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Vegetables are a distinct collection of plant-based foods that vary in nutritional diversity

and form an important part of the healthy diet of the human being. Besides providing

basic nutrition, they have great potential for boosting human health. The balanced

consumption of vegetables is highly recommended for supplementing the human body

with better nutrition density, dietary fiber, minerals, vitamins, and bioactive compounds.

However, the production and quality of fresh vegetables are influenced directly or

indirectly by exposure to high temperatures or heat stress (HS). A decline in quality traits

and harvestable yield are the most common effects of HS among vegetable crops. Heat-

induced morphological damage, such as poor vegetative growth, leaf tip burning, and

rib discoloration in leafy vegetables and sunburn, decreased fruit size, fruit/pod abortion,

and unfilled fruit/pods in beans, are common, often rendering vegetable cultivation

unprofitable. Further studies to trace down the possible physiological and biochemical

effects associated with crop failure reveal that the key factors include membrane

damage, photosynthetic inhibition, oxidative stress, and damage to reproductive tissues,

which may be the key factors governing heat-induced crop failure. The reproductive

stage of plants has extensively been studied for HS-induced abnormalities. Plant

reproduction is more sensitive to HS than the vegetative stages, and affects various

reproductive processes like pollen germination, pollen load, pollen tube growth, stigma

receptivity, ovule fertility and, seed filling, resulting in poorer yields. Hence, sound

and robust adaptation and mitigation strategies are needed to overcome the adverse

impacts of HS at the morphological, physiological, and biochemical levels to ensure

the productivity and quality of vegetable crops. Physiological traits such as the stay-

green trait, canopy temperature depression, cell membrane thermostability, chlorophyll

fluorescence, relative water content, increased reproductive fertility, fruit numbers, and
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fruit size are important for developing better yielding heat-tolerant varieties/cultivars.

Moreover, various molecular approaches such as omics, molecular breeding, and

transgenics, have been proved to be useful in enhancing/incorporating tolerance and

can be potential tools for developing heat-tolerant varieties/cultivars. Further, these

approaches will provide insights into the physiological and molecular mechanisms that

govern thermotolerance and pave the way for engineering “designer” vegetable crops for

better health and nutritional security. Besides these approaches, agronomic methods are

also important for adaptation, escape and mitigation of HS protect and improve yields.

Keywords: high temperature, vegetables, heat, environment, climate change

INTRODUCTION

Vegetables are parts of plants cultivated worldwide for
consumption as flowers (e.g., cauliflower, broccoli), fruits (e.g.,
okra, tomato, cucumber, capsicum), leaves (e.g., spinach, lettuce,
brassica, cabbage), tubers (e.g., potato, sweet potato), pods and
seeds (e.g., common bean, chickpea, broad bean, mungbean,
peas) (Peet and Wolfe, 2000). Vegetables contain secondary
metabolites with bioactive properties, including carotenoids (e.g.,
carrots, pepper, tomato, spinach), polyphenols (e.g., tomato,
cabbage), glucosinolates (e.g., brassica), saponins (e.g., beans,
pea), and terpenes (e.g., carrots, tomato) (Crozier et al., 2006).
These bioactive compounds are metabolic intermediates of
primary metabolic processes, which are not essential for plant
growth but are used in plant defense responses and plant-insect
interactions and can stimulate human health. Clearly, vegetables
are an important part of the human diet as they replenish
our body with various nutrients, including vitamins, dietary
minerals, fibers, proteins, antioxidants, carbohydrates, small
amounts of fat, and phytochemicals with anticarcinogenic,
antiviral, antifungal, and antibacterial properties (Osagie and
Eka, 1998; Teng et al., 2021). While not a major energy source,
vegetables nourish our bodies with much-needed minerals
and vitamins. According to Food and Agriculture Organization
(FAO) statistics, vegetables are the source of dietary requirements
about 60% of vitamin A and 90% of vitamin C (Gruda, 2005).
Vegetables can earn extra income for farmers as they are seasonal
plants with higher yields per hectare than staple crops (Abewoy,
2018). The market value of vegetables is assessed by their quality;
FAO and WHO provide many quality attributes for grading
vegetables, e.g., color, size, shape, texture, aroma, shelf life,
and storability (Gruda, 2005). Vegetables are categorized into
two groups according to their growing season; warm-season
vegetables include capsicum, common bean, cucumber, cowpea,
okra, tomato, and mungbean (Peet and Wolfe, 2000), while
cool-season vegetables include brassica, broad bean, broccoli,
cabbage, cauliflower, lettuce, radish, spinach, soybean, pea, and
potato (Peet and Wolfe, 2000) (Table 1).

Like other crops, vegetables are also affected by environmental
changes that can render vegetable cultivation unprofitable.
Abiotic stresses, mainly the high temperature (heat stress.
HS), severely limit crop quantity, quality, nutritional status,
and production (Boote et al., 2005; Aleem et al., 2021).
High temperatures affect the overall growth and development

of vegetable crops by altering morphology, physiology, and
enzymatic activities. Heat stress (HS) accelerates phenology,
shortening the vegetative and reproductive stages. HS reduces
vegetable quality, such as changing the color and texture of
fruits (e.g., cucumber, pepper, and tomato) (Zipelevish et al.,
2000). In general, HS affects morphological, physiological, and
biochemical processes of the plant by hampering photosynthetic
activity, source-sink relationship, and altered enzymatic activities
(Bita and Gerats, 2013; Janni et al., 2020). The quality of
vegetables is also impacted by HS, through a change in color
and texture of fruit (e.g., cucumber, pepper, and tomato)
(Zipelevish et al., 2000). HS also affects the nutritional status
of vegetables; for instance, reducing lycopene in tomato (Gross,
1991) and β-carotene in spinach and lettuce (Oyama et al.,
1999) and increasing nitrate levels to harmful levels for
human consumption.

Due to climate change, in most regions of the world, rising
temperatures will decrease quantity and quality of vegetables
crops. Studies of Waithaka et al. (2013) suggested that changes in
the climate (increased temperatures) will also provide avenues to
grow crops in areas where they could not be grown previously.
Climate change scenarios further suggest that development
of crop and cultivar choice—especially for water-limited or
high-temperature areas—will be an important strategy to have
adequate yields under changing climate (Thomas et al., 2007).
Hence, targeted studies are needed to assess the impact of
high-temperature stress on the growth, yield, and quality (taste,
flavor, color, nutritional content) of vegetable crops, with suitable
agronomic strategies, developed to create heat-tolerant cultivars
or mitigate HS.

HEAT STRESS AND VEGETABLES

High temperatures adversely impact plant growth and
development (Hasanuzzaman et al., 2013). The constantly rising
average surface temperature due to global warming is stressful for
all plant growth and development phases, limiting metabolism
and productivity, particularly in tropical and subtropical
countries (Li et al., 2018). According to the newly released
sixth assessment report of IPCC (2021), temperature during the
twenty-first century is likely to increase by 1.5◦C of warming
within just the next two decades, and by 4.5◦C, depending on
the rate of greenhouse gas emissions. As plants are sedentary
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TABLE 1 | Threshold temperature for some vegetable crops at different stages of plant development.

Crop Family Threshold

temperature (◦C)

Response References

Cool season vegetables

Vegetative stage

Broccoli

(Brassica oleracea var. italica)

Brassicaceae 30◦C Reduced growth and development Hatfield and Prueger, 2015

Cabbage

(Brassica oleracea var. capitata)

Brassicaceae 30◦C Reduced growth and development Warland et al., 2006

Cauliflower

(Brassica oleracea var. botrytis)

Brassicaceae 25◦C Reduced leaf growth Lin et al., 2015

Reproductive stage

Brassica

(Brassica napus)

Brassicaceae 29◦C Reduction in flower number Morrison and Stewart, 2002

Broad bean

(Viciafaba)

Fabaceae 30/22◦C Accelerate Floral development Bishop et al., 2016

Broccoli

(Brassica oleracea var. italica)

Brassicaceae 35◦C Arrest of inflorescence development Björkman and Pearson,

1998

Seed filling/maturity stage

Chickpea

(Cicer arietinum L.)

Fabaceae 30◦C Reduced yield Summerfield and Wien,

1980

Lettuce

(Lactuca sativa)

Asteraceae 24◦C Reduced yield Jenni, 2005

Pea

(Pisum sativum)

Fabaceae 25.6◦C Reduced yield Pumphrey and Ramig, 1990

Potato

(Solanum tuberosum)

Solanaceae 30/20◦C Reduced yield Hancock et al., 2014

Warm season vegetables

Vegetative stage

Cucumber

(Cucumis sativus)

Cucurbitaceae 38◦C Impede growth and development Yu et al., 2022

Okra

(Abelmoschus esculentus)

Malvaceae 35◦C Decreased leaf size Hayamanesh, 2018

Reproductive stage

Capsicum

(Capsicum annuum L.)

