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Time activity curve (TAC) signal processing in plant positron emission tomography (PET)

is a frontier nuclear science technique to bring out the quantitative fluid dynamic (FD)

flow parameters of the plant vascular system and generate knowledge on crops and

their sustainable management, facing the accelerating global climate change. The sparse

space-time sampling of the TAC signal impairs the extraction of the FD variables, which

can be determined only as averaged values with existing techniques. A data-driven

approach based on a reliable FD model has never been formulated. A novel sparse data

assimilation digital signal processing method is proposed, with the unique capability of

a direct computation of the dynamic evolution of noise correlations between estimated

and measured variables, by taking into explicit account the numerical diffusion due to the

sparse sampling. The sequential time-stepping procedure estimates the spatial profile of

the velocity, the diffusion coefficient and the compartmental exchange rates along the

plant stem from the TAC signals. To illustrate the performance of the method, we report

an example of the measurement of transport mechanisms in zucchini sprouts.

Keywords: data-driven digital signal processing for plant imaging, data assimilation algorithms, kinetic modeling,

dynamic plant positron emission tomography, functional plant imaging, portable imaging device, plant physiology

1. INTRODUCTION

The extraction of quantitative plant transport parameters from the sparse time activity curve (TAC)
signals measured with positron emission tomography (PET) techniques represents one of the
frontiers of plant digital imaging (Hubeau and Steppe, 2015; Galieni et al., 2021; Mincke et al.,
2021a; Antonecchia et al., 2022), with a strong impact in early stress assessment (Tsukamoto et al.,
2008; Yoshihara et al., 2014; Partelová et al., 2017), yield improvement (Yamazaki et al., 2015;
Hubeau et al., 2019b; Mincke et al., 2020a), sustainable agriculture (Karve et al., 2015; Kuritaa et al.,
2020) and climate change studies (Hubeau et al., 2019a).

The plant PET imaging technique is schematically illustrated in Figures 1A–F (Galieni et al.,
2021). A ligand, generally H2O, CO2, or 2-Deoxyglucose (2-DG), is introduced in the plant and
is transported in the vascular system (Figure 1A). It is labeled with a β+ emitter. Two collinear
511 keV γ rays emerge from the annihilation point of the β+ within the plant tissue, are detected
in an array of sensors (Figure 1B), and provide tomographic information, which is used to
reproduce a time-dependent 3-dimensional map of the ligand displacement in the vascular system
(Figures 1C,D).
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FIGURE 1 | The plant PET imaging technique (A–F) and the novel proposed concept of Kinetically Consistent Data Assimilation KC-DA digital signal processing for

quantitative plant PET imaging (F,G): the tracer transported, diffused and locally stored along the plant vascular system (1) generates time-changing 3-dimensional

maps (2). The change in time of the measured activity at a given region of interest along the stem defines the Time Activity Curve (TAC) signal (3), which is modeled

with a time stepping prediction-correction algorithm based on a set of novel fluid dynamic equations for the data-driven extraction of physically-driven kinetic

parameters (4).

PET data are extremely sparse in space and time. Intensity
maps are sampled with a voxel size 1xexp ranging between
0.25 and 1 mm (Kuritaa et al., 2020; Antonecchia et al., 2022). As
the minimal spatial resolution of a PET system is approximately
0.54 mm (FWHM) with a 18F label in water (Moses, 2011), it is
impossible to identify the microscopic capillaries composing the
xylem and the phloem. Therefore, voxels are grouped in larger
regions of interest (ROI). For instance, a typical ROI structure
along the stem of a plant is illustrated in Figure 1E (Mincke et al.,
2021a). ROIs with a minimal thickness of one voxel are displaced
adjacent to each other. The total activity ρ

(
xi, t

J
)
measured in

the i-th ROI along the stem direction x at the time t J is the TAC
signal. It is sampled with a typical time step 1texp of few minutes
(Figure 1F).

The time behavior of TAC signals is governed by fluid
dynamics (FD) processes (Figure 1A). The measured TAC signal
ρ

(
xi, t

J
)

is the sum of tracer fractions either transported
through the xylem ρ1

(
xi, t

J
)
with a velocity u

(
xi, t

J
)
and a

diffusion coefficient D
(
xi, t

J
)
, or diffused through surrounding

parenchyma ρ2
(
xi, t

J
)
with a rate a1, or locally assimilated

and stored ρ3
(
xi, t

J
)
with a rate a2, or diffused through the

atmosphere with an efflux rate a3 (Mincke et al., 2020b).

