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Chile pepper (Capsicum spp.) is a major culinary, medicinal, and economic crop in 
most areas of the world. For more than hundreds of years, chile peppers have 
“defined” the state of New Mexico, USA. The official state question, “Red or Green?” 
refers to the preference for either red or the green stage of chile pepper, respectively, 
reflects the value of these important commodities. The presence of major diseases, 
low yields, decreased acreages, and costs associated with manual labor limit 
production in all growing regions of the world. The New Mexico State University 
(NMSU) Chile Pepper Breeding Program continues to serve as a key player in the 
development of improved chile pepper varieties for growers and in discoveries that 
assist plant breeders worldwide. Among the traits of interest for genetic improvement 
include yield, disease resistance, flavor, and mechanical harvestability. While progress 
has been made, the use of conventional breeding approaches has yet to fully address 
producer and consumer demand for these traits in available cultivars. Recent 
developments in “multi-omics,” that is, the simultaneous application of multiple omics 
approaches to study biological systems, have allowed the genetic dissection of 
important phenotypes. Given the current needs and production constraints, and the 
availability of multi-omics tools, it would be relevant to examine the application of 
these approaches in chile pepper breeding and improvement. In this review, 
we summarize the major developments in chile pepper breeding and present novel 
tools that can be implemented to facilitate genetic improvement. In the future, chile 
pepper improvement is anticipated to be more data and multi-omics driven as more 
advanced genetics, breeding, and phenotyping tools are developed.

Keywords: genome-wide association study, genomic selection, heat profile, high-throughput phenotyping, 
Phytophthora capsici resistance, single nucleotide polymorphisms, speed breeding, yield
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INTRODUCTION

Chile pepper (Capsicum spp.) is an important vegetable crop 
in most regions of the world, including the state of New 
Mexico, in the Southwestern USA, where chile pepper is 
regarded as a major agricultural commodity. The diverse 
utilization of chile peppers from culinary (as a major spice), 
to health, and industrial uses has driven its cultivation 
worldwide. Total global production was ~40 M tons in 2020, 
with the majority (36.1 M tons; 90%) comprised of fresh 
chile pepper (Food and Agriculture Organization of the 
United Nations, 2021). Top chile producers (in M tons) for 
the fresh market were China (16.7), Mexico (2.8), Indonesia 
(2.7), Turkey (2.6), and Spain (1.5). India was the highest 
producer of dry chile pepper with 1.7 M tons, followed by 
Thailand (0.32), China (0.31), Ethiopia (0.30), and Bangladesh 
(0.16; Food and Agriculture Organization of the United 
Nations, 2021). In terms of consumption, Vietnam, India, 
and United  States were the top consumers in 2018 with 
consumption (in kilotons) of 166, 86, and 68 (World Pepper 
Market Report, 2019). In the United  States, the per capita 
fresh chile pepper consumption has more than doubled in 
the last 40 years, whereas the per capita consumption of 
dried chile peppers has increased by more than 46% (Lillywhite 
and Tso, 2021).

While the total global production for both dry and fresh 
chile pepper has been generally increasing (Food and Agriculture 
Organization of the United Nations, 2021), this might not 
be sufficient to cope with the growing demand for chile peppers 
and the increasing world population that is projected to be  10 
billion by 2050 (Hickey et  al., 2019; Pandey et  al., 2021). The 
total production in New Mexico has been dynamic over the 
past three decades, with an overall decreasing trend in recent 
years (USDA NASS, 2020); this is a consequence, among others, 
of the decreasing acreages brought about by the unavailability 
of labor and costs associated with manual harvesting, even as 
consumption grows (Walker and Funk, 2014; Joukhadar et  al., 
2018). Incorporating different multi-omics approaches, such 
as genomics-assisted breeding, transcriptomics, epigenomics, 
and metabolomics, among others, in dissecting the genetic 
basis of traits for chile pepper breeding and improvement can 
aid in advancing solutions to these issues. Recent advances in 
molecular genetics and genomics, high-throughput phenotyping, 
development of efficient machine harvesters, and integrating 
robotics with agriculture (i.e., “agricultural robotics”), can 
be  applied to chile pepper breeding to mitigate the effects of 
the various issues facing production. It would therefore 
be  important to discuss these omics approaches in the context 
of chile pepper breeding and improvement.

In this review, the different omics tools that plant breeders 
can utilize to address constraints in chile pepper production 
are discussed. First, the relevance of maintaining genetic diversity 
in germplasm collections is highlighted, followed by the 
exploration of the different tools currently being used for the 
genetic improvement of chile pepper. Specifically, the various 
“omics” approaches that have been implemented for the genetic 
improvement of several target traits for chile pepper breeding 

including yield, resistance to Phytophthora capsici, heat levels, 
and mechanical harvestability are described. The role of robotics 
approaches to aid in mechanical harvesting of chile pepper is 
also discussed. This review serves as valuable resource for chile 
pepper breeders in developing a path forward, creating breeding 
pipelines, and establishing collaborations for the genetic 
improvement of this critically important crop.

GENE BANK COLLECTIONS AND 
GENETIC DIVERSITY

It is essential to maintain genetic diversity in breeding programs 
for the introduction of different beneficial alleles for the 
improvement of current cultivars. Without diversity, no progress 
can be made in a breeding program. Gene banks and germplasm 
collections are valuable repositories of seeds, the genetic variation 
of which can be used for genome-wide improvement (Tanksley 
and McCouch, 1997; Singh et al., 2019). Profiling DNA sequences 
using molecular markers, such as single nucleotide polymorphism 
(SNP) derived from genotyping-by-sequencing (GBS), can reveal 
genetic differences among accessions, which, in turn, can reflect 
the level of genetic diversity in current germplasm. Most of 
the previous genetic diversity studies in chile pepper were 
conducted using populations originating from certain geographic 
areas of the world including Spain (Pereira-Dias et  al., 2019), 
Ethiopia (Solomon et  al., 2019), Mexico (Taitano et  al., 2018), 
and a global collection with representative accessions from 
Europe, Asia, Africa, and the Americas (Taranto et  al., 2016); 
therefore, there is a need to assess the genetic diversity of 
existing chile pepper germplasm from other growing regions. 
For New Mexican germplasm, the genetic diversity of chile 
pepper landraces from Northern New Mexico was evaluated 
using random amplified polymorphic DNA (Votava et al., 2005) 
and it was observed that the Northern New Mexico cultivars 
were more closely related to the Mexican varieties than the 
Southern New Mexican cultivars. Simple sequence repeat (SSR) 
markers characterized the genetic diversity of 147 C. frutescens 
accessions from 25 countries and clustered the population into 
seven major groups consistent with their geographic origins 
(Zhong et al., 2021). In another study, SSR marker-based genetic 
diversity of 32 Phytophthora capsici resistant accessions of 
C. annuum from Ethiopia and India were evaluated and the 
genotypes clustered into three genetic resistance groups (Rabuma 
et  al., 2020). Recently, genotyping using 66,000 GBS-derived 
SNP markers demonstrated that genetic structure was related 
to fruit (pod) architecture and morphology across the different 
species (Lozada et  al., 2021a). Nevertheless, genetic diversity 
was relatively low; hence, there is a need to introduce new 
beneficial alleles to increase genetic diversity in current New 
Mexican chile pepper germplasm by introducing genes from 
other breeding programs and from wild relatives or domesticated 
species. Genotyping of the NMSU New Mexican pod-type 
cultivars using GBS-derived SNP markers revealed remarkable 
genetic differences across genome-wide SNP sites. For example, 
the “NuMex Heritage Big Jim” (Bosland and Coon, 2013) and 
“NuMex Sandia Select” (Bosland and Coon, 2014) derived from 
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the heirlooms “NuMex Big Jim” (Nakayama, 1975) and “NuMex 
Sandia” (Harper, 1950) respectively, formed separate clusters 
with their parental lines. This could be  a consequence of 
extensive and multiple cycles of breeding and phenotypic single-
plant selections in the breeding program (Lozada et al., 2021a). 
Genetic improvement of current germplasm, then, can be linked 
to the differences and variation in the alleles and genes present 
that were selected on each cycle of phenotypic selection in 
the breeding program.