Solanaceae 33◦C Inhibition of fertilization or early fruit

development

Erickson and Markhart,

2002

Common bean

(Phaseolus vulgaris)

Fabaceae 34/24◦C Reduced pollen viability Boote et al., 2005

Soybean

(Glycine max)

Fabaceae 26/20◦C Delay flowering and distort pod

development

Nahar et al., 2016

Tomato

(Lycopersicon esculentum)

Solanaceae 32/26◦C Abnormalities in male and female

reproductive tissues

Peet et al., 1998

Seed filling/maturity stage

Cowpea

(Vigna unguiculata)

Fabaceae 36/27◦C Reduced yield Craufurd et al., 1998

Okra

(Abelmoschsusesculentus)

Malvaceae 35◦C Reduced yield Hayamanesh, 2018

organisms, they acclimate to HS by using avoidance mechanisms
or programmed cell death (Mittler et al., 2012; Singh, 2013;
Zhang T. et al., 2020). Each vegetable crop has temperature
threshold for its growth and development; HS will occur beyond
the upper threshold for temperature (Wahid et al., 2007; Prasad
et al., 2008, 2017). HS impedes photosynthesis through reduced
carbon assimilation, ATP reduction, and oxidative damage
to chloroplasts, with simultaneous reductions in dry matter
accumulation and yield (Sharkey, 2005; Farooq et al., 2011). HS

adversely affects vegetative and reproductive plant parts (Bita
and Gerats, 2013); thus, the impact of HS varies depending on
the developmental stage and crop species (Prasad et al., 2017; Li
et al., 2018) (Table 2).

IMPACT ON VEGETATIVE GROWTH

Moderate high temperatures stimulate early vegetative growth
and accelerate physiological maturity (Nahar et al., 2015).
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TABLE 2 | Noticeable symptoms of heat stress in some vegetable crops.

Crop species Symptoms References

Cabbage (Brassica

oleracea var. capitata)

Loosening or bolting of heads,

smaller and tighter heads, rough

leaf texture

Chang et al., 2016

Capsicum (Capsicum

annuum)

Sun scald, yellowing and wilting Moretti et al., 2010

Cauliflower (Brassica

oleracea var. botrytis)

Leafy and uneven heads, puffy

buds, yellow eyes and leaves,

narrow leaves and hollow stems

Lin et al., 2015

Common bean

(Phaseolus vulgaris)

High fiber in pods, brown and

reddish spots in pods

Moretti et al., 2010

Lettuce (Lactuca sativa) Tip burn, bolting, loose puffy

heads, decreases β-carotene

content

Han et al., 2013

Potato (Solanum

tuberosum)

Secondary growth and heat

sprouting

Hancock et al., 2014

Spinach (Spinacia

oleracea)

Reduced leaf area and shoots

dry weight, reduces β-carotene

content

Chitwood et al., 2016

Tomato (Lycopersicon

esculentum)

Fruit cracking, sunscald,

hampered lycopene synthesis,

blossom end rot, internal white

tissue, blotchy ripening,

Moretti et al., 2010

During seed germination, HS reduces germination percentage
and seedling emergence, reduces radical and plumule growth in
germinated seedlings, and causes abnormal seedlings and poor
seedling vigor (Hasanuzzaman et al., 2013). At later stages of
vegetative growth, HS reduces plant height, leaf area, and leaf,
stem, pod, root, and total biomass (Kumar et al., 2013). Leafy
vegetables require proper growth and development of vegetative
parts for realizing only the yield but also the quality. In 45-
day-old cabbage plants exposed to 40◦C for 6, 12, 24, 48, or
72 h, HS caused loosening or bolting of heads, smaller and
tighter heads, and rougher leaf texture (Chang et al., 2016).
Likewise, in 30-day-old cauliflower plants exposed to 40◦C for
6, 12, 24, 48, 72, or 96 h, HS caused uneven heads, puffy buds,
yellow eyes, narrow leaves, reduced leaf growth, and reduced
petiole-to-blade ratio (Lin et al., 2015). HS (34.5◦C) further
delayed the curd induction stage and decreased the chlorophyll
content in cauliflower plants; effects were more distinct in heat
susceptible genotypes where they were unable to develop curd
at high temperature and continued their vegetative growth until
temperature fall below 30◦C (Aleem et al., 2021). Exposing 4- to
5-leaved lettuce seedlings to 42/37◦C for 3 days reduced seedling
germination and caused tip burn, rib discoloration, and bolting
(Jenni and Yan, 2009; Han et al., 2013). In spinach exposed to
35◦C for 21 days, HS decreased seed germination (Chitwood
et al., 2016). In potato, high temperature (30–40◦C) inhibited
tuber development and blocked the tuberization signal (Reynolds
and Ewing, 1989). Potato plants exposed to 30/20◦C (day/night)
for 1 week had reduced yields by 16% compared to plants
grown at 22/16◦C due to decreased carbon transport to the sink
organ (Hancock et al., 2014). Further, reduced yield has been
reported in 50 potato cultivars when exposed to heat stressed

conditions (35/28◦C) than control conditions (22/18◦C) (Zhang
G. et al., 2020). Likewise, in 6–7-leaved radish seedlings exposed
to 40◦C for 12 and 24 h, HS affected fleshy taproot growth and
development, reducing quality and yield (Zhang et al., 2013)
(Figure 1).

IMPACT ON REPRODUCTIVE GROWTH

Reproductive stage is highly sensitive to HS; even a single degree
increase for a few hours can be fatal for proper reproductive
growth, contributing to poor yields (Prasad et al., 2017).
However, studies on reproductive tissues are difficult to assess
because gamete development and fertilization are major events
that occur over short periods. Here, we categorize the effects
of HS in vegetables during three stages of reproduction: pre-
fertilization (flower bud initiation, flowering, male and female
gametophyte development), fertilization (pollen dehiscence,
pollination, pollen reception by stigma, pollen tube growth and
fertilization), and post-fertilization events (fruit/pod set, seed
development, seed filling) (Figure 2; Table 3).

Pre-fertilization Events
Flower Bud Initiation
High-temperature stress causes flower bud abortion and
abscission of reproductive organs inmany crop species, including
tomato (Levy et al., 1978; Pressman et al., 2002; Sato et al.,
2002), common bean (Konsens et al., 1991), pea (Guilioni
et al., 1997), brassica (Angadi et al., 2000), capsicum (Aloni
et al., 2001; Erickson and Markhart, 2002), resulting in severe
yield losses. Common bean grown at 32/27◦C (from flowering
to pod maturity) experienced greater abscission and drop of
flower primordia (2–5mm) and flower buds (>5mm) than at
27/17◦C (Konsens et al., 1991). In capsicum, high-temperature
stress (33◦C for 120 h) affected flower buds (<2.5mm) and
early pistil development less than stamen development, whereas
buds (3–4mm) during tetrad formation and dissolution were
highly sensitive to elevated temperature, leading to pollen sterility
(Erickson andMarkhart, 2002). Flower and flower bud abscission
also occurred in heat-stressed (35/15◦C for 7 days at early stage)
brassica species (Angadi et al., 2000). HS (32/28◦C) severely
affected flower initiation and development in tomato (Levy
et al., 1978; Sato et al., 2002). HS (32/26◦C for 8 days before
anthesis) in capsicum reduced and altered sucrose mobilization
and utilization by flower buds and flowers, resulting in fruit drop
and abscission and thus reducing yield by 17% compared to
normal sown (28/22◦C) (Aloni et al., 2001).

Flowering
HS during flowering reduces flower numbers by damaging flower
organs, reducing yield (Morrison and Stewart, 2002). HS also
decreases the number of flowering branches and thus flower
numbers per plant (Harsant et al., 2013). Damage to flower
organs has been reported in many crops, including chickpea
(Tickoo et al., 1996), common bean (Suzuki et al., 2001; Omae
et al., 2012), and mungbean (Kaur et al., 2015). Early flowering
and flower abortion are other impacts of HS, as reported in pea
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FIGURE 1 | A schematic representation of the effects of heat stress (HS) on vegetative and reproductive growth stages that reduce yield. Heat stress at the vegetative

stage promotes leaf damage, rib discoloration in leafy vegetables, biomass reduction in food legumes, and secondary tuberization in potato. Heat stress at the

reproductive stage negatively affects the overall route from Microspore Mother Cell (MMC) development to fruit setting/seed filling through pollination and fertilization.

The male gametophyte is more prone to heat stress, leading to poor pollen germination, pollen load, and pollen tube growth inside the style and inability to fertilize the

ovule at the required rate.

(Guilioni et al., 1997), tomato (Sato et al., 2004), common bean
(Omae et al., 2012), and mungbean (Sharma et al., 2016).