However, the task of computing the complete fluid state X J
i =

[ρ1, ρ2, ρ3, u;D, a1, a2, a3]
j
i from the TAC signal is affected by the

sparse nature of the space-time sampling. A simple threshold-
based approach illustrates the problem. The apoplastic velocity
is responsible of the rising signal front. The average speed uexp
between two adjacent ROIs is uexp = 1xexp/ (t2 − t1), where t1
and t2 are the times at which the TAC crosses a certain threshold
(Figure 1F). The maximal measurable average speed is limited by
the sparse sampling, as umax

exp ≈ 1xexp/1texp, with a consequent
bias in the determination of the other unknown variables.

To mitigate this intrinsic limitation of TAC signals, data-
driven model-free techniques consider only physical parameters
with already known validity ranges (Keutgen et al., 2002, 2005;
Minchin and Thorpe, 2003; Matsuhashi et al., 2010; Ferrieri et al.,
2012) and compartmental modeling estimates only quantities
averaged in space and time (Bühler et al., 2011; Hubeau et al.,
2018;Mincke et al., 2021a). These approaches cannot be extended
to a complete estimation of the FD processes occurring inside the
plant vascular system, which remain largely unexplored (Jensen
et al., 2012).

Sequential extended Kalman Filter (EKF) data assimilation
(DA), based on Bayesian interference, may seem an ideal
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time-stepping technique for TAC signal processing (Kalman,
1960; Suzuki et al., 2010; Suzuki, 2012; Kato et al., 2015; Suzuki
and Yamamoto, 2015; Wang et al., 2017). However, EKF requires
a linear implementation of the dynamic model for the prediction
of the state X̃J+1 at time J + 1 based on the state X J at time J:

X̃J+1
= FX J (1)

Moreover, the physical and numerical errors are modeled with
a covariance matrix P and an error covariance matrix Q (Wang
et al., 2017). The predicted covariance matrix P̃J+1 at time
J + 1 is evolved from the value P J at time J with the
linearized relationship:

P̃J+1
= FP JFT + Q (2)

Conventional CFD methods cannot be adapted easily to the
form of Equations (1) and (2) as they are based on a finite
volume discretization combining central schemes and Riemann
solvers for the viscous and inviscid flows, respectively (Issa, 1986;
Meldi and Poux, 2017; Qu et al., 2019). Approximated solutions
based either on structural similarities between solvers and DA
approaches, such as reduced order Kalman filtering (Suzuki,
2012), or on statistical ensemble determination of P have been
proposed (Evensen, 2009).

In this paper a novel procedure is proposed consisting of
assimilating the sparsely sampled TAC signal with computational
fluid dynamics (CFD) data simulated at a fine time sampling
1tsim. A first high resolution predictor stage integrates the FD
model forwards in time and, when the experimental data are
available, a second correction stage adjusts the model parameters
before continuing to the next cycle (Figure 1G). A key aspect of
this study is the adoption of a novel set of quasi gas dynamic
(QGD) equations for plant PET TAC signals, which can be
reduced directly in the form of Equation (1). On this basis a
prediction-correction sequential time stepping data assimilation
procedure has been developed with the unique feature of a
direct computation of the time evolution of the covariance
matrix as in Equation (2) without statistical approximations.
With respect to existing digital signal processing approaches
to plant PET TAC signals, the novel kinetically consistent data
assimilation (KC-DA) procedure estimates the complete FD
state profile along the vascular system of the plant, controlling
explicitly the interplay between physical FD-related mechanisms
and computational numerical errors caused by the sparsity of
the signal (Figure 1G). It is the first time that Kalman filtering
is used in combination with kinetically consistent algorithms
for data-driven modeling in plant science. The validity of KC-
DA is experimentally demonstrated with an example of zucchini
sprouts measurement.