The NMSU Chile Pepper Breeding and Genetics program 
houses the New Mexico Capsicum Accessions (NMCA), a 
collection of more than 2,100 accessions from 22 different 
species, including the five domesticated species—annuum, 
baccatum, chinense, frutescens, and pubescens, originating from 
various geographic regions of the world. Established in 1985, 
the NMCA collection is regarded as one of the most diverse 
germplasm banks in terms of the number of species for the 
chile pepper (Barchenger and Khoury, in press). To discover 
the true potential of the seeds stored in gene banks, it is 
necessary to not only examine the phenotypes for traits of 
interest (e.g., yield, disease resistance), but also to survey the 
favorable alleles present in these collections. To date, less than 
10% of the NMCA accessions have been genotyped using 
genome-wide SNP markers; hence most of the lines that could 
possess beneficial genes remain untapped for cultivar development 
and genetic improvement. The landraces, for instance, have a 
high capacity as sources of resistance to local biotic and abiotic 
stresses and could serve as a reservoir of genetic variability 
for the plant breeder (Zeven, 1998; Votava et  al., 2005). These 
landraces are the earliest form of cultivars and may contain 
more genetic variation than the modern domesticated varieties 
that were selected for optimal performance (McCouch, 2004). 
It is thus necessary for the alleles from the accessions stored 
in gene banks to be transferred to cultivar development programs 
(Dreisigacker et al., 2021). In the future, it would be  important 
to profile the DNA sequences of the NMCA accessions, including 
the landraces from Northern New Mexico, using high-density 
genome-wide markers, such as SNPs, to mine for favorable 
alleles that control important horticultural traits for introduction 
into adapted local varieties.

A concerted effort for the preservation of the chile pepper 
across the different growing areas of the world through the 
Global Capsicum Conservation Strategy, which NMSU is a 
partner, is currently ongoing, and this would open opportunities 
for germplasm exchange, protection, maintenance, and 
characterization using novel molecular marker platforms 
(Barchenger and Khoury, in press). Previously, the distribution 
and conservation status of wild relatives of chile peppers were 
evaluated using ex and in situ assessments and 18 out of the 
37 (48%) of the wild taxa examined were categorized as “high 
priority” for further conservation (Khoury et  al., 2020). The 
cost of high-throughput genotyping is continuously decreasing 
(Torkamaneh et  al., 2018; Ayalew et  al., 2019), and this can 
ultimately leverage genomics-assisted breeding to accelerate 
genetic improvement for current chile pepper cultivars. 
Additionally, profiling of gene bank accessions using high-
density genome-wide SNP markers and ultimately integrating 

this information with passport data could provide models for 
the distribution, routes of evolution, and domestication of chile 
pepper (Tripodi et al., 2021), giving further insights for potential 
improvement and breeding strategies. In addition to the 
germplasm stored at NMCA, the US Department of Agriculture 
Germplasm Research Information Network (USDA GRIN) 
houses at least 500 accessions belonging to nine species of 
Capsicum from more than 50 different growing areas including 
Brazil, China, Colombia, Iran, Greece, Mexico, and United States 
(USDA GRIN, 2022). The genomic richness and diversity of 
germplasm stored in chile pepper gene banks remains an 
indispensable resource that breeders should utilize for future 
cultivar improvement and development.

GENOME-WIDE MAPPING AND QTL 
IDENTIFICATION FOR CHILE PEPPER 
BREEDING AND IMPROVEMENT

The availability of whole-genome sequences for chile pepper 
(Kim et  al., 2014; Qin et  al., 2014; Hulse-Kemp et  al., 2018) 
has facilitated molecular breeding, marker development, and 
marker-assisted selection for chile pepper genetic improvement. 
Modern technologies have driven genetic improvement of 
important traits for horticultural crops through multi-omics 
approaches arising from information derived from the whole-
genome sequence (Hao et  al., 2020). The genetic architecture 
of important complex traits in chile pepper can be  examined 
using different genetic mapping strategies such as linkage 
analysis and genome-wide association studies (GWAS; Figure 1). 
These mapping approaches identify regions in the genome 
called quantitative trait loci (QTL) that affect variation of the 
ultimate phenotype. The main difference is the control over 
recombination: there is a higher rate of recombination in GWAS 
as a result of using diverse, natural populations compared to 
linkage mapping, hence rendering a higher mapping resolution 
(Zhu et  al., 2008; Myles et  al., 2009). As an approach, GWAS 
allows the discovery of multiple alleles and is flexible and fast, 
as there is no need to develop inbred lines from biparental 
crosses (Lander and Schork, 1994).

Genotyping-by-sequencing (GBS) has been developed and 
implemented as a robust method to discover single nucleotide 
polymorphisms (SNP) for various downstream applications 
(Elshire et  al., 2011). The flexibility, cost-effectiveness, and 
efficiency of a GBS platform makes it one of the main next-
generation sequencing (NGS)-based approaches for SNP marker 
discovery for genomic diversity studies, genetic linkage analysis, 
GWAS, and genomic selection (He et  al., 2014b). In chile 
pepper, GWAS has been implemented to examine the genetic 
basis of various traits including capsaicinoid content, response 
to infection by Phytophthora capsici, and various fruit parameters, 
such as fruit weight, length, and width (Table  1). Genome-
wide mapping approaches using GBS-derived SNP markers 
have dissected the genetic architecture of important horticultural 
traits in the NMSU Chile Pepper Breeding Program. The 
information derived from GWAS can direct breeding and 
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selection decisions using molecular marker-based platforms for 
the genetic improvement of chile pepper.

