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Peucedanum praeruptorum Dunn is a commonly used traditional Chinese medicine
that is abundant in furano- and dihydropyrano coumarins. When P. praeruptorum
reaches the bolting stage, the roots gradually lignified, and the content of coumarins
declines rapidly. Non-bolting has always been a decisive factor for harvesting the
P. praeruptorum materials. To evaluate the amount of coumarin components in
unbolted and bolted P. praeruptorum, the variations of praeruptorin A, praeruptorin B,
praeruptorin E, peucedanocoumarin I, and peucedanocoumarin II were determined.
Additionally, 336,505 transcripts were obtained from the comparative transcriptome
data. Among them, a total of 1,573 differentially expressed genes were screened
out. To identify the critical genes involved in coumarin biosynthesis, comparative
transcriptomics coupled with co-expression associated analysis was conducted. Finally,
coumarin biosynthesis-related eighteen candidate genes were selected for the validation
of qPCR. Additionally, a phylogenetic tree and the expression profile of ATP-binding
cassette (ABC) transporters were constructed. To clarify the main genes in the regulation
of coumarin biosynthesis, the interaction network of the co-expression genes from
thirteen modules was constructed. Current results exhibited the significant increment
of praeruptorin A, praeruptorin B and praeruptorin E in the bolted P. praeruptorum.
Although, peucedanocoumarin I and peucedanocoumarin II were slightly increased.
Besides the content of coumarins, the essential genes involved in the coumarin
biosynthesis also exhibited an overall downward trend after bolting. Three peroxidases
(PRXs) involved in the production of lignin monomers had been demonstrated to be
downregulated. PAL, C4H, HCT, COMT, CCoAOMT, and some ABC transporters
were dramatically downregulated at the bolting stage. These results indicated that the
downregulation of coumarin biosynthetic genes in the bolted P. praeruptorum ultimately
reduced the formation of coumarins. However, the mechanism through which bolting
indirectly affects the formation of coumarin still needs extra functional verification.
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INTRODUCTION

Peucedanum praeruptorum is a perennial herb in the
Umbelliferae family whose dried roots are commonly used
in traditional Chinese medicine (Song et al., 2021). Coumarins,
which are rich in P. praeruptorum, have a wide range of
applications in the prevention and treatment of cardiovascular
and cerebrovascular diseases, anti-inflammatory, reversal of
multidrug resistance, anti-cancer, and neuroprotection (Lee
et al., 2015; Stelzhammer et al., 2017; Wang et al., 2017; Liu
et al., 2020). The medicinal ingredients of P. praeruptorum are
mainly furan- and dihydropyran-type coumarins (Zhao et al.,
2015; Yu et al., 2020). Furanocoumarins are a class of secondary
metabolites derived from structurally simple coumarins
(Dugrand-Judek et al., 2015). Structurally, furanocoumarins
are available in two isomeric forms: linear and angular, which
are considered to originate from the phenylpropanoid pathway
(Tian et al., 2017). The upstream genes of the phenylpropanoid
pathway were involved in the formation of coumarins (Sui
et al., 2019). PAL is the first rate-limiting enzyme in the
regulation of coumarin biosynthesis, whose expression was
susceptible to multiple abiotic stresses (Shang et al., 2012; Sui
et al., 2019). 4CL catalyzed the formation of cinnamoyl-CoA,
p-coumaryl-CoA, caffeoyl-CoA, ferulic-acid-CoA, and various
hydroxycinnamate-CoA esters (Rastogi et al., 2013; Li and Nair,
2015). From three 4CLs found in P. praeruptorum, Pp4CL1
preferentially takes coumarate and ferulic acid as substrates,
although it can also use caffeic acid, cinnamic acid, o-coumaric
acid, and other precursors. Pp4CL7/4CL10 lacked catalytic
activity for hydroxycinnamic acid (Liu et al., 2017). The ortho-
hydroxylation of hydroxycinnamate is an essential step in
the biosynthesis of coumarins, especially for the subsequent
cyclization of coumarin lactones (Matsumoto et al., 2012). C2′H
is required for the formation of umbelliferone. The expression
of C2′H was high in the roots of P. praeruptorum and was
induced by MeJA and UV-B treatments (Yao et al., 2017). Caffeic
acid O-methyltransferase-similar (COMT-S) was found to be
responsible for the O-methylation of hydroxycoumarins (Zhao
et al., 2019). Cinnamic acid was catalyzed and lactonized by
cinnamic acid-4-hydroxylase (C4H), 4-coumaric acid-CoA ligase
(4CL), and p-coumaroyl-CoA 2′-hydroxylase (C2′H) to yield
umbelliferone (Song et al., 2020). Some CYP450 family members
and MDR transporters may participate in the biosynthesis and
transportation of coumarins (Zhao et al., 2015). However, the
downstream branch and specific coumarin transporters related
to dihydropyranocoumarin remain unclear.