2. MATERIALS AND METHODS

2.1. The Kinetically Consistent Data
Assimilation Procedure
The transported fluid in the xylem along the 1-dimensional
vessel direction x was represented by using the time-dependent

(t) distribution function f (x, ξ , t) in the phase-space defined by
the local position x and velocity ξ of the fluid molecules. The
macroscopic fluid density and velocity were calculated as the
zero-th and first order moments of f (x, ξ , t) with respect to
the molecular velocity ξ (Chapman and Cowling, 1990). The
pressure p (x, t) was assumed here to be proportional to the
transported tracer density as p (x, t) = kρρ1 (x, t), with kρ

proportionality constant. The time evolution of the distribution
function was described by the Boltzmann kinetic transport
equation (Boltzmann, 1995):

∂

∂t
f (x, ξ , t) + ξ i

∂

∂xi
f (x, ξ , t) = C

(
f , f ′

)
(3)

Equation (3) was solved between equilibrium states, by using
a computational time interval 1t proportional to the intrinsic
relaxation time τ . Under this approximation, Equation (3) was
reformulated in discrete form for the time variable as:

f j+1 − f j

τ
+ ξi

∂

∂xi
f j = 0 (4)

where the collision integral vanishes, because the transport was
effectively computed only at the equilibrium states. The balance
equation was obtained by approximating (Equation 4) with a
second-order Taylor expansion:

∂

∂t
f (x, ξ , t) + ξ i

∂

∂xi
f (x, ξ , t) =

=
τ

2
ξ iξ k

∂

∂xi

∂

∂xk
f (x, ξ , t) (5)

The zero-th order momentum of Equation (5) expressed an
equation for ρ1 (x, t) (Chetverushkin, 2015; Chetverushkin et al.,
2017), which was coupled with the dynamic equations regulating
the contributions of ρ2 (x, t) and ρ3 (x, t) (Mincke et al., 2021a),
defining the system of QGD equations for plant PET TAC signals:

∂

∂t
ρ1 (x, t) +

∂

∂x
ρ1 (x, t) u (x) = D

∂

∂x2
ρ1 (x, t)+

+
τ (x)

2

∂

∂x2

[
ρ1 (x, t) u2 (x)

]
− a1ρ1 (x, t) (6)

∂

∂t
ρ2 (x, t) = a1ρ1 (x, t) − a2ρ2 (x, t) − a3ρ2 (x, t) (7)

∂

∂t
ρ3 (x, t) = a2ρ2 (x, t) (8)

The terms in the left side of Equation (6) defines the apoplastic
flow. The first term in the right side of Equation (6) represents
the transcellular roots, with a macroscopic diffusion coefficient
D. A remarkable feature of this model is, that the second but
last term of Equation (6) introduces explicitly the numerical
viscosity caused by the sparse sampling 1xexp of the TAC
signal, with τ (x) = ατ1xexp/u (x), where ατ is a tunable
parameter. The coefficients ai in Equations (7) and (8) represent
the exchange rates between the different processes. Temperature,
humidity and illumination are usually controlled in plant
imaging experiments. The model was restricted to observations
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TABLE 1 | The evolution matrix F.

Fik 6= 0 imin imax k

1t
j
sim

21xexp,i
u
j
i−1 +

τu
j2
i−11t

j
sim

1x2
exp,i

+

+D
1t

j
sim

1x2
exp,i

1 N − 2 i − 1

1−
2u

j2
i

τ1t
j
sim

1x2
exp,i

− 2
D1t

j
sim

1x2
exp,i

−

a11t
j
sim 1 N − 2 i

−
1t

j
sim

21xexp,i
u
j
i+1 +

τu
j2
i+11t

j
sim

1x2
exp,i

+

D
1t

j
sim

1x2
exp,i

1 N − 2 i + 1

a11t
j
sim N + 1 2N − 2 i − N

−a21t
j
sim − a31t

j
sim N + 1 2N − 2 i

a21t
j
sim 2N + 1 3N − 2 i − N

1 3N 4N + 3 i

The elements with indices i and k outside the indicated bounds vanish.

performed within few hours and along segments of the stem,
which never exceded approximately 10 cm. Therefore, the
velocity u (x) was considered constant in time and the diffusion
coefficient D constant both in space and time. By using a
time-explicit and central spatial numerical discretization scheme,
with N spatial steps of variable size 1xexp,i and time steps

of variable length 1t
j
sim, the system of Equations (6–8) was

expressed in the form of Equation (1), with F a (4N + 4) ×

(4N + 4) array defined in Table 1 and border conditions
ρi,0 = ρi,1, ρi,N−1 = ρi,N , ui,0 = ui,1, ui,N−1 = ui,N .
While the TAC spatial sampling 1xexp,i is not interpolated,

1t
j
sim is generally smaller than the TAC time sampling 1t

J
exp.