The identification of disease resistance QTLs across different 
chile pepper germplasm can accelerate breeding for improved 
resistance. Chile pepper root rot caused by the oomycete 
Phytophthora capsici remains as one of the most destructive 
diseases affecting Capsicum production globally, a century after 
it was first described in New Mexico by Leonian (1922). While 
management practices can help mitigate the effects of P. capsici 
on chile pepper production (Sanogo and Ji, 2012), breeding 
and selection for disease-resistant cultivars are still the most 
cost-effective approach (Xu et  al., 2016; Siddique et  al., 2019). 
The short arm of chromosome P5 is a major genetic hotspot 
containing QTL for P. capsici resistance (Mallard et  al., 2013; 
Rehrig et  al., 2014; Siddique et  al., 2019; Du et  al., 2021; 
Lozada et al., 2021b,c), and this information facilitates breeding 

efforts for resistance to P. capsici. A set of New Mexico 
recombinant inbred lines (NMRIL) derived from the hybridization 
between the resistant landrace, CM-334, and the susceptible 
cultivar “Early Jalapeno” was previously developed at NMSU 
to facilitate a better understanding of the complex inheritance 
of P. capsici root rot resistance and the characterization of 
different races for breeding resistant cultivars (Sy et  al., 2008). 
Recently, large main effect and QTL interaction in chromosomes 
P5 and P8 that can be  used as a basis for marker-assisted 
selection were identified using the NMRIL (Lozada et  al., 
2021b). Genetic mapping further mapped SNP loci related to 
other diseases in chile pepper, such as anthracnose on 
chromosomes 2 and 4, where three major QTLs for resistance 
were located between two SNP markers within 17 cM distance 
in chromosome 4 (Mahasuk et  al., 2016). Powdery mildew 
resistance QTLs on chromosome 4 were previously mapped 

FIGURE 1 | Harnessing the power of multi-omics approaches for genetic improvement in chile pepper. Genomics-assisted breeding approaches, including genetic 
mapping (GWAS and QTL analysis) and genomic selection can facilitate the dissection of the genetic basis of complex traits in chile pepper by identifying genomic 
regions associated with important traits. Transcriptomics and epigenomics can render further insights into the expression and regulation of expression of these 
genetic systems. Gene editing (e.g., using CRISPR-Cas9) allows a precise and accurate modification of genes using a guide RNA (gRNA) for a targeted alteration of 
the genomic sequence, whereas phenomics approaches can expedite trait collection in the field. Speed breeding can accelerate development to increase genetic 
gain. Breeders can ultimately use the information derived from these various omics tools either exclusively or in combination with other approaches to select for and 
develop improved cultivars of chile pepper.
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using a BC1F2 (Kim et  al., 2017) and F2 and F2:3 mapping 
populations identifying a major locus, PMR1, for resistance 
to powdery mildew (Jo et  al., 2017). Loci associated with 
bacterial wilt and root knot nematode have been identified in 
chromosomes 10 (Du et  al., 2019) and 9 (Changkwian et  al., 
2019), respectively. QTLs related to viral diseases including 
cucumber mosaic virus (Choi et  al., 2018; Li et  al., 2018b), 
pepper mottle virus (Holdsworth and Mazourek, 2015; Venkatesh 
et  al., 2018), and pepper mild mottle virus (Yang et  al., 2012), 
among others, have also been mapped across various 
chromosomes in the chile pepper genome. The large effect 
QTLs identified for various diseases in chile pepper can 
be confirmed and validated using different breeding populations 
for application in breeding programs.

Chile peppers are good sources of vital nutrients, such as 
capsaicinoids, vitamins A, C, and folate, which can also 
be  improved using genome-wide mapping approaches. An 
improved nutritional content that can place an “added quality 
value” to chile pepper, could potentially increase consumer 
consumption and acceptance. “NuMex LotaLutein,” a serrano 

type with improved lutein content, a compound necessary for 
healthy eyesight, has been released recently (Guzmán et  al., 
2020). A survey of vitamin content among a diverse set of 
chile peppers showed eight different genotypes to have higher 
vitamin A concentration than sweet potato (Ipomea batatas), 
and a total of 16 genotypes had higher vitamin C content 
than kiwi (Actinidia arguta; Kantar et al., 2016), demonstrating 
that chile peppers can be good alternative sources of important 
minerals to combat nutrient deficiencies. Previous analyses have 
focused on the identification of QTL related to carotenoid 
and capsaicinoid content, whereas mapping for loci associated 
with nutritional value (provitamin A, vitamin C, etc.) using 
linkage and GWAS has yet to be  conducted in chile pepper. 
The C. annuum phytoene synthase 1 (CaPSY1) gene has been 
identified as a major locus associated with carotenoid metabolism 
at maturity (Wei et  al., 2020), and can be  a potential target 
for molecular breeding to increase carotenoid content. Linkage 
mapping has identified several genomic regions and candidate 
genes related to the development of capsaicinoids on 
chromosomes 1, 2, 3, 4, and 10 (Han et  al., 2018). Using a 

TABLE 1 | Summary of major genome-wide association studies (GWAS) conducted for different traits in chile pepper.

Trait
No. of 

individuals
Species

Marker 
typea

GWAS 
modelsb

Total 
no. of 

markers

No. of 
significant 

marker–trait 
associations

Chromosomes References

Capsaicinoid content 208 Capsicum annuum, 

Capsicum chinense, 

Capsicum frutescens

GBS-SNP CMLM 109,610 99 1, 3, 6, 10, 11c Han et al., 2018

Capsaicinoid content 96 C. annuum SSR GLM and MLM 176 5 1 Nimmakayala et al., 2014
Capsaicinoid content 94 C. annuum GBS-SNP MLM (EMMAX) 7,331 86 1, 2, 3, 5, 6, 9, 10, 11 Nimmakayala et al., 2016
Fruit length 230 C. annuum GBS-SNP CMLM 187,966 8 3, 4, 5, 7, 11 Lee et al., 2020
Fruit position 230 C. annuum GBS-SNP CMLM 187,966 52 3, 5, 12 Lee et al., 2020
Fruit shape 220 C. annuum GBS-SNP LMM (GEMMA) 746,000 8 3, 10, 11 Colonna et al., 2019
Fruit shape 2,059 C. annuum GBS-SNP MLM (GEMMA) 26,566 6d 10, 11 Tripodi et al., 2021
Fruit weight 96 C. annuum SSR GLM and MLM 176 11 1, 2, 4, 5, 8, 9, 10 Nimmakayala et al., 2014
Fruit weight 94 C. annuum GBS-SNP MLM (EMMAX) 7,331 61 1, 2, 3, 4, 5, 6, 8, 9, 