The biosynthesis of coumarins still requires some
post-modifying enzymes, which are mainly composed of
methyltransferase, o-methyltransferase, prenyltransferase, and
monooxygenase. Umbelliferone dimethylallyl transferase (UDT)
plays an important role in the prenylation of umbelliferone
(Munakata et al., 2016). Umbelliferone can be prenylated
at the C6 and C8 positions to yield linear and angular
furocoumarins, respectively. Psoralen is hydroxylated at the
C5 and C8 positions to form xanthotoxol and bergaptol,
respectively. The osthenol catalyzed by U8DT satisfies the
structural basis for dihydropyranocoumarins. Depending on

U6DT, umbelliferone is prenylated to form demethylsuberosin
(DMS). Marmesin synthase (MS) catalyzes DMS to form
marmesin, which is then converted to psoralen via psoralen
synthase (PS) (Jian et al., 2020). Marmesin is hydroxylated
by marmesin monooxygenase (MO) to produce bergaptol or
xanthol. Bergaptol O-methyltransferase (BMT) is involved in
the O-methylation reaction of bergaptol with high substrate
specificity (Zhao et al., 2016b). Imperatorin is produced
from bergaptol and xanthomol by prenyltransferase (PT),
bergaptol-O-methyltransferase (BMT), and xanthomol-O-
methyltransferase (XMT) to form imperatorin, isoimperatorin,
and other furanocoumarins (Munakata et al., 2020). A portion
of the osthenol precursors are added to angelicin, while the
residue will form dihydrofuranocoumarins by multi-step
reactions (Munakata et al., 2016). Based on the biogenic
pathway, lomatin may participate in the biosynthesis of
praeruptorin A, praeruptorin B, praeruptorin E, and other
dihydrofuranocoumarins through PT, OMT, and CYP450
monooxygenase. The current issue is that the key genes or
transcription factors responsible for the biosynthesis and
regulation of P. praeruptorum coumarins have not been
widely identified and investigated. To some extent, this
limits the application of synthetic biology strategies for large-
scale production of such active ingredients in heterologous
expression systems.

Early bolting has a significant impact on the accumulation
of secondary metabolites in traditional Chinese medicine (Zhou
et al., 2014). The bolted herbs in the Umbelliferae family, such
as Peucedanum, Angelica, Saposhnikovia, Notopterygium, and
Glehnia, were generally not harvested (Yu et al., 2019; Song
et al., 2021). P. praeruptorum began to lignify once it entered
into reproductive growth, and the content of coumarins gradually
declined (Guo et al., 2021; Li et al., 2021). During the reproductive
growth, a large amount of nutrients are consumed. A lack of
carbon sources led to an increment in the secondary xylem area
and a decrease in coumarins (Chen et al., 2019; Robe et al.,
2021). Our previous study suggested that post-transcriptional
modification, signal transduction, and secondary metabolism
might play vital roles in coumarin biosynthesis (Song et al.,
2021). Among them, the key enzymes of the phenylpropanoid
pathway such as ATP-binding cassette (ABC) transporters,
apoptosis-related genes, and circadian rhythm-related genes
participated in the regulation of coumarin biosynthesis. Despite
that, what is the expression pattern of key genes involved
in coumarin biosynthesis between the bolted and unbolted
P. praeruptorum, and which ABC transporter subfamily may
be involved in coumarin transportation and distribution? How
do the co-expressed genes involved in coumarin biosynthesis
connect and interact? These are still unanswered questions
that are worthy of further exploration. Here, the contents of
five pyranocoumarins were determined at the bolting stages.
The lignification of P. praeruptorum root was determined by
phloroglucinol staining. A total of 18 candidate genes were
identified, which are involved in the regulation of coumarin
biosynthesis. Among them, PAL, C3H, COMT, and HCT
in the phenylpropanoid pathway in bolted P. praeruptorum
and AS, PS1, and BMT involved in coumarin biosynthesis
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were dramatically downregulated Three PRXs related to lignin
polymerization were also negatively regulated. These findings will
contribute to a better understanding of the coumarin biosynthetic
pathway and bolting mechanism in P. praeruptorum.

