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There are many technological innovations in the field of agriculture to improve the

sustainability of farmed products by reducing the chemicals used. Uses of biostimulants

such as plant extracts or microorganisms are a promising process that increases plant

growth and the efficient use of available soil resources. To determine the effects of some

biostimulants’ treatments on the photosynthetic pigments and biochemicals composition

of zucchini plants, two experiments were conducted in 2019 and 2020 under greenhouse

conditions. In this work, the effects of beneficial microbes (Trichoderma viride and

Pseudomonas fluorescens), as well as three extracts from Eucalyptus camaldulensis leaf

extract (LE), Citrus sinensis LE, and Ficus benghalensis fruit extract (FE) with potassium

silicate (K2SiO3) on productivity and biochemical composition of zucchini fruits, were

assessed as biostimulants. The results showed that E. camaldulensis LE (4,000 mg/L)

+ K2SiO3 (500 mg/L) and T. viride (106 spore/ml) + K2SiO3 (500 mg/L) gave the

highest significance yield of zucchini fruits. Furthermore, the total reading response of

chlorophylls and carotenoids was significantly affected by biostimulants’ treatments.

The combination of K2SiO3 with E. camaldulensis LE increased the DPPH scavenging

activity and the total phenolic content of zucchini fruits, in both experiments. However,

the spraying with K2SiO3 did not observe any effects on the total flavonoid content of

zucchini fruits. Several phenolic compounds were identified via high-performance liquid

chromatography (HPLC) from the methanol extracts of zucchini fruits such as syringic

acid, eugenol, caffeic acid, pyrogallol, gallic acid, ascorbic acid, ferulic acid, α-tocopherol,

and ellagic acid. The main elemental content (C and O) analyzed via energy-dispersive

X-ray spectroscopy (EDX) of leaves was affected by the application of biostimulants. The

success of this work could lead to the development of cheap and easily available safe

biostimulants for enhancing the productivity and biochemical of zucchini plants.
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INTRODUCTION

In agricultural performance, plant biostimulants are including
different bioactive natural substances such as plant extracts,
beneficial microorganisms, macroalgae seaweeds extracts, humic
acid, fulvic acid, silicon, animal protein hydrolysate, vegetal
protein hydrolysate, and bacteria belonging to the genera
Azotobacter, Rhizobium, and Azospirillum (Chiaiese et al., 2018;
Ricci et al., 2019).

In the recent years, the use of external preparations capable
of stimulating plant growth by working on plant metabolism
has become suitable for enhancing the efficiency of chemical
fertilizers (Baroccio et al., 2017). Increasing yield is often
associated with better-quality vegetables or fruits. According
to the previous studies, biostimulants have a positive effect
on the production of vegetables and fruits (Kocira et al.,
2017; Goñi et al., 2018; Milić et al., 2018; Tarantino et al.,
2018). In modern agriculture, biostimulants are the important
strategies in the production of horticultural crops and consist
of highly heterogeneous classes of compounds with a wide
range of actions to improve quantitative and qualitative crops
(Drobek et al., 2019).

Zucchini or squash (Cucurbita pepo L.), a highly polymorphic
vegetable crop, is growing during the summer season in Egypt
and all over the world (Ezzo et al., 2012; Mahmoud, 2016;
Contreras et al., 2020), as a result of its economic importance and
nutritional value. However, the increasing demand of consumers,
in the local and international markets for fresh fruits of zucchini
all year round, led to an increase in planting zucchini in the
greenhouse (Formisano et al., 2020a,b). Zucchini is one of
the most significant vegetable cash crops, especially, in newly
reclaimed areas of Egypt, due to its high-yielding potential per
unit area in the short-growing season. Therefore, improving
the agricultural practices of zucchini production is of great
economic interest. This may be achieved by applying simple
applicable modern and low-cost strategies such as the use of
silica compounds, Trichoderma, or plant-growth-promoting-
rhizobacteria (PGPR) and plant extracts that stimulate the
growth and development of this plant and then increase the
productivity, which is safe for humans and environments (Savvas
et al., 2009; Formisano et al., 2021; Novello et al., 2021).

Silicon (Si) is a biostimulant in the group of inorganic
products. Foliar application of Si, as potassium silicates, is a
relatively new technique of feeding vegetable plants, with several
roles in plant physiology, regulation of ions uptake and increased
tolerance of plants to various biotic and abiotic stresses (Artyszak,
2018). Moreover, Si stimulates the growth, development, and
yield components of many vegetable species by correcting the
levels of endogenous growth hormones (Artyszak, 2018).

Inoculating vegetable plants with Trichoderma or PGPR may
be an effective strategy to stimulate the growth and development
of plants as well as to minimize the use of synthetic fertilizers
and agrochemicals. This strategy can improve plant tolerance
for the abiotic stresses through induction of resistance by the
production of phytohormones, enhancing soil productivity and
volatile compounds that affect the plant signaling pathways
(Kumar et al., 2020; Mannino et al., 2020). Trichoderma spp.

are free-living filamentous fungi in the soil, and some of them
are the most potent agents for the biocontrol of soil-borne
plant pathogens (Castiglione et al., 2021). Trichoderma can
improve soil nutrient availability and promote plant growth and
biostimulant (Velmourougane et al., 2019; Chen et al., 2021).