Male Gametophyte Development and Function
Threshold temperatures needed to impose damages in
reproductive tissues are less than the one needed to cause
injury to vegetative tissues. Male gametophytes are more
sensitive to HS than female gametophytes, with lower threshold
temperatures than vegetative tissues. HS damage can occur

pre-pollination or post-pollination, impairing fertilization and
ultimately reducing seed set (Sage et al., 2015). Pre-pollination
events that are highly susceptible to high temperature are (1)
meiosis I and meiosis II of the microspore mother cell (Young
et al., 2004), (2) development and subsequent dissolution of the
tapetum layer (Farooq et al., 2017), and (3) exine and intine
formation (Nahar et al., 2016). Post-pollination events affected
by HS are (1) pollen load, (2) pollen germination, (3) pollen tube
growth, and (4) fertilization (Hedhly et al., 2009; Sita et al., 2017).

Frontiers in Plant Science | www.frontiersin.org 5 June 2022 | Volume 13 | Article 878498

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Chaudhary et al. Heat Tolerance in Vegetables

FIGURE 2 | Generalized overview of the effects of heat stress (HS) on the reproductive stage of plants, broadly categorized into three events: pre-fertilization,

fertilization, and post-fertilization. Heat stress affects the flowering stage by promoting early flowering and flower bud/flower abortion. During male gametophyte

development, heat stress disrupts meiosis and decreases tapetum growth, resulting in shriveled and non-viable pollen grains. During female gametophyte

development, heat stress reduces style and ovary size and callose deposition, reduces stigma receptivity, and causes early embryo abortion. Moreover, immature

dehiscence and malformed pollen grains result in poor pollination and fertilization. Heat stress during post-fertilization decreases the seed filling rate and disturb

source–sink relations, potentially reducing yield manifold.

The sensitivity of male gametophytes to HS varies according to
plant species (Li et al., 2018).

HS reduced fertility of microgametophytes in brassica (Rao
et al., 1992) and impaired meiosis in tomato, damaging pollen
germination and pollen tube growth (Foolad, 2005). In soybean,
HS reduced pollen production, germination, tube elongation,
and impaired pollen development (no apertures and disturbed
exile ornamentation) (Salem et al., 2007; Nahar et al., 2016;
Djanaguiraman et al., 2019). In capsicum, HS produced shrunken
and empty microspores without an exine layer (Erickson and
Markhart, 2002). Shriveled pollen grains under HS may be due to
decreased starch accumulation in anther walls and pollen grains
reducing soluble sugars for their development (Pressman et al.,
2002).

Female Gametophyte Development and Function
Female gametophytes are relatively more tolerant to HS than
male gametophytes (Hedhly, 2011). HS impairs megaspore

mother cell development by impeding meiosis, reducing
pistil size, reducing stigma receptivity due to poor pollen
adhesion, reducing stigmatic papillae for holding pollen grains,
interrupting nutrient transport from style to pollen impeding
pollen tube germination and growth, as noticed in chickpea
(Kaushal et al., 2016), bean (Porch and Jahn, 2001) and cowpea
(Ahmed et al., 1992). HS, reduced callose deposition in lentil
styles (Bhandari et al., 2017), reduced the amount of attractants
from ovule synergids cells that misguide the pollen tube (Saini
et al., 1983) to severely affect the fertilization. Furthermore,
HS damages the embryo sac and causes early embryo abortion,
likely arresting fertilization; for instance, in tomato, HS exposure
(40◦C for 3 h) for 4 days before anthesis resulted in aborted
embryos with degenerated eggs and synergids (Iwahori, 1965).
Abnormalities in embryo sac development have also been
observed in brassica, reducing seed set and yield (Polowick and
Sawhney, 1988). HS also reduced ovule viability in common
beans (Ormrod et al., 1967; Suzuki et al., 2001). Unlike, male
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TABLE 3 | Effect of heat stress on reproductive tissues of some vegetable crops.

Crop Heat stress Effect References

Brassica

(Brassica napus)

35/23◦C Reduced in-vitro pollen germinability, pollen viability, and thinner pollen

tubes with stunted & convoluted morphology.

Young et al., 2004

Microspore and pollen development are sensitive to heat stress. Sato et al., 2002

Bell pepper

(Capsicum annuum)

33◦C Pollen development (during megaspore mother cell (MMC) meiosis) is

greatly reduced.

Reduced pollen viability, reduced anther dehiscence, reduced mature pollen

grains, slightly swollen and deformed (affect pollen morphology) and without

exine layer.

Erickson and Markhart, 2002

Broad bean

(Vicia faba)

34/26◦C Pollen germination Bishop et al., 2016

Broccoli

(Brassica oleracea var. italica)

35◦C Arrested the development of flower buds Björkman and Pearson, 1998

Chickpea

(Cicer arietinum L.)

40/25◦C Pollen germination, pollen tube growth

Pod set

Devasirvatham et al., 2013

Common bean

(Phaseolus vulgaris)

33/27◦C

33/29◦C

Anther indehiscence and pollen sterility

Degeneration of tapetal cells.

Gross and Kigel, 1994

Cowpea

(Vigna unguiculata)

33/30◦C Another development Ahmed et al., 1992

Mungbean

(Vigna radiata L.)

>40/28◦C Reduced pollen viability, pollen germination, pollen load, stigma receptivity

and ovule viability

Sharma et al., 2016

Okra

(Abelmoschus esculentus)

45◦C Incomplete dehiscence, shrunken pollen, smaller anther sacs, reduced

pollen number, pollen viability, and pollen germination.

Hayamanesh, 2018

Pea

(Pisum sativum)

36/24◦C Decreased pollen germination, pollen tube growth, pod length, and seed

number per pod.

Jiang et al., 2015

Soybean

(Glycine max)

38/28◦C Decreased in-vitro pollen germination. Djanaguiraman et al., 2013b

Tomato

(Lycopersicon esculentum)

32/26◦C Reduced number of pollen grains, pollen viability, and pollen germination. Sato et al., 2002

31/25◦C Reduced number of pollen grains, pollen viability, and pollen germination. Firon et al., 2006

29◦C Decreased fruit number, fruit weight/plant and seed number/fruit Peet et al., 1998

gametophyte, detailed impacts of HS on female gametophyte
organs are, however, barely known. This may be because of the
reason that female gametophyte is protected inside the ovary and
sheltered and difficult to reach and dissect.

Fertilization
High-temperature stress (>30◦C) negatively impacts male and
female gametophyte development, leading to poor development
and deformities of reproductive tissues, limiting the fertilization
process in many plant species (Saini and Aspinall, 1982; Prasad
et al., 2017). HS also reported to affect the flower pollination rate
in tomato resulting in low fruit set with reduced lycopene content
and fruit quality (Alsamir et al., 2021) Indehiscent anthers, non-
viable pollen, and poor stigma receptivity are possible causes
for fertilization failure and sterility imposition in many crops,
including chickpea (Kumar et al., 2013), soybean (Board and
Kahlon, 2011), mung bean (Kaur et al., 2015), tomato (Pressman
et al., 2002), common bean (Porch and Jahn, 2001), and capsicum
(Erickson and Markhart, 2002).

Post-fertilization Events
Fruit/Pod Set
High-temperature stress affects the proportion of flowers
forming fruits (fruit set) (Prasad et al., 2000). HS (38/30◦C)

markedly decreased fruit weight (51.6%), fruit diameter (25%),
fruit length (30%), and seed number per fruit (57%) in
sweet pepper compared with normal temperature (33/21◦C)
(Thuy and Kenji, 2015). Peet et al. (1998) reported that high
temperature (29◦C) decreased fruit number (10%), total fruit
weight/plant (6.4%) and seed number/fruit (16.4%) inmale fertile
tomatoes compared to optimum temperature (25◦C). The high
temperature impaired pollen development and release, leading
to reduced fruit set in male-fertile tomatoes compared with
male-sterile lines. Similarly, fruit set and fruit size in tomato
plants declined at 29/23◦C compared to 24/18◦C (Saha et al.,
2010). HS seriously damaged fruit set in tomatoes exposed to
40◦C for 4 h before anthesis and reduced the pollen germination
from 79.5% (at 30/17◦C) to 30% and pod set from 63% (at
30/17◦C) to 14.9% (Rudich et al., 1977). In Common bean, high
temperature (32/27◦C) reduced the pod set from 17 to 97%, seed
set by 39–98%, and seeds/pod by 42 to 73% compared to control
temperature (22/17◦C) (Gross and Kigel, 1994). Similar finding
on bean plants exposed to even higher temperatures (40/30◦C)
had fewer filled pods, parthenocarpic pod development, sickle-
shaped pods, reduced seed size, and fewer seeds/pod and
total seeds than control condition (Prasad et al., 2002; Soltani
et al., 2019). In peas, high temperature (32◦C for 6 h) at the
reproductive stage increased the abortion rate of reproductive
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organs (flower buds and young pods) from 20 to 50% which
reduce seed yield (Bueckert et al., 2015).

