe reduction in crop yield, and is considered the most
potent food security in this century (Hassan et al., 2021).
Therefore, the use of plant growth regulators to protect plants
against the adverse effects of this stress is imminent. MT
application alleviated the negative impacts of HS (Table 4)

and caused a significant increase in growth under HS in
various crops (Table 5). MT supplementation maintains the
photosynthesis under HS and favours a significant increase
in growth (Ahammed et al., 2018). In kiwifruit, it was
noticed that MT application effectively modulated the carbon
fixation and improved the photosynthesis under HS by
genes transcription (Liang et al., 2019). MT-treated seedlings
showed increased tolerance to HS due to modulation of
antioxidant activities, osmoregulatory system and methylglyoxal
detoxification (Li et al., 2019).

Similarly, wheat MT supplementation suppressed the
HS-induced damage by activating antioxidant machinery
(Buttar et al., 2020). The supplementation of MT increases
SOD activities APX, which counter the ROS and ensure the
plants’ survival under HS conditions (Zhang et al., 2017b).
Melatonin significantly attenuated HS-induced leaf senescence
as indicated by reduced leaf yellowing and increased Fv/Fm
ratio, reducing ROS production (Jahan et al., 2021). MT foliar
spray also increased the plant growth regulators; for example,
endogenous MT and GA contents in heat-stressed plants
improved, significantly increasing HS tolerance (Jahan et al.,
2021). MT application also reduced the ABA biosynthesis and
gene expression, preventing the plants from ABA-induced
oxidative damage (Jahan et al., 2021). A recent study indicated
that MT supplementation in Lolium perenne induced substantial
growth by reducing the ABA contents and increasing the
endogenous MT and cytokinin contents (Zhang et al., 2017b).
The MT application can reduce HS in tomato-induced protein
misfolding, thus protecting the proteins from denaturation
under HS (Xu et al., 2016). MT also increased the expression of
heat shock proteins (HSPs) under HS conditions (Wang et al.,
2015; Xu et al., 2016).
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TABLE 4 | Role of melatonin in inducing heat stress tolerance in different plant species.

Crops Heat stress MT
application

Effects References

Wheat 40◦C 100 µM MT application reduced oxidative damages by lowering the TBARS and H2O2

contents and photosynthetic efficacy through enhanced activities of
anti-oxidants

Iqbal et al.,
2021

Tomato 42◦C 10 µM Exogenous MT increased the chlorophyll fluorescence, electron transport,
efficacy of PS-1 and PS-II

Jahan et al.,
2021

Wheat 42◦C 100 µM MT reduced the MDA and H2O2 accumulation and increased proline contents,
and activities of APX, CAT, POD, SOD, and GSH and expression of
stress-responsive genes (TaMYB80, TaWRKY26, and TaWRKY39)

Buttar et al.,
2020

Tomato 42◦C 100 µM MT reduced the heat-induced oxidative stress, lowered the MDA contents, and
enhanced the anti-oxidants spermidine and spermine contents and activities

Jahan et al.,
2019

Rice 40.6◦C 200 µM MT alleviated the heat-induced damages to photosynthesis chlorophyll and
improved the photosynthetic rate by enhancing the anti-oxidant activities

Barman et al.,
2019

Kiwifruit 45◦C 200 µM MT pre-treatment ameliorates the head-induced damages by reducing the
H2O2 contents and increasing the proline accumulation, activities, AsA, CAT,
POD, SOD, DHAR, and MDHAR, and expression of glutathione S-transferase
(GST) genes

Liang et al.,
2018

Ryegrass 38/33◦C
(day/night)

10 µM MT supplementation reduced the HS-induced leaf senescence. It increased
plant height, biomass production, chlorophyll contents, photosynthetic rates,
maintained the membrane stability, increased the CK contents, and decreased
the ABA contents

Zhang et al.,
2017a

Tomato 40◦C 10 µM MT supplementation increased the endogenous MT contents, expression of
HSPs, chlorophyll contents and reduced the electrolyte leakage

Xu et al., 2016

Calcium ions play an imperative role against HS tolerance
in plants. MT application modulates Ca2+ influx through
a non-selective Ca2+ permeable cation channel (Çelik and
Naziroǧlu, 2012), stimulates Ca2+ transport across the cellular
membranes, and ensures HS tolerance (Santofimia-Castaño
et al., 2014). MT also increased the biosynthesis of total
phenols and flavonoids, which conferred the HS tolerance (Meng
et al., 2018). Therefore, in the light of the findings mentioned
above, it is concluded that MT induced the HS by improving
the photosynthetic efficiency, protecting the photosynthetic
apparatus, reducing ROS and ABA accumulation, and increasing
the Ca2+ influx antioxidant activities and expression of HSPs.
It has enormous potential as a stress protectant used in the
exogenous spray.