10, 11, 12
Nimmakayala et al., 2016

Fruit weight 230 C. annuum GBS-SNP CMLM 187,966 101 1, 2, 4, 6, 7, 8, 9, 10, 
11, 12

Lee et al., 2020

Fruit width 287 C. annuum, Capsicum 

baccatum, C. chinense, C. 

frutescens

SLAF-SNP FaST-LMM 594,429 3 1, 8, 12 Wu et al., 2019

Fruit width 230 C. annuum GBS-SNP CMLM 187,966 281 7, 9, 12 Lee et al., 2020
Number of flowers 
per axil

287 C. annuum, C. baccatum, 

C. chinense, C. frutescens

SLAF-SNP MLM (EMMAX) 594,429 12 1, 4, 5, 6, 7, 9, 10, 11, 
12

Wu et al., 2019

Number of pedicels 
per axil

2,059 C. annuum GBS-SNP MLM (GEMMA) 26,566 4d 6 Tripodi et al., 2021

Pedicel position at 
anthesis

2,059 C. annuum GBS-SNP MLM (GEMMA) 26,566 6d 2, 12 Tripodi et al., 2021

Pericarp thickness 287 C. annuum, C. baccatum, 

C. chinense, C. frutescens

SLAF-SNP FaST-LMM 594,429 4 1, 8, 11, 12 Wu et al., 2019

Pericarp thickness 230 C. annuum GBS-SNP CMLM 187,966 9 4, 6, 7, 11, 12 Lee et al., 2020
Phytophthora capsici 
resistance

352 C. annuum GBS-SNP CMLM 507,713 117 5, 7, 11c Siddique et al., 2019

aGBS-SNP, Genotyping-by-sequencing (GBS)-derived single nucleotide polymorphism (SNP) markers; SSR, Simple sequence repeats; SLAF-SNP, Specific locus amplified fragment 
SNP.
bCMLM, Compressed mixed linear model; FaST-LMM, Factored spectrally transformed linear mixed model; EMMA, Efficient mixed model association; EMMAX, Efficient mixed model 
(expedited); GEMMA, Genome-wide efficient mixed model analysis; GLM, Generalized linear model; MLM, Mixed linear model.
cCo-localized with QTL identified from linkage mapping.
dMarker–trait associations with p < 1.00E-09.
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whole-genome sequencing-based QTL sequencing strategy, a 
major QTL on chromosome P6 was identified for capsaicinoid 
biosynthesis in the pericarp of C. chinense (Park et  al., 2019). 
Other genomic regions related to capsaicinoid content were 
mapped in chromosomes 3 (Lee et al., 2016), 4 and 7 (Ben-Chaim 
et al., 2006), demonstrating the genetic complexity of capsaicinoid 
content. These regions can therefore be  targeted for molecular 
breeding and selection using genomics-assisted approaches. An 
F2 mapping population mapped the Pun1 gene which encodes 
a putative acyltransferase for capsaicinoid biosynthesis on the 
short arm of chromosome 2 (Stewart Jr et  al., 2005). As the 
genetic basis for nutritional quality traits, primarily the 
capsaicinoids, have only been examined primarily by biparental 
QTL mapping using low-density markers and low-throughput 
phenotypic data, it would be  necessary to employ higher 
resolution GWAS scans to complement linkage mapping in 
dissecting the genetics of these traits in chile pepper.

Once the significant loci are identified using association 
mapping, molecular markers can be  developed and used 
routinely in the breeding program for marker-assisted breeding 
and selection (Lozada et  al., 2018; Ren et  al., 2019; Ma et  al., 
2020). For example, the KBioscience Competitive Allele Specific 
assays (KASP®; He et  al., 2014a; Semagn et  al., 2014), can 
be  developed based on the flanking sequences of significant 
markers identified from GWAS. As an approach, the single-
plex fluorescence resonance energy transfer (FRET)-based 
KASP system is cost-effective, high-throughput, and flexible 
(Jatayev et  al., 2017; Majeed et  al., 2019). Currently, in chile 
pepper, the application of KASP has been limited as these 
marker assays have only been developed and applied for 
marker-assisted selection for resistance to diseases, such as 
bacterial leaf spot caused by the bacterium Xanthomonas 
euvesicatoria (Holdsworth and Mazourek, 2015) and of the 
fertility restorer genes (Zhang et al., 2021). Given this boundless 
potential for genetic improvement through molecular breeding 
as demonstrated on its previous applications in other crops, 
including chile pepper to a certain extent, the KASP genotyping 
platform could be integrated in chile pepper breeding pipelines 
to facilitate the selection of desirable alleles for important 
traits. KASP assays for the MAP1 marker on chromosome 
2 (Rodríguez-Maza et al., 2012) and markers flanking P. capsici 
resistance QTLs on the short arm of chromosome 5 can 
be  developed for screening heat levels and disease resistance, 
respectively. SSR markers previously developed and identified 
in other chile pepper breeding populations can be  further 
converted to KASP for validation and marker-assisted selection 
of disease-resistant lines (Table  2). Information from genetic 
mapping could be  integrated with genome-wide selection and 
phenomics-aided approaches in breeding programs to select 
for complex traits in chile pepper breeding programs.

GEBV-BASED BREEDING IN CHILE 
PEPPER

The limitation of GWAS is that it may not identify loci of 
small effects (i.e., the case of missing heritability; Korte and 

Farlow, 2013). Another marker-assisted selection approach, 
genomic selection (GS), uses genome-wide marker information 
to predict the genomic estimated breeding values (GEBV) of 
individuals (Meuwissen et  al., 2001) and can be  used to 
complement GWAS. In GS, a training population comprised 
of individuals with both genotype and phenotype data predicts 
the GEBV of selection candidates in the validation (test) 
population consisting of lines having only genotype data (Crossa 
et  al., 2017). The correlation between the GEBV and the 
observed phenotypes is called prediction accuracy, r, and is 
affected by several factors, such as the size of the training 
population, number of markers, genetic relatedness between 
the training and test populations, and prediction models used 
(Spindel et al., 2015; Cericola et al., 2017; Norman et al., 2018; 
Larkin et  al., 2019; Lozada et  al., 2019).