Therefore, 1t
J
exp was decomposed in a series of finer 1t

j
sim.

The indices J and j refer to experimental and simulated time
sampling, respectively.

The complete FD state was a (4N + 4)-dimensional array:

X J
= [ρ1,0, . . . , ρ1,N , ρ2,0, . . . , ρ2,N , ρ3,0, . . . , ρ3,N , u0,

. . . , uN;D, a1, a2, a3]
J (9)

The TAC signal at the time J and at the ROI iwas expressed as the
sum of the transported, diffused and assimilated tracer fractions
ρ

J
i = Hi,kXk

J , with Hi,k = δi,k + δi+N,k + δi+2N,k.
The uncorrelated uncertainties related to the experimental

measurement σ
exp
ρ was modeled as the diagonal N × N

matrix Ri,k = σ
exp
ρ δi,k. The theoretical uncertainty of

the estimation of the density σ th
ρ affects the error of the

estimated velocity, diffusion coefficient and exchange rates.
Following this assumption, we approximated the time-
dependent (4N + 4) × (4N + 4) process noise variance
as Q = VTVT , where Ti,k = σ th

ρ δi,k and V is the
(4N + 4) × (N + 4)-dimensional Jacobian defined in
Table 2.

The novel KC-DA procedure was based on the minimization
of the time-dependent covariance of the physical system
Pi,k

J , which was initialized as a diagonal matrix, with an
initial guess of the theoretical errors of the state variables.

TABLE 2 | The Jacobian matrix V.

Vik 6= 0 imin imax k

ρ1,i−1
j1tsim

j

21xexp,i
+

ρ1,i−1
jui−1

jτ1tsim
j

1x2
exp,i

1 N − 2 i − 1

−
4ρ1,i

jui
jτ1tsim

j

1x2
exp,i

1 N − 2 i

−
ρ1,i+1

j1tsim
j

21xexp,i
+ ρ1,i−1

1t
j
sim

1x2
exp,i

1 N − 2 i + 1

−
2ρ1,i

j1t
j
sim

1x2
exp,i

+
ρ1,i−11t

j
sim

1x2
exp,i

+

+
ρ1,i+1

jui+1
jτ1tsim

j

1x2
exp,i

1 N − 2 N

−1t
j
simρ1,i

j 1 N − 2 N + 1

ρ1,i−N1t
j
sim N + 1 2N − 2 N + 1

−ρ2,i−N1t
j
sim N + 1 2N − 2 N + 2

−ρ2,i−N1t
j
sim N + 1 2N − 2 N + 3

ρ2,i−2N1t
j
sim 2N+ 1 3N − 2 N + 2

1 3N 4N + 3 i − 3N

The elements with indices i and k outside the indicated bounds vanish.

TABLE 3 | A schematic description of the implementation of the KC-DA

procedure.

Procedure: Kinetically Consistent Data Assimilation (KC-DA)

Input: Set of dynamic PET images, region of interest (ROI);

Output: Velocity profile, diffusion coefficient D, exchange rates ai ,

decomposition of TAC signal into ρ1, ρ2 and ρ3 profiles

Segment the ROI into N 1xexp,i thick sub-ROIs along the stem.

Calculate the total intensity in each sub-ROI i and each time frame J

Correct it for tracer decay. This is the TAC signal ρi
J for each sub-ROI i

foreach ατ ∈ [0.1, 1.0] do


while the functional in Equation (11) is not minimal do

Select u0i ,D
0, a0i (without range constrains)

foreach time frame J do


Predict the fluid state at time J+ 1 with the evolution

matrix in Table 1, decomposing 1texp in finer

steps 1t
j
sim = α ×min

(
1xexp,i/ui

j
)

Predict the noise covariance matrix using Equation (2)

Correct the fluid state applying Equation (10)

Correct the noise covariance matrix applying Equation (10)

Calculate the corrected tracer profile at last time frame M

Calculate (Equation 11) at last time frame M for the optimal u0i ,D
0, a0i

Identify the knee/elbow point of the L-curve and the stable ατ region.