MELATONIN INDUCES ULTRAVIOLET
RADIATION TOLERANCE IN PLANTS

Ultraviolet (UV) radiations are a severe threat to crop
production, and their intensity is continuously increasing due to
rapid ozone layer depletion. MT possesses an excellent potential
to alleviate UV’s adverse impacts. It has been reported that MT
application appreciably facilitated the UV-induced damages to
DNA and UV radiations induced ROS in Nicotiana sylvestris
and Malus hupehensis (Zhang et al., 2012; Ullah et al., 2019;
Wei et al., 2019; Nazir et al., 2020). MT acts as a potent
antioxidant to improve the UV resistance and regulates the
expression of different UV signalling pathways, including the
ubiquitin-degrading enzyme (COP1), transcription factors (HY5,
HYH), and RUP1/2 (Yao et al., 2021). MT supply enhanced
the expression of COP1, HY5, HYH, and RUP1/2 which play

a significant role in UV-B signalling. Therefore, it regulates the
plant antioxidant defence systems to protect them from the
damaging impacts of UV-B stress (Yao et al., 2021).

In response to UV stress, endogenous MT accumulation
in plant species (Alpine and Mediterranean species) provides
UV tolerance (Simopoulos et al., 2005). Likewise, the roots of
Glycyrrhiza uralensis exposed to UV-B showed a substantial
increase in endogenous MT, reducing UV-induced damage
to DNA (Zhang et al., 2012). MT application under UV
radiation stress increased the endogenous MT and different
phenolic compounds, including chlorogenic acid, phloridzin, and
quercetin 3-galactoside, which confer UV tolerance (Wei et al.,
2019). Though limited studies are conducted to determine the
impact of MT against UV stress, more studies are direly needed
to underpin the role of MT in mitigating the UV radiation
stress in plants.

MELATONIN INDUCES WATERLOGGING
TOLERANCE IN PLANTS

Waterlogging has been considered to affect crops’ survival,
growth, and production in areas subjected to poor drainage and
high rainfalls (Jackson and Colmer, 2005). Waterlogging affects
plant growth and development, primarily creating anaerobic
conditions and inducing ROS production. MT regulates plant
growth and development under different stresses as an excellent
antioxidant (Sun et al., 2021). For example, exogenous MT
supplementation improved antioxidants activities and reduced
the accumulation of MDA and H2O2 in tomato, pear, and
alfalfa for water-logging tolerance (Zhang et al., 2019). Six

Frontiers in Plant Science | www.frontiersin.org 8 June 2022 | Volume 13 | Article 902694

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-902694 June 8, 2022 Time: 11:45 # 9

Hassan et al. Melatonin Induced Protection Abiotic Stresses

TABLE 5 | Role of melatonin in inducing heavy metals stress tolerance in different plant species.

Crops Stress
conditions

MT
application

Effects References

Spinach Cd and arsenic
stress of
150 mg/kg

100 µM The application of MT alleviated the Cd and As toxicity, increased the biomass
production chlorophyll contents, and reduced lipid peroxidation by increasing
the activities of CAT, POD, and SOD activities

Asif et al., 2020

Wheat Chromium
stress
100 mg/kg

2 mM MT application improved the growth, biomass production, leaf water status,
decreased the electrolyte leakage, MDA, and H2O2 accumulation, and reduced
the Cr uptake and accumulation

Seleiman et al.,
2020

Tomato 50 µM Nickel
stress

100 µM MT application improved growth, photosynthetic efficiency, chlorophyll
contents, decreased the H2O2 contents Ni accumulation, and upregulated the
gene expression of different antioxidants (SOD, CAT, APX, GR, GST, MDHAR,
and DHAR)