Achieving optimal prediction accuracy is a key for increasing 
genetic gain, which is the change in phenotypic performance of 
populations, in plant breeding programs (Xu et al., 2020). Reducing 
the length of the breeding cycle for cultivar development is one 
of the advantages of GS-based breeding strategies compared to 
conventional phenotypic selection to increase the rate of genetic 
gain (Voss-Fels et  al., 2019). While GS has been successfully 
applied to different traits across various crops, such as rice (Oryza 
sativa L.; Huang et  al., 2019), bread wheat (Triticum aestivum 
L.; Belamkar et  al., 2018; Juliana et  al., 2018; Lozada and Carter, 
2019), and soybean (Jarquin et  al., 2016), these approaches still 
need to be  implemented for the genomics-assisted breeding of 
chile pepper. To date, GS approaches have only predicted fruit-
related traits in Korean chile pepper accessions, where high 
prediction accuracies viz. 0.73 (fruit shape), 0.75 (fruit length), 
0.82 (pericarp thickness), 0.83 (fruit weight), and 0.84 (fruit width) 
were observed using Reproducing Kernel Hilbert space models 
(Hong et  al., 2020). Currently, GS has not been applied in chile 
pepper improvement programs, specifically on the prediction of 
fruit yield and yield components, and hence, it is worthwhile to 
test these approaches in accelerating the genetic gain for these traits.

The breeding values, represented as GEBV, assist in selecting 
lines to advance in a breeding program and for selection of 
parents for hybridization. The GEBVs allow the prediction of 
individuals that will be  “superior” and are suitable either as 
parental lines for hybridization or for next-generation 
advancement as the molecular marker profile of those individuals 
are similar to that of the training populations that have been 
observed to perform better in different field trials (Bhat et  al., 
2016). The GS approach predicts the performance of a hybrid 
allowing for a more effective utilization of genomic and financial 
resources in breeding programs (Dreisigacker et  al., 2021). In 
general, the process of breeding, selection, and development 
of improved chile pepper varieties is long-term (~10 years), 
consisting of a series of single-plant selection schemes and 
replicated trials. As an approach, GS can be  integrated in the 
chile pepper breeding program to accelerate the process of 
selection and release of improved chile pepper varieties through 
GEBV-based breeding and selection. The GEBV can be calculated 
by performing independent validations using a training 
population to predict the future performance of single-plant 
selections and replicated trials. Lines with high GEBV (and 
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therefore, a better predicted performance) can be  advanced in 
the breeding cycle to reduce time for cultivar release, thereby 
increasing gains achieved through selection. The training 
populations for GS in chile pepper breeding should be  large 
enough to capture the optimal genetic relatedness between the 
training and test (validation) populations to achieve ideal 
prediction accuracies. Intraspecies GS (e.g., annuum predicting 
annuum) is also recommended to avoid the confounding effects 
of predictions across species and to maximize genetic relationships 
between the populations for improved selection accuracy.

PHENOMICS AND “SPEED BREEDING” 
TO ACCELERATE CHILE PEPPER 
IMPROVEMENT

In plant breeding, phenotyping has lagged behind genotyping 
primarily due to the manual-based observation used for data 
collection and the number of lines that need to be  evaluated 
in field trials (Shen et  al., 2022). This “phenotyping bottleneck” 
(Furbank and Tester, 2011) is being addressed through the 
development of high-throughput, fast, and accurate methods in 

collecting phenotypic data. In chile pepper, the traditional approach 
of quantifying heat levels in fruit samples is based on an 
organoleptic test, where experienced raters score each sample. 
Developed by Wilbur Scoville, the test is known as the Scoville 
Heat Units (SHU; Scoville, 1912). This method, nonetheless, 
can be biased and subjective because of interpersonal differences. 
In addition, taster fatigue is a common phenomenon with the 
organoleptic method. Advanced analytical methods include the 
high-performance liquid chromatography (HPLC) that measures 
capsaicinoid levels as parts per million is then converted to 
SHU (Collins et  al., 1995). Among the drawbacks for using 
HPLC in determining SHU levels include the relatively long 
turn-around time for the processing of samples and the costs 
associated with equipment operation and maintenance. Recently, 
efforts to develop cost-effective, fast, and direct detection of 
capsaicinoid content from samples using different techniques, 
such as voltammetry and near-infrared spectroscopy, have been 
made (Crapnell and Banks, 2021). For example, a graphene-
based portable device that can be  connected to a smartphone 
has been developed and high accuracy and collinearity between 
the SHU values derived from the machine and from spectroscopy 
were observed (Soleh et  al., 2020). A colorimetric approach 
using the Gibbs reagent has also been employed for the rapid 

TABLE 2 | Simple sequence repeat markers for conversion to allele-specific KASP assays and validation using for marker-assisted breeding of Phytophthora capsici 
resistance.

Marker Name Primer sequences Chr. Position (Mb or cM) Reference

P217-220-3 F: GAGTAAACCGATAATCCAAT 10 217.48M Xu et al., 2016
R: ATGTTAGTTAGGAGGAATTA

P217-220-4 F: TTCCTTTATGTCTAGGCTTT 217.51
R: CAGTTTTCAGGTACATTACT

P220-229-54 F: TAATGGGGTTCAACATCTAC 228.31
R: CTTTTTGTTCCTTATCACTT

P52-11-21 F: CAATCCAAACAAGTCCTAAG 229.19
R: GGTGCAATTGAAAATCTAAG

P52-11-41 F: TTGATGAGATGGGAAGTAAA 231.75
R: CACCAACAATAATAGAACTACA

P230-233-11 F: ATAGAATGACTTCCAGGCAA 232.06
R:AAAGGTAAGGAGTAAGGCTG

CAMS089 F: AACAGCGCTGATCCTTTACC 3 0c Minamiyama et al., 2007
R: CAACATCACAGTGGCAGAAGA

CAMS865 F:AGAAATCGTGGTTGGGTGAG 37.6
R: CACTTTGGCACATTTTGCTG

HPMS1-139 F: CCAACAGTAGGACCCGAAAATCC 42
R: ATGAAGGCTACTGCTGCGATCC

Hpms1-1 F: AACCCAATCCCCTTATCCAC 1 73–101c Lee et al., 2004
R: GCATTAGCAGAAGCCATTTG

Hpms1-117 F: CGCATATACATACATAAATTCTTTC 1 109–129
R: TCAACATCTCACCGAAGCTG

Hpms2-2 F: ATCTTCTTCTCATTTCTCCCTTC 11 195–206
R: TGCTCAGCATTAACGACGTC

CAeMS-068 F: ATCAAATCTCAACACATGGTGGCT 5 12.46–12.49M Wang et al., 2016
R: GTTTACTGTATCTCCGGCCCTGTCA

ZL6203 F: AGGTGGTACAAACTTCCTATG 25.8801–25.8802
R: GGGAGCTCTGTTCTTTATGTA

ZL6726 F: TCCAGCCATCCATTATTTCAT
R: ATCCCGAACTGCCAATAATTA 29.09721–29.09736

ZL7825 F: CTTTTGGTGAGATGTGTGTTT 33.29099–33.29114
R: ACCCCCTACTCCCTTTTTATA

MIn mega base pairs (Mb);
cIn centimorgans (cM).