MATERIALS AND METHODS

Samples and Reagents
The samples for the experiment were taken from the Ta-pieh
Mountain Medicinal Botanical Garden of West Anhui University
in October 2020. All P. praeruptorum samples were grown for
more than one year. The whole plants of the unbolted and
bolted P. praeruptorum were collected for further experiments.
Ten biological replicates were taken at the bolting stages for
the determination of coumarins, and three biological replicates
were taken for qPCR analysis. By comparing the original plant to
the reference medicinal material (Batch No. WKQ-DZYC-01607)
from Sichuan Vikeqi Biotechnology Co., Ltd. (Chengdu, China),
the authenticity of the plant was confirmed. The fibrous roots of
P. praeruptorum were removed. The taproots were preserved and
rinsed with sterile water, and the surface water was absorbed and
dried naturally.

Peucedanocoumarin I (Shanghai Yuanye Biotechnology Co.,
Ltd., batch number: B50414, purity > 95.0%). Praeruptorin A
(National Institute for Food and Drug Control, purity > 99.4%).
Peucedanocoumarin II (Shanghai Yuanye Biotechnology Co.,
Ltd., batch number: B5041, purity > 97.8%). Praeruptorin B
(National Institute for Food and Drug Control, purity > 98.9%).
Praeruptorin E (Shanghai Yuanye Biotechnology Co., Ltd., batch
number: B20036, purity > 99.9%). Methanol (GR, Shanghai
McLean Biochemical Technology Co., Ltd.). Other reagents were
of analytical grade.

The Histochemical Staining
Peucedanum praeruptorum taproots were stained with
phloroglucinol-hydrochloric acid dye solution by the previous
methods (Liljegren, 2010; Chauhan et al., 2015). In brief, 1mL of
concentrated hydrochloric acid was dropped on the cross-section
of the front beard and left for five minutes. Then, 1mL of the
phloroglucinol-alcohol mixture was dropped to dye the lignified
cell wall. Finally, the dyed pink area in the xylem was recorded.

Preparation of Coumarin Extraction
The extraction of total coumarin was referred to as the Chinese
Pharmacopoeia, followed by the previous method (Hou et al.,
2010). The roots of P. praeruptorum were naturally dried in
the shade and then pulverized into a coarse powder. 0.5 g of
powder was mixed with 25 mL of chloroform and ultrasonically
extracted for 10 minutes (250 W, 33 kHz). After cooling the
extract, the lost weight was replaced with chloroform. To prepare
the test solution, 5 mL of the continuous filtrate was evaporated
to dryness and dissolved with proper methanol. All samples
were filtered through a 0.45 µm organic-based microporous
membrane (ANPEL Laboratory Technologies (Shanghai) Inc.)
prior to the HPLC analysis.

Optimization of HPLC Conditions and
Methodology
The content of coumarins was determined using LC-2030C high-
performance liquid chromatography (Shimadzu, Japan). The
chromatographic column used in the test was ZORBAX Eclipse
Plus C18 (150 mm x 4.6 mm, 5 µm) (Agilent, United States).
Methanol-water (volume ratio of 75:25) was used as the mobile
phase. The flow rate was set at 1.0 mL/min. The column
temperature was set at 30◦C, and the detection wavelength was
at 235 nm. The injection volume was 10 µL. To produce the
reference substance solutions, the appropriate amounts of the
peucedanocoumarin I, praeruptorin A, peucedanocoumarin
II, praeruptorin B, and praeruptorin E standards were
mixed with methanol, respectively. The concentrations of
Peucedanocoumarin I, praeruptorin A, peucedanocoumarin II,
praeruptorin B, and praeruptorin E were 30.59 g/mL, 79.94 g/mL,
29.82 g/mL, 86.88 g/mL, and 58.69 g/mL, respectively.

The methodological investigation concluded with the
precision test, stability test, repeatability test, and recovery
rate test by using previous methods (Tao et al., 2009). The
precision test was conducted by injecting 10 µL of test solution
under the specified chromatographic conditions and repeating
six times. The stability test included the injection of the test
solution at 4, 8, 12, 16, 20, and 24 h intervals under the specified
chromatographic conditions. The repeatability test evaluates
six batches of P. praeruptorum. The test solution was injected
at a volume of 10 µL under the specified chromatographic
conditions. The recovery rate experiment was conducted to
weigh 0.50 g of P. praeruptorum (including 0.49 mg/g of
peucedanocoumarin I, 6.04 mg/g of praeruptorin A, 0.46 mg/g
of peucedanocoumarin II, 3.43 mg/g of praeruptorin B, and
2.09 mg/g of praeruptorin E). The test was repeated six times.
Coumarin standards were added to each batch, and the peak
area of each sample was measured. The recovery rate and relative
standard deviation (RSD) of each standard were calculated,
respectively. The optimized chromatography method was used to
determine the five coumarins in the samples, and ten biological
replicates were performed for each coumarin.