Jahan et al.,
2020

Cucumber 30 µM lead
stress

150 µM MT supplementation increased the leaf area, chlorophyll contents,
photosynthetic rates, stomatal conductance, transpiration rate, the efficiency of
PS-II under Cd stress

Wu et al., 2019

Wheat 200 mM Cd
stress

50 mM MT significantly improved the growth, reduced the MDA and H2O2 contents,
and increased the activities of APX, CAT, GSH, POD, and SOD

Ni et al., 2018

Watermelon 50 mg/L
vanadium
stress

The application of MT increased the chlorophyll contents, photosynthetic
activities, CAT and SOD activities and reduced the MDA and H2O2

accumulation by regulating the MT biosynthesis genes expression for APX,
POD, and SOD

Nawaz et al.,
2018

Tobacco 15 µM lead
stress

200 µM MT pre-treatment protected the DNA from lead-induced oxidative damage,
increased antioxidant activities, and reduced cell death

Kobyliñska
et al., 2017

Tomato 100 mM Cd
stress

500 µM MT increased the H+-ATPase activity; antioxidant activities and reduced the Cd
accumulation leaves

Hasan et al.,
2015

alfalfa weeds grown under waterlogged conditions of 100 mM
MT showed significant improvement in growth, physiological
characteristics, photosynthetic efficiency, chlorophyll content,
leaf polyamine content, and reduction in MDA and ROS
accumulation due to increased antioxidant activity (Zhang
et al., 2019). MT also maintains aerobic respiration protects the
photosynthetic apparatus from oxidative damage and increases
the expression of genes (MbT5H1, MbAANAT3, and MbASMT9)
that subsequently improve tolerance to waterlogging stress
(Zheng et al., 2017; Gu et al., 2021); for example, treated peach
seedlings with MT (200 µM) and found improved chlorophyll
concentration, stomatal movements, and reduced electrolyte
leakage, lipid peroxidation, and MDA accumulation through
increased POD and SOD activity under water deficit stress.
MT supplementation enhanced the ADH activity and reserved
the transition from aerobic to anaerobic respiration caused by
waterlogging (Zheng et al., 2017).

Moreover, MT also controlled the anaerobic respiration
enhancing the aerenchyma and suppressing the regulation
of metabolic enzymes (Gu et al., 2021). MT improved the
tolerance against waterlogging by reducing chlorosis and wilting
(Zhang et al., 2013). Another study noted that foliar spray of
(100 µ mol L−1) substantially enhances the efficiency of PS-
II, photosynthetic rate and decreases the MDA accumulation
through enhanced antioxidant activities in sorghum (Zhang et al.,
2021b). The addition of MT improved waterlogging resistance
by increasing the photosynthetic efficiency of photosynthetic
pigments and reducing the accumulation of MDA and H2O2
through increased antioxidant activity. Thus it can be used as a
stress protectant against waterlogging stress.

MELATONIN INDUCES HEAVY METALS
STRESS TOLERANCE IN PLANTS

Heavy metals (HMs) are a severe threat to global food
production. Their concentration in agricultural soil is rapidly
increasing due to anthropogenic activities (Hassan et al., 2019;
Chattha et al., 2021; Imran et al., 2021a; Rehman et al., 2022). The
role of MT to regulate plants grown under different HMs is well
explored (Hasan et al., 2015); nonetheless, MT-mediated growth
regulation largely depends on MT application rate, heavy metal
concentration, and plant species (Table 5). For instance, soybean
grown under Al-stress (50 µM) showed a significant increase in
growth and antioxidant activities with 1 µM MT compared to the
100 and 200 µM MT (Zhang et al., 2017b). Similarly, red cabbage
plants grown under Cu stress showed a significant improvement
in growth with 10 µM MT supplementation compared to 100 µM
(Posmyk et al., 2008). Conversely, tomato plants grown under
Cd stress (100 µM) showed a significant increase in plant
growth with MT application of 100 µM as compared to lower
rates (Hasan et al., 2015). MT application also reverses the
lead-induced cell death and morphological deformation and
membrane leakage in stressed plants compared to control (Li
et al., 2016a; Kobyliñska et al., 2017).