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Lozada et al. Chile Improvement in “Multi-Omics” Era

Frontiers in Plant Science | www.frontiersin.org 8 May 2022 | Volume 13 | Article 879182

A

B

C

D

E

F

G

FIGURE 2 | Phenotypic diversity among chile pepper evaluated for fruit morphology-related traits using the Tomato Analyzer v.4.0 program. (A) “NuMex 
Centennial” and (B) “NuMex Twilight” (C. annuum) are ornamental chile peppers. (C) Chiltepins (Capsicum annuum var. glabriusculum), commonly known as “bird 
peppers,” are regarded as the progenitors of the cultivated C. annuum. (D) “NuMex Jalmundo” (C. annuum) is a large-sized jalapeño. (E) “NuMex Heritage 6–4” and 
(G) “NuMex Conquistador” (C. annuum) are both New Mexican pod-type chile peppers. (F) “Trinidad Moruga Scorpion” (C. chinense) is a “superhot” chile pepper.

determination of capsaicinoid content and has a high correlation 
with HPLC (Ryu et  al., 2017). Through using different HTP 
approaches, more lines can be  evaluated in more locations to 
address the significant interactions between genotype and 
environment (G × E). This consequently would facilitate a better 
implementation of genomics-assisted selection for breeding heat 
levels in chile pepper.

Performing indirect selection of primary traits can 
be  implemented using highly heritable and correlated traits 
collected using HTP methods. Among the phenomics platform 
that has been developed is the Tomato Analyzer (TA), a 
morphometric and colorimetric tool for the phenotypic 
characterization of traits related to fruit architecture and morphology 
(Brewer et al., 2006; Gonzalo et al., 2009; Rodríguez et al., 2010). 
Initially developed for the phenotypic characterization of tomato 
(Solanum lycopersicum) fruit samples, the TA has been used 
extensively to evaluate phenotypic diversity in chile pepper fruits 
(Nankar et al., 2020; Pereira-Dias et al., 2020; Nimmakayala et al., 
2021). The utility of the TA software to measure various fruit-
related traits for large New Mexican pod-type chile pepper samples 
as well as the small fruit types, such as jalapeno, ornamental, 
and chiltepins, was demonstrated (Figure 2). Information collected 
from HTP can be  combined with genetic marker and kinship 
information to predict traits of interest for GS (Dreisigacker et al., 
2021). The fruit trait data can be  used to improve accuracy for 
yield in chile pepper, by incorporating these as covariates in 
prediction models, as these traits are highly correlated and generally 
have higher heritability than yield (Naegele et  al., 2016). 
Improvement of GS accuracy has been demonstrated by integrating 
secondary correlated traits, such as spectral reflectance indices 
for predicting grain yield in winter wheat (Sun et  al., 2017; 
Crain et  al., 2018; Juliana et  al., 2019; Lozada and Carter, 2019), 

primarily a result of using genetically correlated traits for GS 
(Jia and Jannink, 2012). The World Vegetable Center has recently 
utilized a field-based automated HTP system to evaluate 300 
members of a Capsicum core collection during both hot and 
optimal seasons. Data on more than 75 different traits using 
both manual recordings of yield and yield component traits and 
multispectral imaging of physiological and morphological traits 
including leaf angle, pollen concentration and activity, and 
Normalized Difference Vegetative Index (NDVI) were collected 
and will be  used for genomics and phenomics-assisted breeding 
(Barchenger and Lefebvre, 2021).

“Speed Breeding” is another approach that shows great potential 
in accelerating genetic gain (Li et al., 2018a; Hickey et al., 2019). 
This method involved growing plants under continuous light 
(20–22 h.) permitting plants to photosynthesize longer, resulting 
in faster growth and multiple generations per year, thereby 
allowing researchers to develop new varieties quicker (Watson 
et  al., 2018; Bhatta et  al., 2021). Speed breeding is implemented 
using growth chambers and glasshouses, with some modifications 
based on the crop species (Ghosh et  al., 2018). The success of 
speed breeding for rapid generation advancement has been 
demonstrated in barley (Hordeum vulgare; Zheng et  al., 2013), 
durum wheat (Triticum durum; Alahmad et  al., 2018), spring 
wheat (Watson et  al., 2019), oats (Avena sativa L.; González-
Barrios et  al., 2021), and canola (Brassica napus L.; Yao et  al., 
2016), among others. To date, there is no known report on 
the implementation of the speed breeding approach in chile 
pepper, although initial evaluation indicated that the speed 
breeding growing conditions for the day-neutral cowpea (Vigna 
unguiculata [L.] Walp.; Ehlers and Hall, 1996) can be  adapted. 
Preliminary speed breeding experiments in chile pepper should 
target the “late maturing” and “low germination” species, such 
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as the C. chinense and the Capsicum annuum var. glabriusculum 
(chiltepins), to accelerate their developmental phases.

“AGRICULTURAL ROBOTICS” AND 
MECHANIZATION OF CHILE PEPPER

Robots and autonomous systems are currently being integrated 
in agricultural systems to address challenges, such as labor-
intensive tasks (e.g., crop harvesting, mechanical weeding, 
thinning, and pesticide spraying), labor shortage, and increasing 
need to monitor crop health and environments for improved 
production (Bac et  al., 2014; Bechar and Vigneault, 2016; 
Roldán et  al., 2018). Despite the use of advanced technologies 
in other farming systems and greenhouses (Bonadies et  al., 
2016; Ruiz-Larrea et  al., 2016), chile pepper is still managed 
mainly using conventional practices. The use of robotic systems 
that can replicate “human-like” harvesting could be a potential 
solution to propel mechanization of chile pepper, in addition 
to breeding and selection for machine-harvestable cultivars. 
Moreover, using a mobile network of sensors (e.g., unmanned 
ground and aerial robots) to monitor and collect data in an 
extended spatiotemporal manner would significantly help 
determine soil stress and manage water usage and soil condition.

At NMSU, a series of feasibility studies on the use of robotic 
systems for chile pepper farming are being implemented. For 
example, in a preliminary work on the robotic harvesting for 
chile pepper, a 5 degrees of freedom (DoF; Figure  3A) and 
a 6 DoF (Figure  3B) robotic arms with a customized cutter 
end-effector have been investigated in a laboratory setting 
(Masood and Haghshenas-Jaryani, 2021). The harvesting robot 
showed promising results with high localization, detachment, 
and harvest success rates, low damage rate, and a cycle time 
comparable to the performance of other harvesting robots and 
human harvesters. The overall results have demonstrated the 
feasibility of using robotics approaches in harvesting chile pepper.