Store the FD state is XM at the last time frame M for the identified ατ

The initial value of ρ0
1 was defined from the corresponding

measurement ρ0, while ρ0
2 and ρ0

3 vanished. The KC-DA
procedure, as shown in Table 3, resulted in a predictor-corrector
approach. A predictor step estimates the expected value of
the TAC and a corrector step adapts the prediction to the
measurement:

a. Predictor step The predicted values of the state variables X̃
and of the covariance matrix P̃ are calculated with Equations (1)

and (2). 1t
j
sim is adjusted adaptively as 1t

j
sim = α ×

min
(
1xexp,i/ui

j
)
, where α is the Courant parameter.
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b. Corrector step If data are available at the time J+ 1, then X
and P are updated as Wang et al. (2017):

XJ+1
= X̃J+1

+ K
(
ρJ+1

−HX̃J+1
)

PJ+1
= P̃J+1 [I − KH]

K =

[
P̃J+1HT

(
HP̃J+1HT

+ R
)−1

]
(10)

The value of ui, D and ai were obtained from the state vector X j

at the last time step M. Initial settings may cause a bias in the
convergence of the filter. Therefore, an optimization discrepancy
functional for u0i ,D

0, a0i has been added:

φ
(
u0i ,D

0, a0i
)
=

N∑

i=0

[(
ρ −HXM

)2
i
+

(
ρ −HX̃M

)2
i

]
(11)

A sequential least squares programming minimization algorithm
for Equation (11) in the KC-DA procedure was used.

2.2. Simulated Data
The validation of the KC-DA method was first performed by
using simulated data. A realistic spatial profile of ρ1 extracted
from an existing dataset was set as initial condition, with ρ2
and ρ3 initially vanishing. The parameters of the model variated
within given ranges. The velocity profile was set constant in the
range v0 ∈ (0.05, 0.15). The other fluid dynamic parameters were
set in the ranges D0 ∈ (0.043, 0.093), a0 ∈ (0.0031, 0.0081), a1 ∈

(0.0026, 0.0076). The time evolution of the profile was simulated
by using the predictor function in Equation (1) at equally spaced
(15 min) time steps in the range (0, 340) min. The KC-DA
algorithm was applied to estimate the fluid dynamic parameters
from the simulated profiles and the difference between the
estimated and the true parameters was measured.

2.3. Plant Experiments
The KC-DA algorithm was tested on PET TAC signals of sprouts
of zucchini (Cucurbita pepo L., var. Genovese, Four Sementi,
Piacenza, Italy). A group of 20 plants was selected, grown in the
same controlled environment, 10 days after sowing. The roots of
all plants were immersed in a 80 µCi solution of 2-[18F]-FDG
diluted in 1 cc water and a 340 min long dynamic scan (RAYCAN
E180;Liang et al., 2020) was performed with 1texp = 15 min.
The length of the stem, weight and final activity were on average
6 cm, 0.72 g and 2 µCi, respectively. A 35 mm long ROI with
1xexp = 0.5 mm was selected. α = 0.4 and an initial 5% estimate
of the experimental, measurement and model errors were set.
The rate a3 was assumed to vanish, as it refers to gaseous tracers
transpiration (Mincke et al., 2020b).

3. RESULTS

3.1. Numerical Verification of KC-DA
The estimation error of the model parameters is shown in
Figure 2. The KC-DA algorithm applied to simulated data was
able to retrieve the model parameters with a relative error on
average lower than 5% (FWHM) and with an average relative bias

FIGURE 2 | Numerical verification of the KC-DA algorithm: estimation error of

the model parameters.

of –0.1, –0.1, 0.2, and 2.3% for the velocity, viscosity coefficientD
and exchange rates a1 and a2, respectively.