Plant extracts contain many bioactive compounds such as
sugars, amino acids, proteins, nucleic acids, polysaccharides
(Fernie and Pichersky, 2015), phenolic acids, and flavonoids
(Sarker and Oba, 2018; Salem et al., 2021b). Foliar application
of plant extracts leads to stimulating the root growth,
photosynthetic capacity, and increasing the nutrient use
efficiency, which ultimately leads to the growth promotion of
vegetable crops (Bulgari et al., 2015). In addition, phenolic acids
and flavonoids often play the important roles in the plant’s
defense against disease (Sarker and Oba, 2018). However, the
plant extracts can be considered a good source of natural
antioxidants and antimicrobial in both in vitro and in vivo (Di
Mola et al., 2019; Souri and Bakhtiarizade, 2019; Godlewska et al.,
2021). The raw materials resulting from the pruning processes of
Eucalyptus camaldulensis, Citrus sinensis, and Ficus benghalensis
trees are readily available in high quantities in Egypt. The growth
of these trees under Egyptian conditions is very suitable and
therefore economical in use. Further, the extracts from these trees
were shown potential activities against the growth of bacteria
and fungi (Nair and Chanda, 2007; Ekwenye and Edeha, 2010;
El-Hefny et al., 2017; Bhawana et al., 2018; Salem et al., 2019;
Abdelkhalek et al., 2020; Abo-Elgat et al., 2020; Afzal et al., 2020;
Fatima et al., 2020).

The present research was carried out as an attempt to apply
simple applicable modern, low-cost, and safe strategies through
studying the effect of the use of some natural biostimulant with
silicon on the productivity and bioactive component responses
of zucchini plants, grown in clay soil, under drip irrigation in
the greenhouse.

MATERIALS AND METHODS

A total of two consecutive experiments were carried out in
the years 2019 and 2020 under a drip irrigation system in the
greenhouse, at the Experimental Station Farm of the Faculty of
Agriculture, Alexandria University, Abies, Alexandria, situated in
Egypt, 31◦ 13′ N latitude, 29◦ 59′ E longitude.

Soil Analysis
Prior to the initial of the first experiment, soil samples of the
experimental site up to 30 cm depth were collected and analyzed
for some chemical and physical properties according to the
standard procedures (Sparks et al., 2020). The main physical and
chemical soil characteristics at the experimental site with clay soil
were 46% sand, 24% silt, and 30% clay, electrical conductivity
(EC): 2.60 dS m−1, pH: 8, total nitrogen (N): 0.16%, phosphorus
and potassium were 0.30 ppm and 0.33m eq l−1, respectively.

Experimental Work and Treatments
The current experiments were performed to study the effect
of plant extracts, K2SiO3, and microbial inoculation with
Trichoderma viride (106 spore/ml) and Pseudomonas fluorescens
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TABLE 1 | Treatments used in this study.

Treatment Combination of biostimulants

Control Without any microbial, plant extract, and potassium

silicate

T. viride Trichoderma viride (106 spore/ml)

T. viride + K2SiO3 T. viride (106 spore/ml) + potassium silicate (500

mg/L)

P. fluorescens Pseudomonas fluorescens (108 CFU/ml)

P. fluorescens + K2SiO3 P. fluorescens (108 CFU/ml) + potassium silicate

(500 mg/L)

T. viride + P. fluorescens T. viride + P. fluorescens, individually (106 spore/ml

+108 CFU/ml)

T.viride + P. fluorescens +

K2SiO3

T. viride + P. fluorescens, individually (106 spore /ml

+108 CFU/ml) + potassium silicate (500 mg/L)

E. camaldulensis LE Eucalyptus camaldulensis leaf extract (4,000 mg/L)

E.camaldulensis LE +

K2SiO3

E. camaldulensis leaf extract (4,000 mg/L) +

potassium silicate (500 mg/L)

C. sinensis LE Citrus sinensis leaf extract (4,000 mg/L)

C. sinensis LE + K2SiO3 C. sinensis leaf extract (4,000 mg/L) + potassium

silicate (500 mg/L)

F. benghalensis FE Ficus benghalensis fruit extract (4,000 mg/L)

F.benghalensis FE +

K2SiO3

F. benghalensis fruit extract (4,000 mg/L) +

potassium silicate (500 mg/L)

(108 CFU/ml) as biostimulants on the growth, productivity, and
bioactive of zucchini fruit that is grown in greenhouse conditions.
Extracts were prepared from Eucalyptus camaldulensis leaves,
Citrus sinensis leaves, and Ficus benghalensis fruits at the
concentration of 4,000 mg/L as recommended in our previous
work (Hassan et al., 2021).