The Hierarchical Clustering,
Phylogenetic Tree and Expression Profile
of the Differential Genes
The raw data of the transcriptome used for the analysis
of expression profiles were obtained from the Sequence
Read Archive (SRA) database1. The BioProject accession was
PRJNA714368. To investigate the differential genes at the
bolting stages, transcripts from the annual bolted and unbolted
P. praeruptorum were selected for subsequent analysis. CDD,
KOG, COG, NR, NT, PFAM, Swissprot, and TrEMBL databases
were used for the functional annotation (Altschul et al.,
1997). The GO function annotation is obtained based on the
annotation of the transcript from Swissprot and TrEMBL.
The KEGG Automatic Annotation Server (KAAS) was used
to obtain KEGG annotation information (Moriya et al., 2007).

1https://www.ncbi.nlm.nih.gov/sra
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The transdecoder software2 was used for CDS prediction after
blasting the transcripts with databases. Based on the annotation
information, all possible unigenes were screened and the blastn
(e-value < 10−5) was used for additional validation. By setting
the significant difference (p < 0.01), false discovery rate (FDR)
correction (q < 0.05), and | fold change| > 2, a total of 1,573
genes with significantly differential expression were obtained
(Benjamini and Hochberg, 1995; Anders and Huber, 2010).

The abundance of transcripts directly reflects the level of
expression of a specific gene. In the experiment, the TPM value
was used to compare the gene expression between the two
groups. Subsequently, the salmon tool was used to calculate the
expression levels by using RNA-seq data (Patro et al., 2017).
For the replicates in the same group, the expression level is the
average of all repeated data. The TPM values of all the unigenes
were used for hierarchical clustering and expression profiling
of differentially expressed genes. TBtools (v.1.098) was used to
compare the gene expression profiles among groups (Chen et al.,
2020). MEGA (v.6.0.6) was used to align the target sequences
and construct a phylogenetic tree based on the Neighbor-Joining
method (Tamura et al., 2013).

Analysis of Coumarin Biosynthesis
Genes by Quantitative Real-Time PCR
Analysis
Before performing the total RNA extraction, the sampling
equipment was disinfected and de-RNAsed. Fresh
P. praeruptorum roots were collected, and the surface was
quickly cleaned with RNase-free water. The samples were placed
in an enzyme-free tube before being quickly frozen in liquid
nitrogen. After it had completely frozen, it was transferred
to a refrigerator set at –80 degrees Celsius for storage. Each
P. praeruptorum sample was ground to 100 mg in liquid
nitrogen. Total RNA was isolated from bolted and unbolted
P. praeruptorum using the UNIQ-10 column Trizol total RNA
extraction kit (Sangon Biotech Ltd., Shanghai). Electrophoresis
was used to detect RNA concentration. Subsequently, mRNA
was isolated and fragmented. The mixture was centrifuged for
3-5 s after it had been mixed. After 10 min of incubation at 25◦C,
the reaction was performed at 50◦C for 30 min and at 85◦C
for 5 min to obtain cDNA. GAPDH was selected as a reference
gene referred to in this study (Zhao et al., 2016a). Based on the
sequences of eighteen candidate genes and the reference gene,
Primer Premier 5.0 was used to design the primer sequences
(Supplementary Table 1). The qPCR experiment was carried out
using the StepOne Plus real-time PCR equipment (ABI, Foster,
CA, United States). Relative quantification of target genes was
performed by using the SYBR Green I method with 2X SG Fast
qPCR Master Mix (High Rox, B639273, BBI, ABI). The 2−11

Ct method was applied to calculate the relative expression of the
target genes after bolting (Livak and Schmittgen, 2001).

The Interaction Network Analysis
Several genes relevant to coumarin biosynthesis were screened
out from 13 gene modules of the WGCNA data. Briefly, the

2http://transdecoder.github.io/

WGCNA script was used to create a gene set matrix for the co-
expression correlation analysis (Langfelder and Horvath, 2008).
The differential expression profile obtained by the transcriptome
analysis was used in the WGCNA. Following the selection of
an appropriate soft threshold, the co-expressed gene modules
were performed to determine the number of genes in each
module. The co-expression correlation coefficient between genes
was calculated first based on the measured gene expression levels,
and then the genes were clustered using euclidean distance by
drawing a gene tree. The phenotypic traits were weighted, and the
correlation and credibility of each gene module were calculated
in relation to them. The core module was selected based on
its relevance and significance. Based on the weighted scores of
these gene pairs, an intergenic interaction network was visualized
through the Cytoscape (v.3.9.0) (Doncheva et al., 2019).