3.2. Convergence and Physical
Significance of the KC-DA
The results of the plant experiments are further reported
following and clarifying each logic step of the nested structure
of the KC-DA procedure summarized in Table 3. The internal
foreach-loop represents the sequential time-stepping data
assimilation approach to parameter estimation. As shown in
Figure 3A, after an initial increase, the L2 discrepancy between
model prediction and data reaches a maximal value at t =

70 min and decreases further until t = 200 min, indicating
an increasing match between the estimated parametric set up
and the TAC signal. The action of the data-driven learning
mechanism occurring in the internal foreach-loop is visible in
Figure 3B, where the TAC signal at three equally spaced ROIs
is shown. The model prediction matched the TAC signal with
increasing precision after t = 70 min.

The internal while-loop searches for the optimal parametric
set up for the initialization of the KC-DA procedure. The
2-dimensional profiles of the discrepancy functional in
Equation (11) verified that the algorithm converged to a
well-identified minimum for the initial set of parameters
(Figures 4A,B).

However, the convergence of the while-loop is guaranteed for
any ατ . Therefore, the scope of the external foreach-loop of the
KC-DA procedure is to identify the physically-significant choice
of ατ . The L2 discrepancy between model prediction and data
decreases on average with ατ (Figure 3A). This trend generated
the typical L-shaped relationship between L2 discrepancy and
estimated parameters (Figures 5A–C). A unique feature of the
KC-DA procedure is the explicit calculation of the physical and
numerical viscosity components, which accounts for the effect of
the physical diffusion and of the spatial sparsity of the TAC signal,
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FIGURE 3 | L2 discrepancy between model prediction (filled red band) and data (markers) for different ατ (A); measured (filled dots) and predicted (red bands) time

profiles at three equally spaced positions along the plant stem (B).

FIGURE 4 | Determination of the minimum of the optimization discrepancy functional in Equation (11) shown in the u0 − a01 (A) and a02 − D0 (B) planes.

respectively. The dependence of these two components over ατ is
particularly explicative of the physical mechanism of the external
foreach-loop of the KC-DA procedure. As visible in Figure 5D,
the progressive descent of the D and a1 L-curves for ατ ≤ 0.5
(Figures 5A,B) corresponded to the decreasing strength of the
physical dissipation. At approximately ατ = 0.7, all the L-curves
stabilize after the knee/elbow point and the physical dissipation
increased again reaching a maximal value. For ατ ≥ 0.7 the
L-curves had a very slow decrease, but the physical dissipation

diminished abruptly and became illogically comparable to the
numerical dissipation. The L-curve for a2 followed an opposite
trend with respect to a1 and D, but confirmed the stability after
the knee/elbow point (Figure 5C). The value of the predicted
fluid parameters exhibited also a dependence on ατ , reaching a
short plateau at ατ ≈ 0.6−0.7 (Figures 5E–H). This stable region
after the knee/elbow point is the proper choice for ατ .

The physical meaning of this external foreach-loop of the KC-
DA procedure is better explained looking at the spatial profiles
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FIGURE 5 | The L-shaped functional dependence between L2 discrepancy and estimated parameters at different ατ (A–C), impacts the strength of the physical and

numerical dissipative components of the KC-DA procedure (D). The knee/elbow point of the L2 discrepancy at ατ = 0.7 (red dotted line) identifies the best estimation

of the parameters, which corresponds to a plateau region (E–H).

of ρ1, ρ2, ρ3, and ρ estimated at ατ = 0.1 (Figure 6A) and
ατ = 0.7 (Figure 6B). Although in both cases the predicted
ρ was found in excellent agreement with the data, at ατ =

0.1 the xylem transport component ρ1 was dominant, while
at ατ = 0.7 the parenchyma diffusion ρ2 and the local
assimilation ρ3 played a major contribution. As the FD state
was predicted at t = 340 min, it was reasonable to expect
that most of the transport flow already almost vanished and
the fluid diffusion in the apoplastic spaces and subsequent
local storage were the dominant processes, therefore supporting

the findings at ατ = 0.7. The apoplastic velocity profile of
the transported ρ1 in the two cases was almost equivalent
(Figure 6C). It could be concluded that the region right after
the knee/elbow point of the L-curve computed in the external
foreach-loop identified the data assimilation model which
learned and predicted the correct physical behavior of the plant
dynamic flow.