AZIAD F1 cultivar was used in this study, and this cultivar
was imported from the Sakata Tacky Company Japan vegetable
seed. It is a desirable variety in the Egyptian market and bears
low temperatures and high production (Abd Elmohsen et al.,
2021). Zucchini seeds were sown in late September and in late
December, in the first and second experiments, respectively.
Within the same plantation row, the spacing between each
plant and the other was set to be 30 cm, whereas the spacing
between each line and the other was 1m (3 plants/m2). The
experimental layout was a randomized complete block design
(RCBD), with three replicates. RCBD is used to control the
variation in the experiment by accounting for spatial effects in the
field or greenhouse, e.g., the variation in soil fertility or drainage
differences in the field (Lauren, 2014). Each trial consisted of 13
treatments as shown in Table 1.

Each treatment was replicated three times, and each replicate
consisted of 35 plants. Water irrigation was applied through
the drip irrigation system. The drip irrigation system consisted
of laterals GR of 16mm in diameter with emitters at a 0.3-
m distance. The emitters had a discharge rate of 4 L/h. The
actual evapotranspiration of the zucchini crop (ETc), under
greenhouse at “Abies, Alexandria” area conditions, was calculated
and adjusted at the start of each growth stage (Feleafel and
Mirdad, 2014). It was calculated by multiplying reference
evapotranspiration (ET0) for different growth stages through

both two experiments (from late September 2019 up to mid-
December, 2019, in the first experiment and from late December
and ended in late February 2020, in the second experiment) by a
crop coefficient (KC); ETc = ET0 × KC (Allen, 1998; Razmi and
Ghaemi, 2011) as shown in Supplementary Table S1. Irrigation
frequency was every 5 days, to maintain soil water above 50%
soil water depletion (Qassim and Ashcroft, 2002), which is the
optimum level for zucchini plants.

The treatments of inoculation with T. viride were used as a
drench to the plants’ root area, were done through the addition of
50ml suspension, which was mixed thoroughly with the soil, and
then watered and left to ensure establishment and distribution
in the soil. However, inoculation with P. fluorescens, T. viride
+ P. fluorescens and application of K2SiO3 and three extracts
from E. camaldulensis LE, C. sinensis LE, and F. benghalensis
FE were sprayed separately on zucchini plants. All treatments
were added to the plants four times during the entire growing
season of zucchini plants. The first addition was after 2 weeks
from the sowing date, and then, the addition was done weekly.
The spraying was done for each biostimulant separately, and
P. fluorescens was sprayed before the spraying with K2SiO3 at
an interval of 3 days. Ammonium sulfate (NH4)2SO4, (20.5%
N), phosphoric acid (58%), and potassium sulfate (48% K2O)
were the sources of N, P2O5, and K2O, respectively. Nitrogen,
phosphorus, and potassium fertilizers were fertigated at rates of
143, 167, and 238 kg N, P2O5, and K2O/ha, respectively, which
were injected directly into the irrigation water (fertigation) using
a venture injector at one time weekly through a drip irrigation
system in equal doses, starting from 2 weeks after planting.
Climatic data, such as maximum and minimum air temperature
(Tmaximum and Tminimum

◦C) and relative humidity (RH%), were
collected using Testo 175-H1 as shown in Figure 1.

Evaluation of Productivity
Zucchini fruits were harvested after 50 days from sowing, at
a rate of two times a week. For each harvest, the number of
fruits was counted and weighed for each treatment and then
attributed to the hectare. The number and weight of fruits
were recorded after each harvesting accumulatively. The number
of fruits/hectare and the total productivity/hectare for each
treatment were calculated.

Photosynthetic Pigments
Extraction of chlorophylls (a and b) and carotenoids from
zucchini leaves was performed in ethanol 96% (v/v) in a
proportion of 1:10 (w/v). The absorbance was read at 664 and
649 nm for chlorophylls a and b, respectively, as well as at 470 nm
for carotenoids (Lichtenthaler, 1987; Campobenedetto et al.,
2021).

Energy-Dispersive X-Ray Spectroscopy
(EDX) Analysis
Energy-dispersive X-ray spectroscopy analysis was performed
to measure the changes in the elemental chemical composition
of zucchini leaves (nine leaves for each treatment) due to
different treatments with treated with 500 mg/L K2SiO3 and
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FIGURE 1 | The measured climatic conditions in the greenhouse during 2019 and 2020. (A) Minimum and maximum temperature (◦C); (B) RH (%).

control treatment. Energy-dispersive spectrometry (EDX), JFC-
1100E ion sputtering device (model JEOL/MP, JSMIT200 Series,
Tokyo, Japan) with acceleration voltage of 20.00 kV to show the
elemental compotation at three point was used (Salem et al.,
2021a).

2,2-Diphenyl-1-Picrylhydrazyl (DPPH)
Radical Scavenging Activity
At 1ml of 0.1mM 2,2-diphenyl-1-picrylhydrazyl (DPPH), we
added different concentrations of the prepared zucchini fruits’
methanolic extracts. After vigorous shaking, the mixture was
incubated for 30min in the dark and at 25◦C. The reduction
of the radical DPPH resulting from the incubation with the
different dilutions of zucchini methanolic extracts wasmonitored
by reading the color decrease at 517 nm (Mannino et al., 2020).
The percentage DPPH radical scavenging activity was calculated
using the formula: Inhibition (%)= [(Acontrol – Asample)/Acontrol]
× 100, where Acontrol and Asample are the absorbance of the
control and treatments (Abd-Elkader et al., 2021).