Melatonin restricts the HM translocation and increases genes
expression of MT, thus increasing the endogenous concentration
to combat the HM stress (Hasan et al., 2015). Moreover,
MT directly scavenges the ROS by improving the antioxidant
activities, conferring stress tolerance (Moustafa-Farag et al.,
2020). For instance, MT spray enhanced the tolerance against
ZnO by increasing the ATPase, RuBisCO, and antioxidant
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activities in wheat (Zuo et al., 2017). Similarly, MT enhanced the
plant tolerance to HMs by modulating the antioxidant enzyme
activities (Zhang et al., 2017b). Interestingly, HM induced
the upregulation of MT biosynthetic enzymes genes from E.
pisciphila tryptophan decarboxylase (EpTDC1 and EpSNAT1)
and enhanced the MT biosynthesis improving the tolerance
against the HMs in E. coli and A. thaliana (Yu et al., 2021).
Strawberry seedlings grown under Cd showed a significant
reduction in growth, biomass production, chlorophyll contents
and activities of antioxidant enzymes. However, MT application
(200 µmol) showed a substantial increase in growth biomass
production through enhanced actions of APX, CAT, POD, and
SOD, and reduced MDA accumulation (Wu et al., 2021a). MT
application also improved the expression of MtPT4 and AM
colonisation in Medicago truncatula plants, which improved
the overall antioxidant activities and resultantly increased the
growth under HM stress (Zhang et al., 2020b). In conclusion,
MT alleviated the HMs induced deleterious effects by improving
the photosynthetic activity, antioxidant activities, reduced HM
uptake and MDA and ROS accumulation. It can be used as a
potential stress protectant for managing HMs stress.

MELATONIN INDUCE ELEVATED OZONE
TOLERANCE IN PLANTS

Ozone (O3) is a highly oxidising pollutant, and increasing
O3 concentration severely affects plant growth as well as
development (Serengil et al., 2011). MT plays an imperative
role in plats responses to diverse abiotic stresses; nonetheless,
its mechanism in alleviating the O3 is poorly understood.
Mt crosstalk with various plant growth regulators helps stress

alleviation; for example, grape leaves grown under O3 were
treated with MT modulated ethylene biosynthesis and signalling.
O3 induced a significant increase in genes expression linked with
ethylene biosynthesis, while MT supplementation significantly
inhibited the ethylene genes expression (Liu et al., 2021). Further
MT application also improved the photosynthetic performance
and antioxidant activities under O3. The over-expression of MT
synthesis gene VvASMT1 (acetylserotonin methyltransferase 1)
also alleviated the O3 stress and reduced the ethylene biosynthesis
(Liu et al., 2021). The effect of diverse MT concentrations
(0, 0.1, 0.5, 2.5, and 12.5 µM) was studied on apple plants
grown under O3 stress. The exposure of apple plants to O3
induced a significant increase in MDA accumulation. However,
MT application reduced the MDA accumulation by increasing
the antioxidant activities (CAT, POD, and SOD). Further, MT
also improved the accumulation of soluble proteins and non-
enzymatic antioxidant activities and conferred the O3 tolerance
(Qiu et al., 2019). Therefore, MT induced the O3 tolerance by
favouring the antioxidant activities and reducing the MDA and
ethylene accumulation. However, a wide range of studies is direly
needed to underpin the mechanism linked with MT-induced O3
stress in plants.

MELATONIN INDUCES NUTRIENT
DEFICIENCY TOLERANCE IN PLANTS

The extensive agriculture practices continuously increase the
nutrient deficiency problem, and it is considered to aggravate
in the coming time. MT possesses an excellent potential
to reduce the effects of nutrient deficiency. For instance,
MT supplementation significantly increases the iron (Fe)

TABLE 6 | Effect of MT application on anti-oxidant defence system under different stress conditions.

Plant species Stress conditions MT application Effect on anti-oxidant References

Salt stress

Cotton 100 mM 200 µM ↑ APX and POD Zhang et al., 2021c

Cotton 150 mM 200 µM ↑ APX, CAT, POD, and SOD Jiang et al., 2020

Maize 150 mM 20 µM ↑ APX, GR, GPX, POD, and SOD Chen et al., 2018

Drought stress

Maize 40% field capacity 150 µM ↑ APX, CAT, POD, and SOD Ahmad et al., 2021

Rice Irrigation was withhold 100 µM ↑ APX, GPX, and POD Silalert and Pattanagul, 2021