Seed Development and Seed Filling
Seed formation and seed filling are the last phases of the life
cycle of seed plants; and; HS drastically affects seed development
and the seed-filling phase, increasing the fraction of abnormal
and shriveled seeds (Sehgal et al., 2018). In common bean, a
linear relationship between temperature and grain weight was
recorded resulting in a significant decrease in seed weight, i.e.,
0.07 g per ◦C when temperature was raised beyond 31/21◦C
(Prasad et al., 2002). Seed development starts from cell division
and, when seed cells are fully formed, storage reserves start
to accumulate (Egli, 1998). Direct effects of HS on division
and size of endosperm cells are well-documented (Commuri
and Jones, 2001). Reduced division and size of endosperm cells
results in accumulation of fewer carbohydrates, proteins, lipids,
and starch accumulate in developing seeds. HS also accelerates
the rate and duration of seed filling, resulting in abnormal
seeds and significant yield losses (Farooq et al., 2017). Not
only yields, HS affects seed quality characteristics, reducing
seed number and size, degrading nutrient composition, and
decreasing seed viability, through impaired nutrient uptake,
assimilate partitioning, and translocation (Prasad et al., 2008).
Starch, proteins, and lipids are the principal reserves transferred
from the main plant to developing seeds (Alencar et al., 2012),
but HS limits their synthesis and translocation during seed
filling, affecting grain quality (Farooq et al., 2017), and could
be due to decreased enzyme activity. The activity of starch
synthesizing enzymes, such as starch synthase, sucrose synthase,
and invertase, decrease under HS, as reported in pea (Smith and
Denyer, 1992) and chickpea (Kaushal et al., 2013). Similarly, HS
disrupts seed storage proteins, such as β-glycocynin and globulin
11S in soybean (Hashizume and Watanabe, 1979; Iwabuchi
and Yamauchi, 1984), and sucrose-synthesizing enzymes and
proteins that aid in sucrose translocation. Reduced sucrose
synthase activity affects the sucrose and starch ratio, decreasing
the transfer of soluble carbohydrates to developing ovules, as
reported in pea (Jeuffroy et al., 1990) and cowpea (Ismail and
Hall, 1999). Reduced crop duration and seed filling has been
correlated with an inefficient light capture ability (canopy growth
rate) in small plants, decreasing the photosynthetic rate and
thus seed size, as reported in soybean (Board and Kahlon,
2011). Prasad et al. (2002) reported a linear relationship between
temperature and grain weight in common bean, with seed weight
decreasing by 0.07 g per ◦C at temperatures above 31/2.

PHYSIOLOGICAL ASPECTS AND
CELLULAR FUNCTIONS UNDER HEAT
STRESS

Membranes
HS disrupts the organization of the plasma membrane by
increasing unsaturated fatty acids, thus making the membrane
more fluid (Hofmann, 2009), and influencing the cellular
functions by initiating a signal cascade (Firmansyah and
Argosubekti, 2020; Hassan et al., 2021). HS also accelerates the

kinetic energy and movement of various molecules through the
membrane. Further, protein denaturation and altered tertiary and
quaternary structure of membrane proteins increase membrane
fluidity (Savchenko et al., 2002). Thus, HS disturbs primary
processes of plant-like photosynthesis and respiration due to
increased permeability or solute leakage from cells (Figure 3).
Therefore, cell membrane thermostability trait used to evaluate
HS on plants and identify heat-tolerant and heat-sensitive
genotypes; for example, in soybean (Martineau et al., 1979),
potato (Chen et al., 1982), and cowpea (Ismail and Hall,
1999). The effectiveness of cell membrane thermostability
assays depends on the tissue type and stress type used for
plant adaptation. It is also unknown whether membrane
thermostability is linked to other plant characteristics that confer
heat tolerance, such as growth and yield.

Photosynthesis
Photosynthesis is highly sensitive to HS and photosynthetic
activity reduces drastically under HS. Studies have detailed
the affected photosynthetic mechanisms that ultimately reduce
the photosynthetic capacity of plants (Berry and Bjorkman,
1980; Sharkey, 2005). Thylakoid reactions, Rubisco activity, and
photosynthetic pigments are generally disturbed by HS. HS
primarily affects the physical state and structure of the thylakoid
membrane by triggering thylakoid leakiness and unstacking
thylakoids, damaging the D1 protein of PSII (Sharkey, 2005). To
counterbalance these reactions, zeaxanthin synthesis increases,
affecting the normal state of thylakoids (Havaux, 1996). HS
disturbs the electron flow between the two photosystems (PSI
and PSII) and reduces the photosynthetic efficiency of plants.
HS also accelerates the phosphorylation of light-harvesting
complex (LHCII) and disconnects it from PSII core complex,
thus decreasing its turnover rate, but increasing the turnover rate
of PSI (Wise et al., 2004). HS dephosphorylates core proteins
(D1, D2, and CP43), deactivating PSII (Yamamoto et al., 2016).
HS alters the fluorescence induction parameters, measured as
the Fv/Fm ratio; this ratio helps to determine the quantum
efficiency of PSII and indicates the rate of linear electron flow
and overall photosynthetic performance of plants (Jamil et al.,
2007). HS decreased chlorophyll a fluorescence, PII quantum
yield, photochemical quenching, and increased respiration rate
in soybean (Djanaguiraman et al., 2013a).

Along with thylakoid reactions, HS triggers the deactivation
of Rubisco (Crafts-Brandner and Salvucci, 2000). Rubisco
being dual enzyme catalyses the carboxylation of ribulose−1-5-
bisphosphate in the photosynthetic Calvin cycle and oxygenation
in the photorespiratory pathway; the ratio between two reactions
governs the photosynthetic efficiency of plant. But the elevated
temperature inhibits the CO2 fixation and increases the
oxygenase activity and reduces photosynthetic rate (Crafts-
Brandner and Salvucci, 2000). Rubisco activation is not only
associated with pH and Mg2+ concentration of stroma but
also with Rubisco activase (RA); an ATPase. RA induces
the activation of the Rubisco by increasing the proportion
of its active sites and brings conformational changes that
allow CO2 and Mg2+ for activation and carbamylation. High
temperature can disturb the pH and Mg2+ concentration of
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FIGURE 3 | Model representing morphological, physiological, biochemical, and molecular characteristics of plants under heat stress. Morphological damages at

vegetative and reproductive stages can be visualized as direct measures of plant stress. At the physiological level, these damages are associated with leaky plasma

membrane, altered transpiration, chlorophyll damage, reduced photosynthesis, respiration, and nodulation rate. Disturbed physiological processes can promote

oxidative stress damage observed through stress indicators like increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) content. Protein damage and

impaired carbon and nitrogen metabolism due to impaired enzymatic activities further exaggerate stress levels at the biochemical level. Heat shock proteins (HSPs),

heat shock factors (HSFs), and quantitative trait loci (QTLs) related to heat stress responses of plants may play a key role in the plant adaptation. HSPs and HSFs have

a central role in regulating the activity of various genes that amplify the production of antioxidants and osmolytes and are helpful governing thermotolerance.

stroma, interfering with the carbamylation step of Rubisco
activation (Weis, 1981a,b) and also caused RA dissociation
because of its poor structural stability and heat labile nature
(Demirevska-Kepova and Feller, 2004). Few reports have
noticed that heat stress affects the photosynthesis through
heat sensitivity of Rubisco and RA activity, for instance in
tomato, heat stress (40◦C for 8 h for 6 days to 3 weeks old
plant) decreased the accumulation of Rubisco enzyme’s isoforms
(Parrotta et al., 2020), as in pea (Haldimann and Feller, 2005),
potato (Cen and Sage, 2005) and spinach (Zhao Q. et al.,
2018).

Pea plants exposed to HS reduced chlorophyll biosynthesis
due to the destruction of various enzymes involved in
biosynthetic pathways (Dutta et al., 2009; Aleem et al.,
2021). HS decreased the activity of first enzyme of the
biosynthetic pathway, 5-aminolevulinate dehydratase, in

cucumber (Tewari and Tripathy, 1998). Decreased chlorophyll
content, Chl a/b ratio, and chlorophyll/carotenoid ratio have
been reported in many crops under HS (Aien et al., 2011)
(Table 4). Similarly, HS stress causes pre-mature leaf senescence
in soybean leaves which results in decreased photosynthesis
primarily due to decreased chlorophyll content, higher reactive
oxygen species, lower antioxidants, and increased thylakoid
membrane damage (Djanaguiraman and Prasad, 2010). HS
increased ethylene production in leaves which was one of the
reasons of premature leaf senescence in soybean (Djanaguiraman
and Prasad, 2010). Detailed anatomical studies showed that HT
stress significantly increased the thicknesses of the palisade and
spongy layers and the lower epidermis (Djanaguiraman et al.,
2013a). In addition, HT stress damaged the plasma membrane,
chloroplast membrane, thylakoid membranes; mitochondrial
membranes, cristae, and matrix were distorted which led
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TABLE 4 | Effect of heat stress on photosynthesis in some vegetable crops.