In another work, a robotic arm with sensors attached to 
a ground rover robot have been used for performing direct 
soil moisture-temperature measurements (Figure 3C) and remote 
visual sensing (image capturing using an RGB + D camera; 
Figure  3D) in chile pepper farms. The moisture sensor probe 
is inserted into the soil at multiple points along the rows of 
the chile pepper for measuring moisture level and temperature. 
Additionally, the camera attached to the wrist of the robotic 
arm takes RGB and infrared images from the plant and local 
soil for the visual analysis of the plant and soil’s health and 
physiological conditions through AI-enabled machine algorithms. 
Preliminary observations showed the exciting potential of the 
robotic system for collecting environmental data with a higher 
resolution for the spatial and temporal aspects of the targeted 
areas for determination of soil and plant stresses. The advantages 
of using ground robots over aerial systems include longer 
operation time, higher payload for carrying a variety of sensors 
for multimodal sensing, and less dependency to weather 
conditions. The multimodal data will used to map the 
environment and crops’ heterogeneous conditions that could 
be  used for data-driven precision agriculture in chile pepper.

Mechanization of chile pepper harvesting is relevant for sustaining 
production amidst decreasing acreages resulting from labor shortages 
and increased labor costs. In recent years, the shortage of labor 
and prohibitive costs associated with manual labor have resulted 
in difficulty of harvesting and postharvest processing, consequently 
affecting the overall chile pepper production. This indicates a 
strong need to shift from the labor-intensive manual harvest to 
the mechanical harvesting of chile pepper. Growers have reported 
success using a tomato harvester that cuts the plants off at the 
grounds, then shakes the chile pepper fruit off the plants; however, 
the inclined double helix picking head continues to be the preferred 
machine for mechanically harvest of specialty peppers. While 
mechanical harvesting is commonly used for red chile, the New 
Mexican type green chile pepper is less amenable to machine-
driven harvest due to the difficulty in removing the fruit, the 
potential of fruit damage, and the need for pedicel removal for 
a large segment of the industry.

A breakthrough in the effort to develop mechanically  
harvestable chile peppers is the recent release of “NuMex Odyssey,” 
a New Mexican pod-type green chile pepper amenable to machine-
driven harvest (Walker et  al., 2021). “NuMex Odyssey” has the 
ideal plant architecture for mechanical harvesting, such as a 

A B

C D

FIGURE 3 | (A) A 5 degrees of freedom (DoF) robotic arm with a cutter end-
effector harvesting green chile peppers in an indoor setting. (B) A 6 DoF robotic 
arm with integrated wrist camera and a cutter end-effector identifies the location 
of the stem and harvest green chile pepper. (C) Robotic soil moisture and 
temperature measurements at the NMSU’s Jose Fernandez Heritage Farm, Las 
Cruces, NM. (D) Image capturing and visual remote sensing using an 
autonomous ground mobile robotic arm in chile pepper testing field at the 
Leyendecker Plant Science Research Center, NMSU, Las Cruces, NM.
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high percentage of plants with single stems and increased main 
bifurcation, using an inclined double-helix-type picking mechanism 
(e.g., the Yung-Etgar Moses 1010 machine harvester). Currently, 
the genetic basis of plant morphology and fruit destemming in 
New Mexican chile peppers is being examined using genomics-
assisted breeding approaches, such as GWAS and QTL analysis, 
to gain a better understanding of the genetic architecture of 
these traits. In addition, “NuMex Odyssey” is utilized as a parental 
line for hybridization with other New Mexican pod-type chile 
peppers at the NMSU Chile Pepper Breeding Program to develop 
additional cultivars that are amenable to machine-driven harvest. 
Altogether, the development of machine-harvestable chile peppers 
would require a “systems approach,” integrating traditional and 
genomics breeding, the use of efficient harvesters, and relevant 
management practices (Funk et  al., 2011).

Selection and breeding for lines with ideal plant architecture 
(ideotype) is important for the successful implementation of 
mechanical harvesting. Machine harvesting of fresh green chile 
peppers is impeded by the difficulty in destemming and the 
fruit damage associated with harvesting (Funk and Marshall, 
2012). Plant architecture and growth habit, likewise, have a 
substantial impact on the efficiency of mechanical harvesting 
(Wall et  al., 2003). Different types of machine harvesters need 
to be  evaluated, as it might be  essential to “fine-tune” these 
machines when harvesting different pepper types (New Mexican 
vs. jalapeño vs. cayenne, etc.). Furthermore, while the current 
production practice for “NuMex Odyssey” is through direct 
seeding in the field, as this results in taller and more upright 
plants for machine harvest (Walker et al., 2021), it will be necessary 
to examine the mechanical harvest potential of transplanted plants 
in the future. A strong collaboration between plant breeders, 
agro-mechanical engineers, and horticulturists should succeed 
in developing chile pepper cultivars that are amenable to machine 
harvesting in New Mexico and other growing regions of the 
world. Ultimately, the overall higher costs of chile pepper production 
in the United  States compared to other countries would remain 
a potential drawback, even with the current shift to mechanize 
the chile peppers. Hence, it is also necessary to improve traits, 
such as nutritional quality and flavor to enhance consumer 
acceptance and product value for this important commodity.

THE “PANOMICS” PLATFORM: 
INTEGRATING MULTI-OMICS TOOLS 
FOR TRAIT DISSECTION IN CAPSICUM

In addition to genomics-assisted breeding, transcriptomic, 
metabolomic, proteomic, and epigenomic profiling can be utilized 
to dissect the genetic basis of various traits in chile pepper. This 
integrated system, termed as “Panomics,” is expected to accelerate 
plant improvement through the discovery of target genes and 
biological pathways that are controlled by complex genetic and 
epigenetic mechanisms for “precision breeding” to develop elite 
lines (Weckwerth et  al., 2020). Altogether, integrating various 
omics tools can render a better and deeper understanding of 
the genetic architecture of complex traits which consequently 

could drive genetic improvement in chile pepper. An integrative 
analysis of the transcriptome and proteome of two pepper varieties 
revealed a temporal specificity of key protein expression during 
fruit development (Liu et al., 2019). Metabolomic and transcriptomic 
analysis of two habanero (C. chinense) cultivars revealed variation 
in cutin composition and the upregulation of genes involved in 
cutin biosynthesis (Natarajan et al., 2020). Differentially expressed 
transcripts and metabolites were further observed in heat-tolerant 
and heat-sensitive pepper cultivars under heat stress (HS), where 
common HS-responsive genes were expressed in both genotypes 
(Wang et  al., 2019). Combined metabolomic and transcriptomic 
analyses in chile pepper demonstrated the induction of jasmonic 
acid (JA) in response to mite infection and indicated the association 
of endogenous JA in conferring a strong defense mechanism 
during plant–arthropod interactions (Zhang et  al., 2020).