RESULTS AND DISCUSSION

Sample Collection and Histochemical
Staining of P. praeruptorum Roots
Due to the influence of genetic, ecological, and growth
circumstances, P. praeruptorum from the same period may grow
at different rates (Liang et al., 2018). To compare the degree of
the lignification at the bolting stage, both unbolted and bolted
P. praeruptorum roots were collected (Figure 1). In the bolting
stage, the taproot of P. praeruptorum is relatively slender and
has more fibrous roots. The results from phloroglucinol staining
showed that the area of bolted xylem was darker and larger, which
implied that the lignin content in the bolted roots was higher
(Chen et al., 2019). Early bolting has become a crucial factor
affecting the quality of the crude materials. The quality of these
materials depends on when they are harvested (Zhao et al., 2011;
Li et al., 2020). Currently, there is no conclusive evidence that
bolting results in a loss of ability to use medications (Pouteau
and Albertini, 2009; Li et al., 2022). The bolted P. praeruptorum
conveys large amounts of nutrients to the aerial parts, which may
be the possible reason for early bolting (Song et al., 2021).

Extraction of Coumarins and
Methodology Investigation
The five coumarins (peucedanocoumarin I, praeruptorin A,
peucedanocoumarin II, praeruptorin B, and praeruptorin E) were
determined from the methanol extraction of P. praeruptorum
roots. The chromatographic conditions were investigated as
a priority to optimize the detection of the samples. These results
indicated that the five coumarins kept a better linear relationship
in the range of concentration (Figure 2). The linear ranges
of peucedanocoumarin I, praeruptorin A, peucedanocoumarin
II, praeruptorin B, and praeruptorin E were 0.48∼7.65 µg,
1.25∼19.99 µg, 0.47∼7.46 µg, 1.36∼21.72 µg, and 0.92∼14.65
µg, respectively. Six independent injections were performed
under the optimized chromatographic conditions. The RSD
of the peak areas of peucedanocoumarin I, praeruptorin A,
peucedanocoumarin II, praeruptorin B, and praeruptorin E were
0.3, 0.26, 0.27, 0.26, and 0.25%, respectively, which indicated that
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FIGURE 1 | Sample collection and the phloroglucinol staining of unbolted and bolted P. praeruptorum roots. (A) Unbolted P. praeruptorum, (B) Bolted
P. praeruptorum, (C) The root of unbolted P. praeruptorum, (D) The root of bolted P. praeruptorum, (E) Phloroglucinol staining of the cross section of the unbolted
taproot, (F) Phloroglucinol staining of the cross section of the bolted taproot.
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FIGURE 2 | The standard curve and equations of the five coumarin standards.

the precision of the instrument was good. The samples were
injected at 4, 8, 12, 16, 20, and 24 h, with the RSDs of the
peak areas of 0.97, 0.18, 0.18, 0.06, and 0.26%. Six samples from
the same batch were tested, and the RSDs of the five coumarin
contents were 3.62, 0.92, 2.68, 2.49, and 1.43%, implying
good repeatability. The recoveries of peucedanocoumarin I,
praeruptorin A, peucedanocoumarin II, praeruptorin B, and
praeruptorin E were 99.97, 99.79, 101.17, 99.73, and 99.95%,
respectively. The RSDs of the five standards were 0.28, 0.17,
0.93, 0.23, 0.21%, respectively, which suggested the test method
has good accuracy.

Determination of the Coumarins in the
Unbolted and Bolted P. praeruptorum
The standards and test samples were determined under the
defined chromatographic conditions (Figure 3). Except for
praeruptorin A and peucedanocoumarin II, the peaks of
peucedanocoumarin I, praeruptorin B, and praeruptorin E
had better shape and resolution. The five standards used in
the experiment had a common hexacyclic skeleton. However,
praeruptorin A and peucedanocoumarin II are isomers and their
polarities are closely related to each other, which results in poor
separation on a C18 column (Wang et al., 2015). Using the
optimized chromatographic method, 10 batches of samples were
used to determine the five coumarins (Figure 4).