Crop species Temperature Effect References

Broad bean

(Vicia faba)

42◦C Decreased content of Chl a, Chl b, and carotenoids Hamada, 2001

Cabbage

(Brassica oleracea var. capitata)

40◦C Decrease in Fv/Fm values and photosynthetic efficiency Chang et al., 2016

Cauliflower

(Brassica oleracea var. botrytis)

40◦C Significant reduction in chlorophyll fluorescence Fv/Fm
Inhibition of CO2 fixation and damage to photosynthetic electron

transport at site of PS II

Lin et al., 2015

Chickpea

(Cicer arietinum L.)

40/30◦C Reduced chlorophyll content Kaloki et al., 2019

Common bean

(Phaseolus vulgaris)

45◦C Partially-reversible inactivation of PS-II and dissociation of light

harvesting complex from reaction center of PS-II

Destruction of PS-II reaction center and formation of

quenching species

Costa et al., 2003

Cowpea

(Vigna unguiculata)

30/25◦C Reduced rate of photosynthesis McDonald and Paulsen, 1997

Cucumber

(Cucumis sativus L.)

33–48◦C Decline in PS II activity and photochemical quenching

Decreased net photosynthetic rate

Ding et al., 2016

42◦C Chlorophyll biosynthesis Tewari and Tripathy, 1998

Mungbean

(Vigna radiata)

>40/28◦C Decline in PS II activity Sharma et al., 2016

Okra

(Abelmoschus esculentus)

>39◦C Adverse effects on the photosynthetic apparatus Hayamanesh, 2018

Pea

(Pisum sativum)

>40◦C Decreased photosynthetic electron transport

Complete suppression of photosynthetic electron transfer

Haldimann and Feller, 2005

45◦C Decreased CO2 assimilation and O2 evolution Georgieva et al., 2000

Potato

(Solanum spp.)

25◦C Decreased photosynthetic rate

Decreased Chl a+b and carotenoid content

Aien et al., 2011

38◦C Rapid and irreversible loss of PS II Aien et al., 2011

Soybean

(Glycine max)

38/28◦C

38/30◦C

Decrease in leaf photosynthetic rate by 20.2%

Significantly affects net photosynthesis and total chlorophyll

content

Decreased chlorophyll content, photosynthetic rate,

Nahar et al., 2016

39/20◦C Severely damaged PSII site Li et al., 2009

Spinach

(Spinacia oleracea)

40◦C Inhibition of oxygen evolution

Cleavage of D1 protein of PSII

Yoshioka et al., 2006

Tomato

(Solanum lycopersicum)

36/38◦C Decreased Fv/Fm values and PS II damage

Decreased net photosynthetic rate

Decreased chlorophyll content

Zhou et al., 2017

to decreased photosynthesis (Djanaguiraman et al., 2013a)
(Figure 3).

Nitrogen Content, Fixation and Nodulation
Nitrogen is one of the main nutrients required by the plant
for proper growth, development and productivity. It is the
constituent of various important organic compounds like amino
acids, proteins, nucleic acids, enzymes, and the chlorophyll
molecule (Christophe et al., 2011). Nitrogen content in the plant
measured as nitrate, ammonium ions, and proteins. Besides
performing basic roles in plants, its metabolism is also very
crucial for heat tolerance because it increases the osmolyte
content and antioxidant enzyme activity (Ru et al., 2022).
Studies have also shown their role in promoting the HSP
production (Heckathorn et al., 1996). Osmolytes like proline
and quaternary ammonium compounds, being nitrogen rich and

accumulate in plants under heat stress conditions (Rivero et al.,
2004). Ammonium ion and proline accumulation confer heat
tolerance to tomato and promoting higher biomass production
(Rivero et al., 2004). During the reproductive period, nitrogen
concentration successively increases when temperatures rise
for example in pea, when high temperature occurs during or
after flowering seed N concentration is increased (Larmure
et al., 2005). Similarly, in soybean, seed N concentration
increases during the reproductive period at temperature 40/30◦C
(Thomas et al., 2003). Increases in the accumulation of proteins;
level of globulin protein storage causing a reduction of the
albumin/globulin content in mature seeds (Hurkman et al.,
2009). In pea, the final level of vicilin storage proteins was higher
under heat stress (Bourgeois et al., 2009). However, in tomato
roots, it has been reported that HS disturbs enzymes involve
in nitrogen metabolism (nitrate and ammonium assimilation)
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thereby decreasing total protein content and level of nutrient
uptake and assimilation (Giri et al., 2017). Further, studies on the
contrasting genotypes of brassica revealed that HS (40/30◦C for
7 days) negatively affected the activities of nitrogen assimilation
enzyme including Glutamate synthase (GOGAT), glutamine
synthetase (GS), glutamate dehydrogenase (GDH), more in heat
sensitive genotype (WS-6) as compared to heat tolerant genotype
(WS-1). These enzymes help in possessing better photosynthetic
nitrogen use efficiency (Yuan et al., 2017).

Symbiotic nitrogen fixation in leguminous crops depends on
the presence of appropriate Rhizobium species in the vicinity of
root zone, however, almost all processes starting from rhizobial
survival to host infection and nitrogen fixation dependmainly on
the environmental factors, such as soil temperature (Bordeleau
and Prévost, 1994). High temperature interferes with almost
all processes of symbiotic nitrogen fixation, directly as well as
indirectly, soil temperature affects not only the rhizobial survival
in the root zone but also the exchange of molecular signals
between two symbiotic partners (Alexandre and Oliveira, 2013).
Rhizobial strains have an optimum soil temperature (25–30◦C)
for their growth and nitrogen fixing ability and Rhizobia are
greatly affected by high soil temperature. However, optimum
temperature varies with the crop species, for instance, in soybean,
weak rhizobia were formed at 40◦C and no rhizobia were isolated
at 45◦C (Chen et al., 2002). HT interferes directly with nodule
development as it hampers nodule development and increases
nodule senescence (Aranjuelo et al., 2007). HS affects indirectly
the nitrogen fixation by inhibiting the formation of root
hairs, infection thread formation, reducing the nodulation sites,
adherence between bacteria and root hair (bacterial infection),
and bacteroid formation (Zahran, 1999; Hungria and Vargas,
2000; Alexandre and Oliveira, 2013).

Elevated temperature also affects nodule growth rate, nodule
size, and nodule fixation ability, as reported for common bean
exposed to HS (35 and 38◦C/8 h/day) at the flowering stage
(Hungria and Franco, 1993). Another study showed that at 47◦C
temperature no nodules were formed in common bean (Karanja
and Wood, 1988). Studies have shown that nodulation ability
varies inversely with temperature, and legume species differ
in their temperature endurance; for instance, common bean is
more sensitive to temperature stress than cowpea and soybean
for nitrogen fixation (Piha and Munns, 1987). In cowpea, the
optimum temperature for nodule growth and development is
30–36◦C; temperatures above 40◦C lead to fewer or no nodules
(Day et al., 1978). In common bean, nodules that formed at high
temperature (≥35◦C) were inefficient and unable to fix nitrogen
(Hungria and Franco, 1993). Piha and Munns (1987) noted that
nodules formed at 35◦C were small and had low nitrogenase
activity. The optimum temperature for nodule growth is 20◦C
for pea and 25–30◦C for soybean (Michiels et al., 1994).
HS decreased nodulation ability in mungbean (Sharma et al.,
2016). In common bean, HS affected nitrogen fixation due to
decreased activity of enzymes involved in nitrogen metabolism,
such as dinitrogenase complex, glutamine synthetase (GS), and
glutamine synthase (GOGAT), decreasing the concentration of
ureids-N in nodules and xylem sap (Hungria and Kaschuk,
2014). Prasad et al. (2000) observed that high soil temperatures
(35◦C) significantly decreased number of nodules and nodule dry

weight per plant compared to optimum soil temperature (25◦C)
in peanut.