Transcriptomic analyses of the cracking-susceptible pepper 
cultivar “L92” revealed differentially expressed genes during the 
fruit cracking process, where 45 genes were observed to 
be  enriched in pathways related to cell wall metabolism and 
biosynthesis of lignin (Liu et al., 2022). Analyses of chile pepper 
transcriptome further demonstrated variation in the gene 
expression profiles during fruit development, particularly for 
genes related to cell cycle and division among wild and cultivated 
species (Martínez et  al., 2021). RNA-sequencing (RNA-seq) 
previously identified genes, namely, CA00g9220 and CA00g96010, 
to be  strongly expressed in the resistant landrace, CM-334, 
upon infection by the pathogen, providing valuable information 
on the defense mechanisms of chile pepper against infection 
by P. capsici (Kim et  al., 2019). In another study, at least 50 
differentially expressed genes were identified through an RNA-seq 
approach, where the level of resistance and susceptibility to 
P. capsici was related to the differences in gene expression levels 
and molecular variations in the resistance mechanisms (Rabuma 
et  al., 2022). RNA-seq can help identify Function Associated 
Specific Trait (FAST) markers, that are more informative as 
compared to the more “neutral” genome-wide SNP loci to 
improve accuracy for trait prediction using GS, genetic effect 
estimation, and parental line selection (Fu et  al., 2017).

Gas chromatography–mass spectrometry (GC–MS) analyses 
of stip, a physiological disorder in bell pod-type peppers, 
detected significant variation in 13 metabolites related to fruit 
maturation and senescence (Fulton et al., 2021). Metabolomic 
profiling of mirasol pepper fruit samples infected by Candidatus 
Phytoplasma trifolii showed decreased levels of fructose, 
glucose, and capsaicin, suggesting that infection can reduce 
the pungency and nutraceutical value of mirasol peppers 
(Velásquez-Valle et  al., 2020). Stress-related metabolite 
accumulation was further observed using a large-scale 
metabolomic characterization of mature fruit samples from 
26 pepper cultivars (Kim et al., 2020). Proteomic characterization 
of broad mite (Polyphagotarsonemus latus) infected pepper 
samples using tandem mass tag (TMT)-MS analyses 
demonstrated the upregulation of proteins involved in plant 
defense response and hormone signal transduction (Patavardhan 
et  al., 2020). Conversely, proteins involved in plant defense 
and hormone signaling were downregulated in response to 
green peach aphid (Myzus persicae Sulzer) infection 
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(Florencio-Ortiz et al., 2021). Analysis of apoloplast proteome 
in chile pepper under drought conditions revealed increased 
peroxidase and reduced catalase activity and upregulation of 
43 protein species related to stress response (Jaswanthi 
et  al., 2019).

There has been growing evidence on the potential involvement 
of epigenetic factors, such as DNA methylation, histone acetylation, 
and chromatin remodeling, specifically on conferring P. capsici 
resistance in chile pepper (Du et  al., 2021; Lozada et  al., 2021b, 
2021c). Examining the chile pepper epigenome using various 
techniques, such as DNA methylation PCR-based bisulfite 
sequencing and chromatin immunoprecipitation assays (Cazaly 
et  al., 2019; Li, 2021), could therefore be  relevant in breeding 
and selection for P. capsici resistant lines. The ability to induce 
mutations in any part of the genome through clustered regularly 
interspaced short palindromic repeats (CRISPR)/CRISPR-
association protein 9 (CRISPR-Cas9; Jinek et  al., 2012) also 
shows great possibility in fast-tracking chile pepper breeding, 
particularly for improving disease resistance. For instance, it 
might be  possible to induce mutations using the CRISPR-Cas9 
technology in susceptible chile pepper to confer resistance to 
P. capsici and other major diseases. Recently, an enhance resistance 
to anthracnose caused by Colletotrichum spp. was observed 
following a single transcript CRISPR/Cas9 modification of 
CaERF28, a major susceptibility gene (Mishra et  al., 2021). One 
of the key issues that needs to be  addressed is the absence of 
a stable regeneration system for the Capsicum. Chile pepper is 
recalcitrant to in vitro production and only genotype-specific 
systems have been developed, and hence for CRISPR to 
be  appropriate, there would need to be  a tissue culture-free 
system. Ultimately, a proof-of-concept study on the applicability 
of CRISPR in chile pepper is warranted. A proposed method 
on the integration of the panomics approach with genome editing 
could result in the identification of the majority of phenotypic 
variation in complex traits for a robust precision breeding for 
genetic improvement (Yang et  al., 2021).

CONCLUSION AND FUTURE 
PROSPECTS

Modern chile pepper genetic improvement requires the 
integration of novel omics tools in the breeding pipeline to 
facilitate the development of improved cultivars. Using genomics-
assisted breeding by discovering QTL and significant marker–
trait associations, as well as complementing GWAS with GS, 
HTP, transcriptomics, proteomics, and metabolomics, and other 
omics tools (i.e., panomics; Weckwerth et al., 2020; Shen et al., 
2022) to accelerate generation advancement can facilitate a 
deeper understanding of the genetic basis of different traits 
in chile pepper while improving gains achieved through selection. 
This, consequently, could drive important breeding and selection 
decisions for genetic improvement in chile pepper breeding 
programs. DNA marker genotyping will not be  seen as a 
bottleneck in chile pepper breeding given the availability of 
automated, cost-effective, and high-throughput marker systems 
(e.g., SNPs) derived from NGS-based platforms, such as 

GBS. Recent developments on long-read sequencing approaches 
to examine structural variation in the genome (De Coster 
et  al., 2021) will allow the construction of the “pan-genome” 
(Tettelin et  al., 2005) for Capsicum in the future. This, in turn, 
would render novel insights into the genetic architecture of 
complex traits that were not fully captured using single reference 
genomes of cultivated chile peppers.

Field data collection particularly for yield and yield component 
traits might cause an issue as majority of the existing chile 
pepper cultivars are manually harvested. The recent release of 
“NuMex Odyssey,” a chile pepper cultivar amenable to mechanical 
harvesting, could potentially mitigate this constraint. Disease 
resistance will remain an important objective in chile pepper 
breeding programs and as knowledge on gene expression, 
epigenomic, and transcriptomic profiles become more available, 
the genetic dissection of disease resistance genes will result 
in better breeding, screening, and management practices.

Chile pepper improvement in the era of the multi-omics entails 
establishing and maintaining collaborative partnerships between 
the public and private sectors. Without students trained from 
public breeding programs (e.g., land-grant universities), private 
programs will experience a decrease of intellectual capital; whereas, 
without the private sector, cultivars and products developed by 
public programs will have difficulty reaching growers (Brummer 
et  al., 2011). Breeding goals and objectives will depend on the 
current needs of growers, producers, and the chile pepper industry. 
Training of the next generation of plant breeders with these multi-
omics approaches would be crucial to gain the necessary technical 
expertise and experience, especially on handling the “big data” 
generated from these tools. The abovementioned approaches offer 
a great promise for genetic improvement, yet further time and 
research work should be  implemented to tap and realize their 
full potential in the context of chile pepper breeding programs. 
Ultimately, the tools presented herein will continue to “define” 
chile pepper breeding and improvement in the years to come.
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