In the bolted P. praeruptorum, the average contents of
praeruptorin A, praeruptorin B, and praeruptorin E declined
by 26.6, 52.1, and 30.3%, respectively. However, the contents of

peucedanocoumarin I and peucedanocoumarin II were raised by
45.7 and 24.8%, respectively. Previous study also demonstrated
that the contents of praeruptorin A and praeruptorin B
decreased after bolting (Sarkhail et al., 2013). Praeruptorin A and
peucedanocoumarin II accumulate in a distinct way depending
on the differential expression of their biosynthetic genes, such
as prenyltransferase (PT), acetyl-CoA acetyltransferase (AACT),
and O-methyltransferase (O-MT) (Song et al., 2014). The major
difference between praeruptorin A and praeruptorin B was that
the R2 group is linked to acetyloxy or angeloyloxy groups,
and praeruptorin B has two angeloyloxy groups (Figure 3).
However, the content of praeruptorin B was significantly lower
than that of praeruptorin A after bolting, which suggested
that the expression level of PT genes was more capable of
influencing the biosynthesis of this group of coumarins. In
addition, the molecular weight of peucedanocoumarin I had only
two hydrogen atoms more than that of praeruptorin A, implying
that peucedanocoumarin I was generated from praeruptorin
A under the catalysis of some oxidoreductases. The content
of peucedanocoumarin I increased, presumably due to the
transformation of praeruptorin A. This also explains the decline
of praeruptorin A in the bolted P. praeruptorum.

Identification of Coumarin Biosynthetic
Genes of Unbolted and Bolted
P. praeruptorum
To further investigate the coumarin biosynthesis of
P. praeruptorum, we compared and analyzed unbolted and
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FIGURE 3 | The chemical structure and high performance liquid chromatograms of five coumarin components. (A) The structures of the coumarins, (B) The liquid
chromatogram of the standards, (C) The liquid chromatogram of test sample. Numbers one to five depict peucedanocoumarin I, praeruptorin A,
peucedanocoumarin II, praeruptorin B, and praeruptorin E, respectively.

FIGURE 4 | Determination of five coumarins of the unbolted and bolted P. praeruptorum. Ten batches of experiments were repeated for each group. The content of
each coumarin was calculated as the mean plus standard error. A significant analysis was carried out on the content of coumarins in unbolted and bolted
P. praeruptorum. "p-value < 0.05" means there is a significant difference.

bolted transcriptomic data in the annual plants (Supplementary
Table 2). The hierarchical clustering divides these differential
genes into two subgroups (Supplementary Figure 1). A total
of 1,573 differentially expressed genes were screened out, of
which 298 genes were up-regulated and 1,275 genes were

down-regulated. Among them, 63 candidates involved in
coumarin biosynthesis, including PAL, 4CL, C4H, C3H, HCT,
COMT, CCoAOMT, UDT, AS, PS, BMT, SGT, and PRX, were
identified from the transcriptomics data (Supplementary
Table 3). Compared with the unbolted, 4CL, C4H, PS2, and
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C3H were significantly upregulated, whereas UDT, COMT, AS,
BMT, and PRX were remarkably downregulated in the bolted
P. praeruptorum (Figure 5). The expression levels of some
homologs involved in coumarin biosynthesis, such as PAL,
HCT, AS, PS, SGT, etc., had emerged different expressions. The
reduction of the key genes in the umbelliferone branch pathway
may result in the decline of coumarin accumulation. Such genes
with bidirectional expression patterns suggest that functional
divergence and spatiotemporal expression exist in these paralogs
(Siwinska et al., 2018).

The Expression Profile and qPCR
Validation of Genes Associated With
Coumarin Biosynthesis
To narrow down the biosynthetic genes related to coumarins,
eighteen important genes involved in the coumarin biosynthesis
pathway were identified from 63 candidates to determine
which genes were differentially expressed in the unbolted
P. praeruptorum. As shown in Supplementary Figure 2,
the coumarin biosynthesis pathway is a branch of the
phenylpropanoid metabolism. p-Coumaric acid is situated
at the crossover point of this branch. Through multi-step
reactions, p-coumaric acid subsequently forms a linear coumarin
scepolin under the catalysis of C3H, CA2H, OMT, and SGT.
p-Coumaric acid is catalyzed by 4CL, C3H, HCT, COMT,
CCoAOMT to form feruloyl-CoA, which will further form
G-type lignin monomer. p-Coumaric acid is catalyzed by C’2H
and lactionization to yield umbelliferone, the precursor of
furano- and dihydropyranocoumarin (Supplementary Figure 2).
Compared with the expression profiling of coumarin biosynthetic
genes in the bolting stage, the expression levels of almost all genes
were not significantly different. Except for PS1 and PRX3, the
average expression levels of the other genes were upregulated
in the bolted stage. To verify the expression of the candidate
genes, we further detected the expression level of the genes by
qPCR analysis. The expression of the PAL, C4H1, C3H, HCT,
COMT, CCoAOMT, AS, PS1, BMTs, and PRXs were decreased in
the bolted P. praeruptorum, whereas the expression of the 4CL1,
C4H2, PS2, and SGT genes were increased (Figure 6). These
results were inconsistent with the expression profile of coumarin
biosynthesis genes. We re-analyzed the differences between the
transcriptome and qPCR analysis results. From the measured
expression data, it may be that the expressions of the biological
replicates of the transcriptome are in a wide range, and the
average expression levels of most genes in the bolting stage are
not significantly different.