C.N ratio: Plant growth and defense are both fuelled by
compounds synthesized from a common pool of carbon and
nitrogen, implying the existence of a competition for carbon and
nitrogen allocation to both metabolisms. The ratio of carbon to
nitrogen (C: N) of an organ is often regarded as a convenient
indicator of growth and quality. Almost a century ago, plant
nutrition was considered a crucial factor in controlling flowering
time. According to Klebs (1913), a high endogenous carbon:
nitrogen ratio promotes flowering, while a low carbon: nitrogen
ratio promotes vegetative growth. Inferred from the fact that
(a) conditions favoring photosynthetic CO2 fixation generally
accelerate flowering and (b) high nitrogen intake (fertilizers)
might delay or reduce reproductive development in some plants
(Bernier et al., 1981). The flowering percentage increased when
NH4NO3 concentration decreased from 16.5 to 8 g l−1, in tomato
plant (Dielen et al., 2001). Royer et al. (2013) revealed that
C:N ratio in the pool of resources in the total plant, were
correlated with the concentrations of diverse compounds of
the primary and secondary metabolisms in young tomatoes.
Under HS, Peet et al. (1997) found that in tomato plants, the
carbon and nitrogen metabolism get imbalanced, and stem and
petiole elongation consume too much nutrients, which in turn
reduces the dry matter storage of the plant, affecting tomato
quality and yield. Soil mixed with dry powder of Sesbania plant
(leaves + tender stems; C: N ratio 15.4) plays effective role in
enhancing resistance and resilience (stability) of soil microbial
activity against heat stress (Kumar et al., 2014). Heat stress may
accelerate leaf senescence and increase respiration rate which
consequently decreases plant N and C availability for seeds and
shorten the duration of seed filling period in soyabean (Egli and
Wardlaw, 1980). Thus, balanced C:N ratio plays an important
role in plant physiological process. Similarly, Larmure et al., 2005
demonstrated that the lower seed N concentration in pea plant
at the average temperature range (13–23◦C) can be explained by
prolonged duration of the seed-filling associated with the lower
seed N concentration, higher C availability for the seeds. Because
the rate of seed N accumulation per degree-day mainly depends
on N availability to seed filling, the rate of N accumulation was
higher at 25/20◦C than at lower temperature. HS reduces seed
size and modifies the C:N ratio in the period of seed formation in
pea (Guilioni et al., 2003).

Antioxidants and Oxidative Stress
Severe HS generates ROS, such as hydrogen peroxide (H2O2)
and superoxide radical (O−

2 ), as byproducts of the aerobic
metabolism, which adversely affect cellular metabolism,
such as lipid membrane peroxidation, and damage nucleic
acids and proteins (Bita and Gerats, 2013). Plants respond
to ROS production by activating enzymatic and non-enzymatic
ROS scavenging systems (Bita and Gerats, 2013). The main
ROS scavenging enzymes are superoxide dismutase (SOD),
catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX)
glutathione reductase (GR), whereas non-enzymatic chemical
are ascorbic acid (ASC) and glutathione (GSH) (Suzuki et al.,
2012). SOD helps scavenge O−

2 whereas CAT and POX degrade
H2O2. Elevated levels of these antioxidants are crucial in
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imparting thermotolerance in plants (Awasthi et al., 2014). In
soybean, ROS accumulation (mainly H2O2 and O−

2 ) due to
HS is associated with decreased enzyme activities of various
antioxidants (Djanaguiraman et al., 2005, 2013a). Similarly, GR
and CAT activities decreased in common bean under oxidative
stress (Babu and Devaraj, 2008). Likewise, decreased APX and
GR expression occurred in mungbean exposed to HS (Sharma
et al., 2016). However, relationship between antioxidant enzymes
and HS is far more complex in tomato where activity of SOD,
APX increased and CAT activity decreased (Zhou et al., 2014).
This complexity was also evident in capsicum where, NADPH
oxidase and CAT activity increased at high temperature (Gulen
et al., 2012). In chickpea, tolerant genotypes had higher SOD,
CAT, APX, and GR activity than sensitive genotypes under
HS (40/30◦C and 45/35◦C) (Kumar et al., 2013). Moderate HS
increases the expression of various enzymatic antioxidants, while
severe HS suppresses it (Wilson et al., 2014).

DEFENSE RESPONSES

In addition to antioxidants, plants endure HS by activating major
defense mechanisms which are mainly comprised of increased
production of heat shock proteins (HSPs) and compatible
solutes (Sakamoto and Murata, 2002; Wahid et al., 2007;
Mittler et al., 2012; Khan and Shahwar, 2020). HSPs are the
molecular chaperones that protect the misfolded proteins from
irreversible aggregation, sorting, translocation, and degradation,
important for establishing cellular homeostasis in normal and
stressed conditions (Vierling, 1991). There are five classes
of HSPs categorized according to their molecular weight:
HSP100, HSP90, HSP70, HSP60, and Small HSP (sHSP), and
located in the cytoplasm as well as cellular orgenelles, nucleus,
chloroplast, mitochondria, and endoplasmic reticulum (Wang
et al., 2004). Different chaperone families though have a
peculiar role but coordinate cellular homeostasis. Chaperones
also maintain crosstalk with signaling molecules, antioxidants
(acerbate peroxidase), and osmolytes (trehalose, proline, glycine
betaine) (Wang et al., 2004; Kang et al., 2022). Various
reports have confirmed accumulation of all HSP families in
different vegetables and food legumes under HS, with greater
accumulation of sHSPs than other HSPs, as reported for spinach
(Guy and Li, 1998), tomato (Preczewski et al., 2000), soybean
(Ortiz and Cardemil, 2001), common bean and cowpea (Simões-
Araújo et al., 2003), potato (Ahn et al., 2004), cabbage (Park
et al., 2013), pea (Talalaiev and Korduym, 2014), faba bean
(Kumar et al., 2015), capsicum (Li et al., 2015), chickpea (Meena
et al., 2017), and broccoli (Lin et al., 2019). Accumulation of
these proteins helps plants to re-establish homeostasis under HS
conditions. Hence, the expression level of HSPs and HSFs could
be manipulated genetically to improve heat tolerance ability.
Overexpression of HSPs facilitates transformed cells to endure
HS better than non-transformed cells (Grover et al., 2013); for
instance, overexpression of sHSP (HSP21) in transgenic tomato
imparts stable PSII, shielding photosynthesis from temperature-
dependent oxidative stress and accumulating more carotenoids
under HS (Neta-Sharir et al., 2005). Furthermore, overexpression
of HSFs facilitates the expression of HSPs; for example,
overexpression of HSFA1 in transgenic soybean enhanced the

expression of GmHSP70 leading to thermotolerance (45◦C) (Zhu
et al., 2006). Similarly, overexpression of transcription factor
(CaWRKY40) enhanced thermotolerance in capsicum (Dang
et al., 2013).

The role of various osmolytes, including proline and
glycine betaine, in imparting heat tolerance is well-documented
(Sakamoto and Murata, 2002). Osmolytes are low molecular
weight compounds that can buffer cellular redox potential under
HS. Proline is a well-studied osmolyte, concentration of which
increases by several-fold under stress conditions. A heat-tolerant
cabbage genotype accumulated more proline (and soluble sugars
and antioxidants) than a sensitive genotype (Song et al., 2019).
Similarly, Paul et al. (2014) even suggested using increased
proline and soluble sugars in potato under HS can used as
markers for selecting heat-tolerant genotypes. Increasing HS
gradually increased proline and soluble sugar contents in lettuce
seedlings, indicating heat tolerance (Han et al., 2013). The role of
proline in thermotolerance was also confirmed using exogenous
proline applications. Kaushal et al. (2011) noted that exogenous
treatment of proline induced thermotolerance in chickpea by
protecting the enzymes involved in carbon and antioxidant
metabolism. Glycine betaine is another compound that confers
heat tolerance; Aien et al. (2011) suggested that glycine betaine
imparts heat tolerance in potato genotypes under HS conditions.

Heat Avoidance
Heat avoidance through transpiration cooling is the best
strategy adopted by plants to minimize the losses (Julia and
Dingkuhn, 2013) Under moderately HS conditions, plants can
accelerate growth to promote plant thermonastic responses and
architectural changes to move susceptible parts away from soil
heat flow or to improve evaporative cooling (Havko et al.,
2020). In soybean, tomato, or cabbage, moderately high ambient
temperature induces hypocotyl elongation, and tomato displays
leaf hyponasty (Quint et al., 2016; Casal and Balasubramanian,
2019; Vu et al., 2019). Pea canopies architecture and leaf type
as traits of heat resistance can avoid heat and maintain a lower
canopy temperature as leafed cultivars have greater leaf surface
area and likely greater transpirational cooling, assuming soil
moisture availability and an adequate root system (Tafesse et al.,
2019). Another study showed that the leaf movement capacity in
beans was shown to function in direct sunlight avoidance and
benefited the plant by protecting it against photoinhibition and
by maintaining leaf temperatures lower than the air temperature
(Pastenes et al., 2004). Thus, as novel donors with higher heat
tolerance or escape provides, there is an ample evidence for
systematic exploration of wild species and accessions (Prasad
et al., 2017) for introducing these traits.