Rapeseed 35–40% field capacity ↑ AsA, APX, CAT, GSH, POD, and SOD Khan et al., 2020b

Cold stress

Tea 4◦C 100 µM ↑ APX, AsA, CAT, GSH, POD, and SOD Li et al., 2019

Rice 12◦C 150 µM ↑ CAT, GSH, and SOD Han et al., 2017

Cucumber 10◦C 500 µM ↑ CAT, GR, POD, and SOD Marta et al., 2016

Heat stress

Soybean 42◦C 100 µM ↑ AsA, CAT, and SOD Imran et al., 2021b

Wheat 40◦C 100 µM ↑ APX, CAT, POD, and SOD Buttar et al., 2020

Tomato 42◦C 100 µM ↑ APX, CAT, POD, GR, and MDHAR Jahan et al., 2019

Metal stress

Strawberry Cd 300 mM 200 µM ↑ APX, CAT, POD, and SOD Wu et al., 2021a

Tea As 25 µM 100 µM ↑ APX, CAT, POD, and SOD Li et al., 2021b

Bermuda grass Pb 2000 mg kg−1 100 µM ↑ AsA, APX, CAT, GT, POD, and SOD Xie et al., 2018
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concentration in roots and shoots and alleviates Fe deficiency
(Zhou et al., 2016). In another study, MT supplementation
enhanced the tolerance of wheat plants to potassium stress (K).
MT upregulated the K transporter 1 (TaHAK1) gene expression,
improved K absorption, and, therefore, alleviated K deficiency
(Li et al., 2021a,b).

Similarly, MT supply reduced ROS production in sulphur
(S) deprived plants and mitigated the S-induced deficiency
by protecting the macromolecules and ultra-structures (Hasan
et al., 2018). MT also promoted the S uptake and assimilation
by regulating the genes expression involved in S metabolism
and transportation (Hasan et al., 2018). Another investigation
indicated the possible mechanism of MT application mediated
improvement in growth and physiological parameters by a
reduction in the electrolyte leakage, ROS production, and lipid
peroxidation through increasing the activities and transcription
of antioxidant enzyme genes and improved accumulation of
phenols and flavonoids under Fe stress (Ahammed et al.,
2020). Here, MT also increased the leaf Fe contents and
increased the transcription levels of FRO2 and IRT1, which
improved the Fe uptake under Fe deficient conditions (Ahammed
et al., 2020). However, other element availability after MT
application needs to be investigated. Therefore, nutrient
availability can be improved by applying MT through various
mechanisms and could be used as a stress protectant under
nutrient deficiency.

MELATONIN INDUCES SOIL pH STRESS
TOLERANCE IN PLANTS

Soil pH plays a critical role in plants growth, and any
fluctuation in soil pH induces stress conditions for plants.
MT could help plants withstand the soil fluctuations; for
example, MT application improved the growth and yield of
tomatoes under alkaline and acid pH stress (Liu et al., 2015a).
Soil pH fluctuations can increase the endogenous MT and
are reported to be increased by 12 times under pH stress
in untreated plants (Arnao and Hernández-Ruiz, 2013). MT
supplementation (0.1 and 1 µM) in soybean mitigated the Al-
induced toxicity in acid soils through an enhanced accumulation
of osmolytes and antioxidant activities (Zhang et al., 2017b).
MT induced pH stress tolerance by activating MT receptors
(MTNR1A and MTNR1B) and improving antioxidant defence
(Arnao and Hernández-Ruiz, 2006).

Besides this, MT under alkaline stress also increased the
accumulation of polyamines which conferred stress tolerance
(Gong et al., 2017). MT also reduced oxidative stress, and
membrane leakage in alkaline stressed conditions by scavenging
the ROS (Hardeland, 2013; Gong et al., 2017). The increase
in antioxidant activities preserves chloroplast grana, prevents
chlorophyll degradation, and improves photosynthesis under
alkaline stress (Debnath et al., 2018). MT’s protective role under
sodic alkaline stress is also linked with NO signalling. Under
alkaline stress, MT triggers NO accumulation by downregulation
of expression of S-nitrosoglutathione reductase (Corpas and
Barroso, 2015; Kaur et al., 2015; Wen et al., 2016). These findings

suggested that NO is a downstream signal in plants’ tolerance
to alkaline stress (Liu et al., 2015b). Similarly, MT application
significantly improved the expression of acetyltransferase NSI-
like genes and lowered the production of H2O2 under acidic
soils (Moustafa-Farag et al., 2020). Little research is done on the
ameliorative effect of exogenous MT in the context of plants
grown under pH stress. Nonetheless, more studies are required
to explore the mechanistic pathways of MT in inducing pH
stress tolerance.