The Phylogenetic Analysis and
Expression Profile of ABC Transporters
in P. praeruptorum
ATP-binding cassette (ABC) transporters are a wide and
ancestral transmembrane protein family found in many natural
species, which have received a lot of attention because of their
multiple biological functions (Caña-Bozada et al., 2019; Huang
et al., 2021). Here, 188 tentative ABC transporter genes or
fragments were screened out from the transcriptome data

(Supplementary Table 4). By constructing a phylogenetic
tree with 129 ABC transporters from A. thaliala, only a
limited number of transcripts could be clustered with the
ABC family genes from P. praeruptorum (Supplementary
Figure 3). It was conceivable that these genes or segments
included only one or a few domains inside the transmembrane
domains (TMDs) and nucleotide-binding domains (NBDs)
domains and had little homology with the Arabidopsis ABC
transporter family. Most of the PpABC genes have high
homology with the AtABCA/ABCD/ABCE/ABCG/ABCI
subfamilies. TRINITY_DN96014_c1_g1 shares a high
homology with AtABCG22. TRINITY DN96811_c2_g1
and TRINITY_DN96361_c1_g2 have a high homology
with AtABCG37. TRINITY_DN94634_c1_g6,
TRINITY_DN78862_c0_g1, and TRINITY_DN181606_c0_g1
all have high homology with the AtABCG2 family.
TRINITY_DN63312_c0_g1 has high homology with AtABCC10.
TRINITY_DN80626_c2_g1, TRINITY_DN102046_c0_g1 have
high homology with ABCA family. TRINITY_DN82877_c1_g2
has high homology with AtABCB5. We further analyzed the
expression profile of 103 PpABC genes (Supplementary Table
5). The results indicated that the expression levels of these
genes had several patterns. The first group of genes had higher
expression in both unbolted and bolted P. praeruptorum, such
as TRINITY_DN94350_c2_g4, TRINITY_DN96988_c1_g4 and
TRINITY_DN88597_c0_g3. TRINITY_DN94350_c2_g4 shared
more homology with AtABCE2, whereas the other two genes
shared more with AtABCF1.The second group of genes had
low expression in the unbolted P. praeruptorum and increased
expression in the bolted, such as TRINITY_DN86296_c0_g1,
TRINITY_DN749574350_c0_g4, and TRINITY_DN94728_c2_g1.
TRINITY_DN86296_c0_g1 and TRINITY_DN7495_c0_g4 were
both classified as members of the AtABCG subfamily, and
TRINITY_DN94728_c2_g1 was found to be related to AtABCB20.
The third group of genes had higher expression in the unbolted
P. praeruptorum and lower expression in the bolted, such as
TRINITY_DN96014_c1_g1 and TRINITY_DN91059_c0_g2.
TRINITY_DN96014_c1_g1 and TRINITY_DN91059_c0_g2
shared more homology with AtABCG22 and AtABCG4,
respectively. The remaining genes were expressed at lower
levels both in unbolted and bolted P. praeruptorum (Figure 7).
ABC transporters play multiple roles in trafficking ions,
carbohydrates, lipids, xenobiotics, antibiotics, medicines, and
heavy metals (Gadsby et al., 2006; Khan et al., 2020). AtABCB1
and AtABCB2 are known as auxin transporters. Overexpression
of AtABCB1 promoted hypocotyl cell elongation (Lewis et al.,
2007). A. thaliala, Z. mays, and O. sativa also contain ABCC
subfamily members that are responsible for phytate trafficking
(Nagy et al., 2009; Badone et al., 2010; Tagashira et al., 2015).
Both AtABCC1 and AtABCC2 mediate tolerance to cadmium
(Cd) and mercury via vacuolar sequestration (Park et al., 2012).
AtABCF3 was involved in root development and growth (Kato
et al., 2009). ABCG subfamily members have been associated
with cuticle development and mental impairment (Bessire et al.,
2011; Fourcroy et al., 2014; Lefèvre et al., 2018). AtABCG36
stimulated Cd uptake in root epidermal cells and was induced
by Cd treatment (Kim et al., 2007). AtABCG37 was primarily
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FIGURE 5 | The expression profiles of coumarin biosynthetic genes of the unbolted and bolted P. praeruptorum. TPM values were used to compare the gene
expression between the two groups. These values were normalized by the log2 function. The red represents the fold change in expression levels reaching two folds,
the green represents the fold change in expression levels reaching one fold, and the black represents the fold change between one and two folds.
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FIGURE 6 | The expression levels of eighteen coumarin biosynthetic genes obtained by RNA-seq and qPCR analysis. The expression level obtained by RNA-seq
technology contains 6 biological replicates, while the expression level obtained by qPCR method contains 3 biological replicates. Significant differences in the
expression levels of coumarin biosynthesis genes were analyzed in the unbolted and bolted P. praeruptorum. One asterisk indicates significant difference between
two periods. Three asterisks indicate extremely significant difference between two periods. “ns” indicates no significance. *denote there is significant difference
between two groups (0.01 < P <0.05). **denote there is extremely significant difference between two groups (P < 0.01). ***denote there is extremely significant
difference between two groups (P < 0.001).
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FIGURE 7 | The expression profile of the possible ABC transporter genes in the unbolted and bolted P. praeruptorum. The TPM values are normalized by the log2
function. The expression patterns of PpABC genes can be divided into four groups: the first group has higher levels of expression both at the bolted and unbolted
stages. The second group displayed high expressions prior to bolting and low expressions after bolting. The third group is the absolute opposite of the second
group. The fourth group had lower expression both at the bolted and unbolted stages.
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responsible for delivering highly oxygenated coumarins to root
exudation (Ziegler et al., 2017). The ABCG subfamily might be the
main regulators participating in the extracellular secretion and
transport of coumarin.