IDENTIFICATION OF TOLERANT
GENOTYPES AND IMPROVING
ADAPTATION AND MITIGATION TO HS

Physiological Approaches
Heat tolerance is a polygenic trait greatly influenced by
environmental changes (Blum, 2018). HS effects are stage-
specific, with the response at one stage differing from the
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response at another. Breeders employ various techniques
to minimize the impact of an unpredictable environment
on crops. Conventional breeding is the oldest but most
prevalent method, primarily based on selecting phenotypic plant
characters (Acquaah, 2015). In recent decades, new techniques
have emerged based on morpho-physiological plant characters
merged with conventional breeding methods to screen superior
varieties. These methods exploit inbuilt plant properties to
cope with HS and assist in selecting heat-tolerant genotypes.
Screening germplasm of various vegetable crops using various
physiological traits linked to heat tolerance would be useful for
breeding programs focused on developing HS tolerant genotypes.
Although there are several methods or traits used for screening,
some of the most common are discussed.

Stay-Green Assay
The stay-green character is the plant’s ability to retain chlorophyll
and remain green for longer to sustain photosynthesis,
especially during seed filling (Thomas and Howarth, 2000).
However, the adverse impacts of HS cause leaves structural
changes and chlorophyll degradation and it ultimately induces
premature, leaf senescence (Djanaguiraman and Prasad, 2010;
Jha et al., 2014). Moreover, the onset of HS during seed filling
affects various physiological processes, including increased leaf
senescence (chlorophyll loss), altered source–sink relationship,
and decreased assimilation of reserve foodmaterial in developing
seeds, limiting plant yield (Luche et al., 2015). Therefore,
delayed leaf senescence may be associated with heat tolerance,
enabling plants to maintain their photosynthetic ability (Lim
et al., 2007). High chlorophyll and carotenoid contents in leaves
improve the photochemical efficiency of plants and reduces ROS
concentration in plants such as tomato (Zhou et al., 2015) and
pea (Tafesse, 2018).

In addition, the stay-green character positively correlates
with canopy temperature depression. Stay-green genotypes have
lower canopy temperatures due to transpirational cooling than
non-stay-green genotypes (Kumari et al., 2013). In addition
to these modifications, HS also causes plant morphological
and architectural modifications like leaf hyponasty (measured
through leaf angles), leaf petiole elongation, small and thin leaves,
that are helpful for the plants to keep their canopies cool. For
instance, the cucumber species have hyponastic leaves (Park
et al., 2019) and reduced leaf size is found in potato (Tang
et al., 2018) and capsicum species (Utami and Aryanti, 2021)
under heat stress conditions. These processes involve various
signaling cascades that mediate the developmental shaping for
environment adaptation in plants (Gil and Park, 2019). This
trait is also associated with grain yield and quality and abiotic
stress tolerance (Kamal et al., 2019). Hence, the stay-green trait is
essential for improving crop yield and useful for imparting heat
tolerance (Joshi et al., 2007; Kusaba et al., 2013), and thus may be
an important genetic trait for improving crop yield under HS.

Canopy Temperature Depression
Canopy temperature depression (CTD) is usually measured as
the difference between air and canopy temperature, indicating
the plant’s ability to lower its foliar temperature by transpirational

cooling, as measured by an infrared thermometer. CTD also
reflects plant water status and is influenced by the plant’s ability
to extract water and the transpiration difference between air and
plant. Accordingly, CTD has been used to select heat-tolerant
and drought-tolerant genotypes. Plants that can maintain cooler
canopies during seed filling can tolerate high-temperature stress
(Munjal and Rana, 2003). Heat-tolerant varieties of capsicum
(Gajanayake et al., 2011) have been selected based on the stay-
green trait. In soybean, there is a direct relationship between
CTD, canopy greenness, photosynthetic rate, and yield (Kumar
et al., 2017). Thus, the CTD trait can be used as a critical genetic
trait for crop improvement aimed at increased yields at the
vegetative stage.

Cell Membrane Thermostability
HS is amounts of sensed by cell membranes of leaf tissues,
weakening cell membrane integrity/rigidity due to an increased
degree of unsaturated fatty acids that increase membrane
fluidity. This may change membrane permeability and disturb
the selective transport of molecules across the membrane,
affecting cellular homeostasis (Marcum, 1998). HS can directly
affect membrane integrity through photochemical modifications
during photosynthesis or ROS (Bita and Gerats, 2013). Cell
membrane thermostability (CMT) can be evaluated with an
electrolyte leakage test for screening crops for heat tolerance. The
method is simple, quick, and inexpensive compared with whole-
plant screening and can be used to assess plant tissue responses
at the vegetative stage (Yeh and Lin, 2003). Electrolyte leakage
is measured using a conductivity meter, with higher conductivity
values indicating higher membrane damage (Nyarko et al., 2008).
The CMT test has been used to screen heat-tolerant varieties of
many crops, including soybean (Martineau et al., 1979), potato
(Nagarajan and Bansal, 1986), cowpea (Ismail and Hall, 1999),
cabbage (Nyarko et al., 2008), cauliflower (Aleem et al., 2021)
chickpea (Kumar et al., 2013), mungbean (Sharma et al., 2016),
and cucumber (Ali et al., 2019).

Chlorophyll Fluorescence
Chlorophyll fluorescence—expressed as the Fv/Fm ratio (Fv:
variable fluorescence; Fm: maximum fluorescence)—is used to
detect the state of PSII function in terms of the energy absorbed
by PSII in chlorophyll and damage to photosynthetic apparatus
by excess light in vivo (Maxwell and Johnson, 2000). Chlorophyll
fluorescence is a rapid, reliable, and inexpensive procedure
for predicting photosynthetic performance under HS. Reduced
Fv/Fm values indicate damage to the light-harvesting complex
(Moradpour et al., 2021). Chlorophyll fluorescence has been
used to select heat-tolerant varieties of sweet pepper (Hanying
et al., 2001), common bean (Stefanov et al., 2011), chickpea
(Kaushal et al., 2013), mungbean (Kaur et al., 2015), tomato
(Zhou et al., 2015; Poudyal et al., 2018), and okra (Hayamanesh,
2018). Makonya et al. (2019) showed that tolerant chickpea
genotypes maintain higher Fv/Fm during HS than sensitive
genotypes, and Fv/Fm positively correlates with grain yield in the
field. Killi et al. (2020) reported the retention of PSII function
at elevated temperature positively correlated with antioxidant
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activity, confirming the applicability of this trait for selecting
heat-tolerant varieties.

Relative Water Content
Relative water content indicates the hydration status of plants and
reflects the balance between leaf water supply and transpiration
rate. Hence, it can measure leaf water deficit and the degree
of damage under HS (Mullan and Pietragalla, 2012). High
transpiration increases water loss, which can cause tissue
dehydration and wilting (Mazorra et al., 2002). Therefore,
genotypes that can maintain turgid leaves will minimize HS
effects and have numerous physiological advantages. Gowda
et al. (2011) suggested using RWC as selection criteria for
improving yield under HS. High temperature (40–42◦C) at the
vegetative and reproductive stage gradually reduced the RWC of
capsicum genotypes, more so at the reproductive stage (Puneeth,
2018). RWC has been used to select heat-tolerant genotypes
of mungbean (Sharma et al., 2016), capsicum (Puneeth, 2018),
common bean (Chavez-Arias et al., 2018), lentil (Sita et al., 2017),
tomato (Zhou et al., 2018), cucumber (Ali et al., 2019), and potato
(Handayani and Watanabe, 2020) where genotypes with high
RWC under HS were rated as heat tolerant.

Stomatal Conductance
Stomatal conductance measures the rate of carbon dioxide
entering or water vapor exiting stomata. This change in
transpiration rate facilitates changes in leaf temperature and
water potential (Farquhar and Sharkey, 1982). Leaf stomatal
conductance is often recognized as an important trait for
evaluating differences in response to changing environments.
It can be used to determine trait such as photosynthetic CO2

uptake, leaf temperature, and water loss (Vialet-Chabrand and
Lawson, 2019). Decreased stomatal activity under a changing
environment can significantly affect plant growth and biomass
(Way and Pearcy, 2012). In vivo stomatal conductance can
be measured with a steady-state leaf porometer and gas
exchange. HS increases in vivo adaxial stomatal conductance
relative to the control (Sharma et al., 2016). Low stomatal
responses under stress can limit photosynthetic rate and cause
unnecessary transpiration, decreasing plant water use efficiency
and productivity (Matthews et al., 2018). This phenomenon has
been used to select heat-tolerant genotypes of sweet pepper
(Hanying et al., 2001); tomato (Camejo et al., 2005; Abdelmageed
and Gruda, 2009), chickpea (Kaushal et al., 2013), and mungbean
(Kaur et al., 2015).While many studies have successfully used one
of the traits above to select heat-tolerant genotypes, combining
multiple traits would reflect heat tolerance better than relying on
a single trait.