Total Phenolic and Flavonoid Contents
Total phenolic content (TPC) was determined via Folin–
Ciocalteu assay, as previously reported (Mannino et al., 2020).
Quantification was performed using an external calibration curve
with gallic acid (GA). Analyses were performed in triplicate, and
data were expressed as millimole GA equivalents (GAE) per 100 g
of FW., while the aluminum chloride colorimetric assay was
used for total flavonoid content (TFC) determination and read
at 510 nm using UV–Visible spectrophotometer Model UV 1601
version 2.40 (Shimadzu) (Marinova et al., 2005). Total flavonoids’
content was expressed as mg catechin equivalents.

Fruit Extraction and HPLC Analysis of
Phenolic Compounds
The extraction process was carried out on zucchini fruit samples
treated with plant extracts and microbial with 500 mg/L K2SiO3

and control treatment. A sample was taken for each treatment

from the three replicates, about 15 fruits, then, all the fruits were
grated andmixed well, and 30 g was taken then extracted by 60ml
methanol by the soaking method for 1 week (Ashmawy et al.,
2020; Abd-Elkader et al., 2021). The extracts were then filtered
through filter paper (Whatman no. 1) and then with a cotton
plug. The extracts were concentrated and stored in brown vials in
the refrigerator prior HPLC analysis. The phenolic compounds
from the methanol extracts of each previous treatments were
identified by the Agilent ChemStation [HPLC-(Agilent, Santa
Clara, CA, USA)], which is composed of a quaternary pump
and UV/Vis detector and C18 column (125mm × 4.60mm,
5µm particle size). Chromatograms were obtained and analyzed
using HPLC. Phenolic compounds were separated by employing
a mobile gradient phase of water/acetonitrile/glacial acetic acid
(980/20/5, v/v/v, pH 2.68) and acetonitrile/glacial acetic acid
(1,000/5, v/v) with a flow rate of 1 ml/min and detected at
325 nm. All chemical standards (HPLC grade) were purchased
from Sigma-Aldrich (St. Louis, MO, USA) (Hassan et al., 2021).

Statistical Analysis
All data were analyzed by implementing the CoStat software
version 6.303 (CoHort Software 798 Lighthouse Ave. PMB 320,
Monterrey, CA, 93940, USA) package through a two-way analysis
of variance (ANOVA). A Tukey’s honestly significant difference
(HSD) test (p < 0.05) was used to separate the means (Steel and
Torrie, 1980).

RESULTS

Productivity Parameters of Zucchini
Figure 2A shows that spraying of plants with K2SiO3 and
biostimulants led to a significant increase in fruits number (ha)
compared to control. The fruits number/ha was significantly
increased as zucchini plants were treated with E. camaldulensis
LE and E. camaldulensis LE + K2SiO3 in the two consecutive
experiments. In addition, plants sprayed with microbial and
plant extracts were significantly increased the fruits number/ha
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FIGURE 2 | Fruits number and total yield of zucchini as affected by biostimulant treatments. (A) Total number of fruits/ha and (B) The total yield (ton/ha) (means ±

S.E) of zucchini as affected by the extracts, microbial inoculations, and K2SiO3. Letters in the figure indicated that the means ± S.E of treatments with the same

letter/s were not significantly different according to Tukey’s HSD level of probability.

as compared to the control treatment. Moreover, spraying plants
with K2SiO3 at 500 mg/L with microbial or plant extracts
were maximized the increase in fruits number/ha compared to
biostimulant treatments without K2SiO3 in the two experiments.

The total yield/ha of zucchini fruits (Figure 2B) showed a

significant difference among treatments with the highest values

of 59.25 and 58 ton/ha, with the treatment of T. viride +

K2SiO3, in the first and second experiments, respectively. E.

camaldulensis LE + K2SiO3 treatment, also, gave a higher mean

value in both experiments (56.67 and 56.34 ton/ha). It is noted

that the use of K2SiO3 with microbial and plant extracts as
biostimulants led to an increase in total productivity/ha of
zucchini in both experiments.

Photosynthetic Pigments
Table 2 presents the effect of K2SiO3 and plant extract
or beneficial microbes as biostimulants on the content of
photosynthetic pigments (total chlorophylls, chlorophylls a, b,
and total carotenoids) of zucchini leaves. The results indicated
a significant increase in the content of pigments as affected by
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FIGURE 3 | Elemental compositions of zucchini leaves with EDX analysis as affected by plant extracts, microbial inoculations, and potassium silicates biostimulants.

Analysis was taken from three points for each treatment. (A1–A3) Control; (B1–B3) T. viride + K2SiO3; (C1–C3) P. fluorescens + K2SiO3; (D1–D3) T. viride + P.

fluorescens + K2SiO3; (E1–E3) E. camaldulensis LE + K2SiO3; (F1–F3) C. sinensis LE + K2SiO3; (G1–G3) F. benghalensis FE + K2SiO3.
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TABLE 2 | Effect of plant extracts, microbial inoculations, and potassium silicates biostimulants, on photosynthetic pigments content of leaves in the second experiment.