MECHANISM OF MELATONIN INDUCED
STRESS TOLERANCE

Melatonin Mediated Upgrading of the
Antioxidant Defence System Under
Stress Conditions
Plants have different physiological and biochemical adaptations
to cope with various abiotic stresses. ROS are produced in
plants under other stress conditions (Hassan et al., 2019), which
induce oxidative stress and cause damage to macromolecules
and biological structures (Imran et al., 2021b; Iqbal et al.,
2021). Thus, plants activate antioxidant defence systems to
counter the deleterious impacts of abiotic stresses (Iqbal et al.,
2021). MT is an excellent molecule that improves plant
growth by triggering the antioxidant enzymes under stressed
conditions (Table 6).

Drought and salt stress-induced ROS production was
regulated by different plant growth regulators. These ROS act
as plants’ internal defence systems to trigger the scavenging of
ROS and reduce oxidative stress by increasing the activities of
antioxidant enzymes (Liang et al., 2019).

Melatonin is a multi-functional antioxidant, and it
substantially scavenges the ROS and improves stress tolerance
(Arnao and Hernández-Ruiz, 2014). MT stimulates the
enzymatic antioxidative defence system and protects against
stress conditions (Ye et al., 2016). It also promotes the ABA
degradation enzymes and scavenges the ROS by increasing
the activities of APX, CAT, DHAR, GPX, GR, and SOD
(Kabiri et al., 2018; Campos et al., 2019; Li et al., 2021a).
Under salt stress, MT application significantly increased
the photosynthetic rate and reduced oxidative stress, as
discussed earlier (Zhang et al., 2017c). The MT-induced
protection under salt stress is linked with improved light
absorption, electron transport, the efficiency of PS-II, and
reduction in oxidative stress induced by increase in activities of
antioxidants (AsA, CAT, GSH, POD, and SOD) in melon crop
(Zhang et al., 2017c).

Similarly, the application of MT under HS significantly
increased proline accumulation. It reduced the MDA and H2O2
accumulation through the improved activity of CAT, POD, and
SOD and the expression of genes linked with these enzymes
(Jahan et al., 2019; Buttar et al., 2020). Similarly, MT application
substantially improved the working of APX, CAT, POD, SOD,
and GSH and, therefore, decreased ROS accumulation under
HM and HS stress (Byeon et al., 2015; Hasan et al., 2015).
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MT also reduces the excessive ROS production induced by HM
in rice, wheat, and watermelon by activating the SOD (Lee
and Back, 2017; Nawaz et al., 2018). Similarly, other authors
also reported that MT significantly improved the activities of
APX, CAT, POD, SOD, and other antioxidant activities under
waterlogging, cold, and ozone stress (Zhang et al., 2017c;
Qiu et al., 2019; Gu et al., 2021). Thus, all these findings
endorsed that MT supplementation effectively up-graded the
antioxidant defence system to alleviate the effects of different
abiotic stresses.

Interaction and Crosstalk of Melatonin
With Other Hormones
Hormones play a critical role in plant growth and MT is
widely involved in the metabolism of a range of hormones,
including IAA, ABA, gibberellic acid (GA), cytokinin (CK),
and ethylene (Arnao and Hernández-Ruiz, 2018). MT has
similar chemical properties to IAA, and both these two
hormones use tryptophan in their biosynthesis pathways as
substrate (Wang et al., 2016b). MT acts as a growth regulator
and it shows IAA-like activities (Pelagio-Flores et al., 2012).
MT improves root development and vegetative growth in
different crops, including Arabidopsis, barley, maize, rice, and
tomato (Arnao and Hernández-Ruiz, 2018). MT regulates the
formation of a root by IAA independent pathway in Arabidopsis
(Pelagio-Flores et al., 2012).