The Interaction Network of Coumarin
Biosynthetic Genes
To clarify which genes were involved in the regulation of
coumarin biosynthesis, the WGCNA data from the previous
study was deeply mined (Song et al., 2021). Among thirteen
gene modules, three modules relevant to coumarin biosynthesis
were screened out by a gene-module correlation analysis
(Supplementary Table 6). A total of 210 gene pairs were
associated with the genes related to coumarins biosynthesis
(Supplementary Table 7). TRINITY_DN77989_c3_g2
(CCoAOMT), TRINITY_DN68475_c0_g1 (PS1), TRINITY_
DN95494_c1_g1 (C4H1), TRINITY_DN79594_c1_g2 (PS2), and
TRINITY_DN90493_c3_g1 (UDT) interacted strongly with
some genes in the turquoise module. PS1 and C4H1 have
strong interactions with TRINITY_DN97736_c4_g6 (UPL3),
implying that UPL3 is involved in the ubiquitination of the two
proteins. TRINITY_DN77619_c2_g1 (HSL1) interacts with UDT.
TRINITY_DN74096_c0_g1 (ABCB1) interacts strongly with
TRINITY_DN98338_c2_g1 (LOX2), TRINITY_DN95583_c1_g4
(MPK3), and TRINITY_DN79029_c0_g2 (Scarecrow-
like TF). TRINITY_DN75913_c1_g5 (PAL) interacts
with TRINITY_DN84719_c0_g2 (aquaporin 1) and
TRINITY_DN92098_c0_g7 (EARLI 1) in the yellow-green
module (Supplementary Figure 4).

CONCLUSION

Early bolting seriously affects the yield and quality of
P. praeruptorum. The underlying mechanisms of the
ineffectiveness of the bolted P. praeruptorum for medicinal
purposes remain unclear. We found that lignification was
more severe in the root of bolted P. praeruptorum. The
contents of praeruptorin A, B, and E were lower in the bolted
P. praeruptorum. We further compared the transcriptome at each
bolting stage and found that some genes on the phenylpropanoid
pathway branch were involved in coumarin biosynthesis, such
as PAL, C4H, HCT, COMT, and CCoAOMT. Additionally, we
screened several ABC transporters implicated in coumarin

transport, including those belonging to the ABCA/D/E/G/I
subfamilies. The ABCG subfamily may also play a role in the
transportation of coumarin during the bolting stage. The network
of co-expressed genes indicated that PS1 and C4H1 both have
strong interactions with UPL3. Bolting may have a negative
effect on the accumulation of coumarins in P. praeruptorum
and the regulation of associated biosynthetic genes. Our results
provide some scientific references for the quality evaluation
of P. praeruptorum drugs. However, more evidence is needed
to figure out how bolting changes the endogenous signaling
cascades and how this influences the activation of downstream
genes.
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