Treatment Experiment 1 Experiment 2

Chlorophyll a Chlorophyll b Total Total Chlorophyll a Chlorophyll b Total Total

chlorophylls carotenoids chlorophylls carotenoids

(mg/100g fw) (mg/100g fw) (mg/100g fw) (mg/100g fw) (mg/100g fw) (mg/100g fw) (mg/100g fw) (mg/100g fw)

Control 14.8 ± 0.21e 10.3 ± 0.13e 25.1 ± 0.51f 2.83 ± 0.32e 15.7 ± 0.33e 11.4 ± 0.55e 27.1 ± 0.13e 2.92 ± 0.13d

T. viride 24.6 ± 0.11ab 18.3 ± 0.25ab 42.9 ± 0.32ab 3.62 ± 0.42b 24.9 ± 0.24ab 18.8 ± 0.31ab 43.7 ± 0.21ab 3.72 ± 0.32ab

T. viride + K2SiO3 25.3 ± 0.12a 19.0 ± 0.14a 44.3 ± 0.43a 3.81 ± 0.11ab 25.6 ± 0.42a 19.7 ± 0.44a 45.3 ± 0.21a 3.97 ± 0.14a

P. fluorescens 20.1 ± 0.12bc 16.3 ± 0.52bc 36.4 ± 0.22cd 3.32 ± 0.14c 21.1 ± 0.11bc 16.9 ± 0.23b 38.0 ± 0.10c 3.48 ± 0.33ab

P. fluorescens + K2SiO3 21.2 ± 0.31b 17.0 ± 0.32b 38.2 ± 0.31c 3.49 ± 0.15b 22.0 ± 0.14bc 17.8 ± 0.21ab 39.8 ± 0.42bc 3.56 ± 0.42ab

T. viride + P. fluorescens 22.1 ± 0.13b 18.0 ± 0.22ab 40.1 ± 0.11b 3.45 ± 0.21ab 22.9 ± 0.51bc 17.9 ± 0.24ab 40.8 ± 0.14bc 3.50 ± 0.16b

T. viride + P. fluorescens

+ K2SiO3

23.4 ± 0.11ab 19.1 ± 0.11a 42.5 ± 0.10ab 3.59 ± 0.23b 24.0 ± 0.33ab 20.1 ± 0.25a 4.1 ± 0.23ab 3.64 ± 0.17ab

E. camaldulensis 24.4 ± 0.23ab 18.9 ± 0.21ab 43.3 ± 0.10ab 3.90 ± 0.22a 25.0 ± 0.22a 19.3 ± 0.51a 44.3 ± 0.31ab 4.02 ± 0.23a

E. camaldulensis +

K2SiO3

25.6 ± 0.11a 20.2 ± 0.33a 45.8 ± 0.22a 4.01 ± 0.24a 26.0 ± 0.14a 20.8 ± 0.34a 46.8 ± 0.26a 4.13 ± 0.52a

C. sinensis 17.7 ± 0.14c 12.4 ± 0.51cd 30.1 ± 0.32e 3.01 ± 0.11b 17.9 ± 0.21cd 12.9 ± 0.42d 30.8 ± 0.31d 3.12 ± 0.22c

C. sinensis + K2SiO3 18.1 ± 0.21c 13.9 ± 0.22c 32.0 ± 0.12d 3.15 ± 0.32c 19.2 ± 0.41c 15.2 ± 0.32c 34.4 ± 0.42cd 3.21 ± 0.13bc

F. benghalensis 15.6 ± 0.05d 11.3 ± 0.11d 26.9 ± 0.33f 2.93 ± 0.36d 16.1 ± 0.44d 11.9 ± 0.52e 28.0 ± 0.34e 2.98 ± 0.16d

F. benghalensis +

K2SiO3

17.3 ± 0.11c 14.9 ± 0.22c 32.2 ± 0.41d 3.10 ± 0.51c 18.2 ± 0.51c 14.2 ± 0.32c 32.4 ± 0.15cd 3.17 ± 0.05b

Letters in the figure indicated that the means ± S.E of treatments with the same letter/within the same column were not significantly different according to Tukey’s HSD at a 0.05 level

of probability.

the biostimulant treatments. It is clear from the results that the
values obtained from the different photosynthetic pigments were
affected by the different treatments of the biostimulant used.
T. viride + K2SiO3, and E camaldulensis + K2SiO3 treatments
increased all the photosynthetic pigment contents, but the effect
was most significant by the treatment E. camaldulensis LE+
K2SiO3, in both experiments. In addition, Table 2 shows the
application of the treatments T. viride and E. camaldulensis LE
improved the chlorophyll pigment of leaves compared to the
other treatments, in both experiments.

Elemental Compositions of Leaves by EDX
Analysis
Table 3 and Figure 3 presents an EDX analysis to measure the
changes in the elements’ compositions of the leaves due to
different treatments of biostimulants, which are six treatments
in addition to the control. There was a significant effect of
treatments on the elemental percentages with the highest values
obtained with treatments P. fluorescens + K2SiO3, T. viride +

P. fluorescens + K2SiO3, and E. camaldulensis LE + K2SiO3 on
C, Mg, and Si elements. Also, there was a significant effect of
treatments on elements N, P, and Ca percentages whereas the
highest value was obtained by the plants treated with T. viride +
K2SiO3. Moreover, the highest value of element K was obtained
by treatment E. camaldulensis LE+ K2SiO3.