Conversely, crosstalk between IAA and MT was also reported;
for instance, an increase in endogenous IAA was reported
in Brassica with external application of MT (Chen et al.,
2009; Arnao and Hernández-Ruiz, 2018). Further application
of IAA significantly improved the endogenous MT (Wang
et al., 2016a). MT mediates mediate the biosynthesis of ABA,
and it regulates the ABA metabolism, thus reducing the
ABA accumulation under stress conditions. For instance,

in apples, MT downregulated the MdNCED3, an essential
ABA biosynthesis gene, consequently decreasing the ABA
accumulation (Li et al., 2015). Likewise, MT downregulated
the ABA under HS in perennial ryegrass and reduced
the ABA contents (Zhang et al., 2017b). Similarly, MT
also downregulated ABA signalling and improves stress
tolerance (Fu et al., 2017). Interestingly MT also increased
the expression of cold-responsive genes and reduced the
ABA accumulation, therefore considerably increasing the cold
tolerance (Fu et al., 2017).

Exogenous MT also ameliorated the impacts of salinity
stress by regulating ABA biosynthesis and catabolism. In salty
conditions, MT reduced the transcript levels of ABA synthesis-
related genes (CsNCED1 and CsNCED2), which resulted in
a reduction in ABA accumulation under stress conditions.
Moreover, MT application increased the expression of genes
(GA20ox and GA3ox) involved in GA, enhancing the GA
accumulation under stress conditions (Zhang et al., 2014).
In another study Zhang et al. (2017b) noted that MT
induced CK activation and inhibition of ABA biosynthesis
significantly inhibited the leaf senescence in ryegrass plants
grown under HS. All this evidence suggests that MT can
be a potential signalling molecule that triggers signalling
transduction and improves plant growth and development under
stress conditions.

Success Stories: Engineered Melatonin
Biosynthesis to Enhance Abiotic Stress
Tolerance
Melatonin is a natural hormone in plants and protects
them against stress conditions. Thus, increasing the
endogenous MT is crucial to combat the effects of
abiotic stresses (Table 7). The transgenic strategy is
an effective strategy to improve the endogenous MT

TABLE 7 | Role of melatonin in inducing stress tolerance in transgenic plant species.

Crop species Genes Stress Characteristics References

Tomato SlCOMT1 Salt stress The over-expression of SlCOMT1 genes enhanced the crop growth, biomass
production, proline contents and reduced the H2O2 contents by increasing the
activities of SOD

Liu et al., 2019

Alfalfa MsSNAT Cadmium
stress

The increase in expression of MsSNAT increased the endogenous MT, root
length, chlorophyll contents and decreased the H2O2 accumulation Cd
accumulation in plant roots

Gu et al., 2017

Switch grass oAANAT;
oHIOMT

Salt stress The increase in genes expression increased the plant height, stress growth,
proline contents, leaf water status, and decreased MDA accumulation,
electrolyte leakage, and Na+ accumulation

Huang et al.,
2017

Tomato oHIOMT Drought stress The overexpression of oHIOMT increased the drought tolerance and decreased
the leaf wilting and dehydration rate

Wang et al.,
2014

Tobacco MzASMT 1 Salt stress The over-expression of the MzASMT 1 gene increased the MT contents, plant
height, biomass production, leaf water status, chlorophyll contents, proline
accumulation, and reduced the MDA contents by increasing activities of
anti-oxidants

Zhuang et al.,
2020

Arabidopsis TaCOMT Drought stress Over-expression of TaCOMT increased GA and IAA accumulation, decreased
ABA accumulation, increased endogenous MT accumulation

Yang et al.,
2019

Arabidopsis VvSNAT1 Salt tolerance The over-expression of VvSNAT1 increased the endogenous MT contents,
reduced leaf wilting, increased germination and biomass production, and
decreased the MDA and H2O2 accumulation

Wu et al.,
2021b
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level. Nonetheless, over-expression of MT responsive
genes under various abiotic stresses is studied in few
crops. Many studies reported that MT levels significantly
increased under stress conditions (Xing et al., 2021;
Qari et al., 2022).