The estimated parameters were D =

(0.043± 0.001)mm2/min, a1 = (0.0031± 0.0002)min−1, a2 =

(0.0026± 0.0001)min−1, and < u > (0.058± 0.02)mm/min,
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FIGURE 6 | Estimated spatial profiles of the ρ1, ρ2, and ρ3 components of the tracer density ρ at time t = 340 s for ατ = 0.1 (A) and ατ = 0.7 (B). Velocity profile at

t = 340 s (C).

where the errors include the variation (FWHM) across the
entire dataset.

4. DISCUSSION

The findings presented above approach the problem of a
quantitative interpretation of the dynamic plant PET data
from a physical and computational point of view. The key
advance of KC-DA with respect to the state of the art is the
possibility of the extraction of a continuous profile of the FD
variables along the plant stem based on a realistic dynamic
physical model, as shown in Figure 6. The relevance of novel
mathematical modeling based on biophysical mechanisms has
been recently emphasized (Tredenick and Farquhar, 2021) and
models which describe the mechanistic properties of water
movement in the different parts of plants became fundamental
for the interpretation of measurements using nuclear science
approaches, such as PET. Although these models are based on
fluid dynamics and are extended with compartmental modeling
for exchange rates between different functional compartments in
plant tissues (Bühler et al., 2011; Mincke et al., 2021b), they are
able to extract only an averaged quantities along small sections of
the stem. Similarly, model-free techniques such as input-output
approaches (Matsuhashi et al., 2010) can calculate only the mean
speed of tracer transport and the proportion of tracer moved
between specified image positions by means of transfer function
analysis. For instance, it has been observed with these techniques
that local variations of the average transport speed of water
between 0.7 and 1.8 cm/min occurs at different parts of the stem
of Sorghum (Keutgen et al., 2005). It is interesting to note that,
from the difference of tracer arrival times at three equally spaced
points along the stem of a soybean plant, it has been estimated
that water transport occurs with an approximate constant speed
of 4 mm/s in a total length of 30 mm (Ohya et al., 2008). These
two apparently contradictory results are well representative of
the need of a precise estimation of the continuous profiles
along longer segments of the stem, as proposed in this paper

(Figure 6), which will support agronomists in the estimation
of such interesting and still unexplored quantitative feature of
the plant, which are otherwise not directly accessible with other
experimental techniques.

From a mathematical point of view, KC-DA approaches
the problem of a reliable estimation of the correlation matrix
between the parameters. While typical approaches include
either a sensitivity analysis or a Monte Carlo based error
estimation (Bühler et al., 2011; Mincke et al., 2021b), KC-DA has
the distinctive feature of a direct computation of the correlation
matrix P as in Equation (2), which takes also into account the
numerical errors due to the discretization of the computational
mesh used in the predictor and to the intrinsic voxel size of the
measured PET data (Figure 5D). The results in Figure 2 show
that themethod exhibits a good numerical stability and precision.

A limit of KC-DA is that the convergence improves with
time as shown in Figure 3A, and the initial frames of the tracer
dynamic cannot be estimated with precision. This feature has
a direct effect on the estimated parameters. While the viscosity
coefficient and the exchange rates are found in an expected
range (Bühler et al., 2011; Mincke et al., 2020b), the velocity
profile appears almost constant and with an average value low
in comparison with the above mentioned results. As observed
in Figures 6A,B, this occurs as, while apoplastic flow dominates
at the initial stages of the tracer immersion, at later times the
diffusive flow is dominant. Such effect suggests that the dynamic
model in Equation (8) could be extended by including a time-
dependent velocity, allowing therefore to precisely capture the
tracer dynamics at early stages. The next step of this study will
be to demonstrate the validity of the KC-DA approach with more
conservation equations and ligands used in plant science, toward
an increasingly complex modeling of plant PET TAC signals.

5. CONCLUSIONS

A key feature of KC-DA is the ability of calculating
the continuous profile of kinetic variables associated
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to the FD flow in plant transport. This makes KC-DA
particularly suited to the quantification of plant vascular
flow. KC-DA has an explicit computational implementation
thanks to the analytical form of the evolution and noise
correlation matrices. The direct calculation of the numerical
dissipative terms plays a pivotal role in the stabilization
of the time stepping procedure and helps the stability of
the estimation of the transport parameters in the plant
vascular system.
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