DPPH Scavenging Activity
In Figure 4, all DPPH scavenging activity data of the zucchini
fruits parameter were significantly influenced by the biostimulant
applications. Our data indicated that the E. camaldulensis LE
+ K2SiO3 treatment increased the DPPH scavenging activity

mean value of zucchini fruits (75.93 and 76.21%) followed
by E. camaldulensis LE (72.24 and 73.45%) in the first and
second experiments, respectively (Figure 4). In addition, the
combination of K2SiO3 with plant extract and microbial
stimulants had no effect on improving DPPH in zucchini fruits,
in both experiments.

Total Phenolic and Flavonoid Contents
Significant differences were found among the total phenolic
contents of zucchini fruit samples in (Figure 5A), in both
experiments. The values varied in a wide range with an average
value of 150 to 300mg GAE/100 g FW. In our two experimental
conditions, the highest value was found with the treatment E.
camaldulensis LE + K2SiO3 (300mg GAE/100 g FW), followed
by E. camaldulensis LE (289mg GAE/100 g FW) and T. viride +
P. fluorescens + K2SiO3 (287mg GAE/100 g FW), whereas the
lowest content was found in the control treatment.

The higher values of flavonoid content were recorded
in biostimulant-treated zucchini plants with T. viride + P.
fluorescens (104mg QE/100 g sample), T. viride + P. fluorescens
+ K2SiO3 (110mg QE/100 g sample), E. camaldulensis LE
(116mg QE/100 g sample), and E. camaldulensis LE + K2SiO3

(115mg QE/100 g FW sample) treatments, with no significant
difference among other treatments (Figure 5B). On the other
hand, the spraying with K2SiO3 did not show any effects on the
total flavonoids’ content of zucchini fruits in both experiments.

HPLC Analysis of Phenolic Compounds in
Zucchini Fruits
Table 4 presents the phytochemicals in terms of the phenolic
compounds identified in the methanol extracts (MEs) of zucchini
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fruits treated with plant extracts and microbial with K2SiO3

added only, which are six treatments in addition to the control
treatment. The HPLC separation chromatograms are shown
in Supplementary Figure S1. Ferulic (21.12µg/ml), caffeic
(19.63µg/ml), and ellagic (18.33µg/ml) acids were the most
abundant compounds in zucchini fruit ME as affected by control.
Zucchini fruit ME from plants treated with T. viride + K2SiO3

showed the presence of eugenol (35.16µg/ml) and ellagic acid
(17.36µg/ml) as the main compounds. Eugenol (18.05µg/ml)
and caffeic acid (16.26µg/ml) were the abundant compounds in
ME from zucchini fruit treated with P. fluorescens + K2SiO3.
Interestingly, α-tocopherol (22.01µg/ml) with syringic acid
(13.30µg/ml) were the most abundant compounds in ME from
fruits treated with T. viride + P. fluorescens + K2SiO3. The
ME from fruits of the plants treated with E. camaldulensis LE
+ K2SiO3 identified p-coumaric acid (25.51µg/ml), ferulic acid
(20.11µg/ml), and caffeic acid (18.87µg/ml) as the abundant
compounds. The ME of fruits from plants treated with C. sinensis
LE + K2SiO3 identified pyrogallol (28.5µg/ml), ferulic acid
(18.09µg/ml), and gallic acid (12.66µg/ml) as the abundant
compounds. Syringic (18.69µg/ml) and caffeic (15.26µg/ml)
acids were the most abundant compounds in ME from fruits of
zucchini collected from plants treated with F. benghalensis FE +

K2SiO3.

DISCUSSION

The development of eco-friendly products to improve the
growth and yield of horticulture has spurred a massive
interest in commercial, especially in poor countries. The use
of biostimulants has become increasingly common in modern
agriculture and in the global market for the sale of agricultural
products (Xu and Geelen, 2018). The biostimulants used may
be a substance of natural origin or microorganisms that work
or a mixture of them that improve the condition of crops and
resist some pathogens and stress conditions to which plants are
exposed without causing harmful side effects to the environment
or humans (Du Jardin, 2015). The advantage of using biomass
contained in plant extracts is its low cost (Tembo et al., 2018).
Conversion of plant biomass in plant extracts, showing the action
of biostimulants or plant growth, can be supportive to farmers in
developing countries that cannot afford synthetic biostimulants,
because of their high costs (Fite et al., 2020).