Enzymes like AANAT and HIOMT are essential for the
biosynthesis of MT, and the over-expression of these enzymes
in tomatoes under drought stress increased the endogenous
MT level (Wang et al., 2014). Higher MT levels improve
the plant’s growth and tolerance to change, and resistance
to drought and pesticides (Campos et al., 2019; Yan et al.,
2019). For instance, in Arabidopsis, higher expression of
FIT1, FRO2, and IRT1 genes after MT application restored
the Fe deficiency (Zhou et al., 2016). In another study,
the over-expression ASMT gene increased the endogenous
MT level and provided cellular protection by increasing
the expression of HSPs and triggering the HS tolerance
(Xu et al., 2016). Moreover, in tomato over-expression of
the HsfA1a gene, the COMT1 transcription factor was
upregulated, which increased the MT biosynthesis and
resistance against the Cd stress (Choi et al., 2017). Likewise,
in rice crops, overexpression of chloroplast caffeic acid
O-methyltransferase (COMT) increased the MT contents
and improved the seedling growth under stress conditions
(Choi et al., 2017).

Over-expression of MT biosynthesis pathway genes such
as tryptophan decarboxylase-interacting protein 2 (MeTDC2),
N-acetylserotonin O-methyltransferase-interacting protein
2 (MeASMT2), and N-acetylserotonin O-methyltransferase
3 (MeASMT3) significantly increased endogenous MT and
improved stress tolerance (Wei et al., 2018). Ma et al.
(2017) used the bacterium Pseudomonas fluorescens RG11
strain to increase the endogenous MT in grapes, which
increased the salt tolerance in grapes and reduced the cellular
damage by decreasing the ROS production (Ma et al., 2017).
Moreover, a bacterial strain (Bacillus amyloliquefaciens)
from grapevine roots significantly increased the endogenous
MT production and facilitated the adverse impacts of
drought by H2O2 scavenging (Jiao et al., 2016). Thus,
all these findings suggested that a transgenic increase in
endogenous MT could be a promising approach to improving
stress tolerance.

CONCLUSION AND FUTURE
PERSPECTIVES

Melatonin has excellent properties for improving tolerance
to abiotic stress. Melatonin alters different biochemical,
molecular and physiological processes to induce stress
tolerance in plants. MT protected the photosynthetic
apparatus from oxidative damage caused by stress and
increased the efficiency of photosynthesis. In addition,
melatonin also stimulates cell signalling that controls
diverse physiological and molecular aspects to confer stress
tolerance in plants. Application of MT under various
stresses reduced ROS production by activating antioxidant

enzymes, accumulating compatible solutes, and increasing
the expression of stress-responsive genes. However, many
questions need to be answered by conducting a wide
range of studies.

Future studies need to study the anatomical changes in
leaves and roots of MT plants under different stresses. Similarly,
researchers need to investigate the effect of MT application
on fruit set, pollen viability, and abscission. The precise role
of MT in signalling pathways under different stresses needs
to be investigated. Other studies have reported the interaction
of MT with different osmolytes and hormones. However,
further studies are required to support the exchanges and
interactions of MT with other osmolytes and hormones in
individuals and combinations of various stresses. In addition,
investigating the role of MT under different stresses would
also unravel the potential of protecting spray in other
crops. Recent improvements in plant genomics, transcriptomic,
proteomic, and metabolomic will also to better understand
hormone networks and their interaction and crosstalk under
different stresses.

Regulation of gene expression and interactions with
different hormones is also a crucial factor in MT that
significantly increases stress tolerance. However, endogenous
MT is not sufficient to cope with challenging conditions.
Under such conditions, exogenous MT is resorted to
increase endogenous MT to maintain average growth
under stressful conditions. However, the cellular signalling
pathways induced by MT require more profound studies
in different crops under signal and combination of various
stresses. ROS are mainly produced in plant chloroplast
and mitochondria. Because MT functions as a signalling
molecule, it would be interesting to study inter-organelle
MT signalling under different stresses. In addition, the
molecular mechanism of MT to increase the expression of
antioxidant and stress-responsive genes should be investigated
in more detail. Engineering MT signalling will open new
perspectives on current knowledge to understand MT-
induced stress tolerance. The effects of MT under nutrient
deficiency, UV irradiation, and ozone stress are not fully
explored. Therefore, a deeper understanding of MT under
nutrient deficiency, UV, ozone, and pH stress needs further
exploration. More intensive transcriptomic and proteomic
studies would reveal how MT are affected by nutrient
deficiency, UV radiation, ozone, and pH stress. Finally, the
patterns of MT application in plant responses to individual
and combined stresses under field conditions should also
be investigated.
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