In this study, photosynthetic pigments and productivity
were affected by the application of different biostimulants
used. The results illustrated generally that E camaldulensis
LE or Trichoderma viride with K2SiO3 increased the previous
characters. Eucalyptus leaf extract increased photosynthetic
pigments and the production of zucchini plants. These
results might be due to many species of eucalyptus have
high rich in carotenoids, carbohydrates, phenols, flavonoids,
and antioxidants. Due to these compounds detected in E
camaldulensis LE, it can be considered a biostimulant to
enhance growth and productivity. Also, allelopathic activity
and this activity can be the important catalysts in reducing
diseases and increasing total yield (El-Rokiek et al., 2019). The
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FIGURE 4 | DPPH (2,2-diphenyl-1-picrylhydrazyl) inhibition percentages (means ± S.E) of methanol extracts from zucchini fruits as affected by the plant extracts,

microbial inoculations, and potassium silicate biostimulants. Letters in the figure indicated that means ± S.E of treatments with the same letter/s were not significantly

different according to Tukey’s HSD at a 0.05 level of probability.

induced metabolism of the photosynthetic pigments signified
the increased growth parameters of the used leaf extract. In
this response, the photosynthetic pigments of seedling broccoli
significantly increased by Eucalyptus leaf extract (Mohsen
et al., 2018). Furthermore, the application of T. viride seems
to have affected photosynthetic pigments and the total yield
characteristics of Brassica leafy crops similar to what has been
shown for the control. Trichoderma is a genus of filamentous
fungi that include several species described as biostimulants
and/or biological control agents in agriculture (Velasco et al.,
2021). Almost, microbial is widely used as a biofertilizer almost
for all crops with or without amendments (Vinale et al., 2008;
Schuster and Schmoll, 2010; Reynolds, 2016). Similarly, the
PGPR increases both the growth parameters and yield attributes
of onions and zucchini with the triple inoculation treatments
(Tinna et al., 2020; Novello et al., 2021).

The role of microbial or Trichoderma in increased crop
yield and quality was achieved mainly by the ability to degrade
complex organic compounds present in the soil. Complex
organic compounds were made available to plants in a simpler
form, so that they could be absorbed (Khan et al., 2017; Thapa
et al., 2020).

It is clear from previous studies that treating plants with
silicon benefits their leaf structure by improving plant leaf
erection, which leads to increased light interception and reduced
self-shading, which leads to improved photosynthesis (Galindo
et al., 2021). In this regard, silicon has a positive effect on
chlorophyll pigments, which leads to an improvement in growth,
which in turn affects the production of plants (Thorne et al.,
2020; Salim et al., 2021). It is noted that there is an effect

of the use of biostimulants on the metabolism of plants and
the final quality (Colla et al., 2015). Plant growth, quality,
tolerance to abiotic and biotic stresses, photosynthesis, and using
nutrients, fertilizers, and water are able to be enhanced by plant-
derived biostimulants (PDBs) by modulating plant biochemical,
molecular, and physiological processes (Rouphael and Colla,
2020b; Godlewska et al., 2021; Mosa et al., 2021b). Our previous
work (Hassan et al., 2021) showed that the most abundant
phenolic compounds in Eucalyptus camaldulensis LE were
pyrogallol, caffeic acid, and p-coumaric acid, in Citrus sinensis
LE were syringic and ferulic acids, and in Ficus benghalensis were
gallic, p-coumaric, and syringic acids.

In addition, the application of biostimulants increased the
biochemical compounds with potential effect on the nutrient
content of plants. The shorter growing cycle of plants may
result in biostimulation if the beneficial microbe has higher
performance (i.e., Trichoderma viride), in improving the N
uptake efficiency (Fiorentino et al., 2018). Moreover, the increase
in the root system caused by the application ofTrichoderma to the
roots may have contributed to the increased N uptake of zucchini
plants. This has also been observed when correlating the use of
Trichoderma with the N content of leaves from several vegetable
crops such as lettuce and tomato (Fiorentino et al., 2016; Sani
et al., 2020).

Similar observations to our results were found after the use of
microbial based on the enhanced yield by microbial inoculants
has been linked in some cases to increased nutrient uptake and
improved nutrient status of the cucumber and lettuce (Abdelaziz
and Pokluda, 2009; El-Saady and Omar, 2017). Furthermore,
some reports showed that Pseudomonas spp. was significantly
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FIGURE 5 | Phenolic and flavonoid contents (means ± S.E) of zucchini fruits as affected by the plant extracts, microbial inoculations, and potassium silicate

biostimulants. (A) Total phenolic content and (B) total flavonoid content. Letters in the figure indicated that the means ± S.E of treatments with the same letter/s were

not significantly different according to Tukey’s HSD at a 0.05 level of probability.

increased the uptake of P, Fe, Ca, and manganese (Mn) in
some vegetables, e.g., eggplant and tomato (Calvo et al., 2014;
Chrysargyris et al., 2020).

Some studies that are similar to our results were found after
the use of PDBs in agriculture leads to an improvement in the
crop’s quality with an increase in bioactive components (Di Mola
et al., 2019). It can be said that biological stimulants have a
positive effect on a number of chemical properties of fruits and
vegetables. It is evident that the use of several types of PDBs has
potential effects on the development and quality of several plant

species, for example, tomato (Souri and Bakhtiarizade, 2019),
rocket (Di Mola et al., 2019), and zucchini (Hassan et al., 2021).

Consistence with the present findings, PDBs as the foliar
application were enhanced the total phenolic contents,
antioxidant activity, and nutrient contents of tomato plants
compared to the control (Chiaiese et al., 2018). Furthermore,
these findings, generally, agreed with those previously reported
on spinach and broccoli (Fan et al., 2011; Kałuzewicz et al., 2017),
where they concluded that the use of biostimulants enhanced the
phenolic content.
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TABLE 4 | Effect of plant extracts, microbial inoculations, and potassium silicate biostimulants on phenolic compounds identified in zucchini fruits methanol extract in the

second experiment.

Compound Phenolic compounds (µg/ml) in zucchini fruits ME

as plants treated with

Control T.viride

+ K2SiO3

P. fluorescens

+ K2SiO3

T. viride + P. fluorescens

+ K2SiO3

E. camaldulensis

LE + K2SiO3

C. sinensis

LE + K2SiO3

F. benghalensis

FE + K2SiO3

Myricetin nd 10.33 nd nd nd nd nd

Syringic acid 9.22 9.14 8.12 13.30 nd nd 18.69

p-Coumaric acid 9.68 nd nd 8.09 25.51 8.23 nd

Eugenol nd 35.16 18.05 nd nd nd 4.36

Vanillin nd nd nd nd 5.42 7.55 nd

Caffeic acid 19.63 6.47 16.26 5.36 18.87 6.98 15.26

4-Hydroxybenzoic

acid

nd nd nd nd nd 7.12 nd

Pyrogallol 14.51 nd nd nd nd 28.5 3.75

Gallic acid nd 8.16 7.14 nd 5.12 12.66 12.44

Ascorbic acid nd nd nd nd 10.61 8.23 nd

Ferulic acid 21.12 nd nd 6.12 20.11 18.09 nd

α-Tocopherol 7.45 nd nd 22.01 nd nd nd

Salicylic acid nd 9.12 9.56 nd nd nd nd

Catechol 5.18 nd nd 6.23 nd nd nd

Ellagic acid 18.33 17.36 8.49 5.14 nd nd nd

Protocatechuic acid nd 10.68 2.21 nd nd nd nd

nd, not detected; ME, methanol extract.

Foliar application of Si has biostimulation effects, and also,
it can be used by plants to augment their defenses against the
entrance of toxic ions via the root apoplast (Verma et al., 2021b).

The phenolic contents were ranged between 96.2 and
117.3mg GAE/100 g of FW, as affected by different biostimulant
treatments. Other studies showed that the average phenolic
content of zucchini fruits of was 8.67mg GAE/g FW (Hamissou
et al., 2013).

Zucchini plants treated with the following treatments T. viride
+ K2SiO3, P. fluorescens + K2SiO3, T. viride + P. fluorescens +
K2SiO3, E. camaldulensis LE + K2SiO3, C. sinensis LE+K2SiO3,
and F. benghalensis FE + K2SiO3 showed several phenolic
compounds (myricetin, syringic acid, p-coumaric acid, eugenol,
vanillin, caffeic acid, 4-hydroxybenzoic acid, pyrogallol, gallic
acid, ascorbic acid, ferulic acid, α-tocopherol, salicylic acid,
catechol, ellagic acid, and protocatechuic acid) in the methanol
extract with different concentrations compared with the control
treatment. These phenolic compounds or PDBs are playing the
important roles in regulating plant metabolic processes (Boudet,
2007; Lin et al., 2016; Mosa et al., 2021a). Simple phenolic acids
such as hydroxybenzoic and hydroxycinnamic acids are derived
from phenylpropanoid pathway (Mandal et al., 2010).

This study clarified the importance of the role played by
Si element as a biostimulant in spraying on zucchini plants
and increasing the efficiency of plant extract or microbial
biostimulant. Si improves the growth of the plant by role
defending the plant by increasing some different biochemical
mechanisms in plants such as antimicrobial enzymes, flavonoids,
and pathogen-related proteins (Verma et al., 2021a), chlorophyll

pigments, and antioxidants (Thorne et al., 2020; Salim et al.,
2021). Studies have also shown that one of the beneficial
properties of Si is its positive effects on abiotic stress tolerance
and resistance to pathogens and diseases and thus has an effective
role in improving overall productivity (Savvas and Ntatsi, 2015;
Abd-Alkarim et al., 2017; Shwethakumari et al., 2021).

Plant-derived biostimulants have a positive effect on crop and
vegetable plants; however, to improve their efficacy and optimize
their inclusion in the industrial processes, the understanding of
their action mechanism should be amended (Brown and Saa,
2015; Backer et al., 2018; Rouphael and Colla, 2020a).

CONCLUSION

The results of this study highlight the importance of biostimulant
application to mitigate the effects of yield and biochemical.
The potential use of some leaf extracts or microbial with
K2SiO3 as a biostimulant was tested in zucchini plants on plant
photosynthetic pigments, productivity, bioactive componence,
and elements content parameters that were evaluated after its
use. The productivity of zucchini plants was increased by the
foliar application of the treatments T. viride + K2SiO3 or E.
camaldulensis LE+ K2SiO3 as well as the content of the leaves of
photosynthesis pigments. HPLC analysis of phenolic compounds
in zucchini fruits and elements content of leaves was affected by
biostimulants (microbial and plant extract with silicon). Total
phenolic contents and DPPH scavenging activity were increased
significantly in plants treated with E. camaldulensis LE+K2SiO3.
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