Reproductive Function, Gamete Viability
and Fruit-Set
Fruit yield in vegetables crops is a function of fruit numbers and
fruit size. There is a strong and positive correlation between fruit-
set and gamete viability (Prasad et al., 2017). Gamete functions
(pollen and ovule) is the most important factor for fruit-set under
HS. In tomato, fruit-set has been shown to correlate with pollen
viability (Firon et al., 2006). In general, heat tolerant genotypes

maintain higher pollen viability compared to heat susceptible
genotypes (Dane et al., 1991). Gamete functions depend on its
viability, which can be evaluated by viability assays like staining,
in-vitro and in-vivo germination of pollen, and ovule function.
Genotypes are known to differ in gamete viability under HS
stress. Singh et al. (2015) concluded from their research on
tomato that traits like fruit-set and pollen viability could be
used as a strategy to screen genotypes for HS. In general, the
combination of gamete viability and fruit-set provide tolerance
to HS (Paupière et al., 2017b; Pham et al., 2020). Similarly
observations were also made on peppers (Aloni et al., 2001;
Reddy and Kakani, 2007).

Cardinal temperatures (Tmin, Topt, and Tmax) for pollen
grain germination can be used to screen germplasm for HT stress
tolerance. Results from in-vitro studies showed that genotypes
varied in response to temperature for cardinal temperatures,
and the differences in cardinal temperatures were mainly
responsible for tolerance/susceptibility of genotypes to HT stress
in soybean (Djanaguiraman et al., 2019) and peanut (Kakani
et al., 2002). The genotypes having higher ceiling temperature
(Tmax) for pollen germination values tend to be HT tolerant
in most cases. Cardinal temperature for pepper were different
among susceptible and tolerant cultivars (Reddy and Kakani,
2007) and can be used to identify temperature tolerant or
sustainable genotypes of pepper (Gajanayake et al., 2011). All the
aforementioned traits based on leaf function are used collectively
to select heat tolerant cultivars. Though many studies have
successfully employed one trait for selection of heat tolerant
genotypes, a combination of these traits reflects a better status
of heat tolerance rather than relying on a single trait.

OMICS APPROACHES

Genomics
Various modern genome-based technologies can be used to
introduce genetic variations for HS tolerance into plants.
Under high-temperature stress, plants activate a complex chain
of molecular responses, including heat-stress-responsive genes
that control primary and secondary metabolism, transcription,
translation, and lipid signaling, or protein modifications,
including phosphorylation HS transcription factors (HSFs) that
regulate differential expression of HSPs (Janni et al., 2020).
HSPs and HSFs are key players in the acquisition of the HS
response. HSFs are mainly involved in sensing and relaying the
HS signal to activate the response (Mittler et al., 2012). Genome-
wide associated studies (GWAS) have been conducted on a few
vegetable crops to search for novel genes and transcription factors
associated with heat tolerance. Genomic studies on cabbage
(Brassica rapa ssp.) disclosed the role of differentially expressed
long non-coding (lncRNAs), mRNAs, and microRNAs. Their
expression is associated with phytohormones such as salicylic
acid (SA) and brassinosteroids (BRs), possibly involved in heat
tolerance. Of these, 25 lncRNAs were co-expressed with ten
heat-responsive genes (Wang A. et al., 2019). NAC, a large
family of transcription factors, was analyzed in cabbage; 188
genes were identified that play a major role in resistance to
high-temperature stress (Ma et al., 2014). Analysis of the potato
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Hsp 20 gene family revealed 48 putative Hsp20 (StHsp20) that
accumulated under heat treatment. Different levels of these
transcripts were upregulated during different HS exposures.
The transcription of HSPs are regulated by HSFs that play an
important role in imparting thermotolerance in plants (Zhao P.
et al., 2018). Guo et al. (2015) characterized 35 putative Hsp 20
genes (CaHsp20) located on 12 chromosomes in thermotolerant
(R9) and thermosensitive (B6) lines of pepper in four tissues
(roots, stem, leaves, and flowers). Under high temperature stress
(40◦C), most of the CaHsp20 genes had higher expression in both
lines, more so in the thermosensitive line. Chidambaranathan
et al. (2018) identified 22 Hsfs in the desi (ICC4958) and kabuli
(CDC Frontier) genomes of chickpea (15-day-old seedlings;
heat treatment of 35 ± 2◦C). Field analysis was undertaken to
compare the expression pattern at the podding stage. HS at the
seedling and pod development stages upregulated the expression
of CarHsfA2, A6a, A6c, and B2a, indicating their role in
conferring HS tolerance in chickpea. Yang et al. (2016) recorded
26 HSF (Sly HSF) genes in tomato, with HS (38◦C) increasing
the expression of most, especially SlyHSF-05/07/13/18/20/23/24.
Expression of the SlyHSF-18 gene increased manifold compared
to the control, indicating its strong response and correlation
to high temperature sensitivity. Moreover, SlyHSF-02 was the
main regulator for activating the heat response and acquiring
thermotolerance in tomato.

Transcriptomics
Transcriptomics refers to the study of the transcriptome [entire
set of transcripts (mRNA, tRNA, and rRNA, miRNA, siRNA,
snRNA, snoRNA, and lncRNA)] expressed in a cell, tissue,
organ, or organism. It represents all RNA synthesized, including
protein-coding, non-coding, spliced, polyadenylated, and RNA-
edited transcripts (Imadi et al., 2015). Transcriptomics reveals
themolecularmechanism underlying the phenotype and explains
how genes are expressed and interconnected (Jha et al., 2017).
High throughput methods (microarray, RNA sequencing, RT-
PCR) are used to analyze the expression level of multiple
transcripts in different conditions. Several transcriptome studies
in vegetable crops under HS have revealed the molecular basis for
heat tolerance.

Transcriptome analysis in heat-stressed spinach (42◦C for
15 days) revealed the expression of 4,145 transcripts (2,420
upregulated and 1,725 downregulated) in heat-tolerant and heat-
sensitive genotypes (Guo et al., 2020). An enrichment analysis
showed that the major metabolic difference between tolerant and
sensitive genotypes was carbohydrate metabolism (Guo et al.,
2020). Similarly, transcriptome analysis revealed 23,000–30,000
expressed genes in soybean seeds and differentially expressed
genes (DEGs; 5–44% of expressed genes) (Gillman et al., 2019).
The DEGs were measured at high temperature in mature,
imbibed, and germinated seeds in a heat-tolerant (PI 587982A)
and conventional high-yielding variety (S 99-11986), with 7,789
DEGs common between genotypes, 11,833 common between
mature and imbibed seeds, and 13,344 common between imbibed
and germinated seedlings (Gillman et al., 2019). In capsicum,
seedling transcriptomics revealed 3,799 DEGs in R597 (heat-
tolerant genotype) and 4,010 DEGs in S590 (heat-sensitive

genotype), related to hormones, HSPs, transcription factors, and
calcium and kinase signaling (Li et al., 2015). Further, R597 had
higher expression of transcription factors and hormone signaling
genes than S590 (Li et al., 2015). Transcriptomic analysis of heat-
tolerant PS-1 and heat-sensitive H-24 tomato genotypes under
HS (40◦C for 1 h) revealed upregulated genes associated with
protease inhibitors, HSPs, and transcription factors, manifold
higher in the tolerant genotype than the sensitive genotype
(Sadder et al., 2014).

Proteomics
Proteomic analysis in heat-stressed radish leaves (advanced
inbred line NAU-08Hr-10) revealed eleven deferentially
expressed proteins, of which four belonged to HSPs, four to
energy and metabolism, two to redox homeostasis, and one to
signal transduction (Zhang et al., 2013). Comparative proteome
analysis of heat-tolerant (JG 14) and heat-sensitive (ICC16374)
chickpea genotypes under HS during anthesis revealed that
482 heat-responsive proteins (related to photosynthesis, energy
metabolism, and signaling molecules) were synthesized in
higher amounts in the heat tolerant genotype compared to the
sensitive genotype (Parankusam et al., 2017). Proteomics of
spinach (50-day-old) exposed to 37/32◦C for 24, 48, or 72 h
identified heat-stress-responsive proteins in heat-tolerant (Sp75)
and heat-sensitive (Sp73) lines (Li et al., 2019). The abundance
pattern indicated that HS inhibited photosynthesis, initiated
ROS scavenging pathways, and sped up carbohydrate and amino
acid metabolism. A comparative proteomic study showed that
heat-sensitive genotypes have a lower ability for photosynthetic
adaptation, osmotic homeostasis, and antioxidant enzyme
activities than heat-tolerant genotypes (Li et al., 2018). Ahsan
et al. (2010) used a proteomics approach to study the tissue-
specific protein expression pattern in heat-stressed soybean
seedlings (40 ± 2◦C for 12 h), identifying 61, 54, and 35
differentially expressed proteins in roots, leaves, and stem,
respectively. Many of the proteins related to HSPs and the
antioxidant system were upregulated.

Metabolomics
Recentmetabolite profiling has focused on importantmetabolites
that govern temperature stress tolerance (Guy et al., 2008).
Wang J. et al. (2019) studied the metabolism of heat-tolerant
(17CL30) and heat-sensitive (05S180) capsicum cultivars; the
tolerant genotype accumulated 94 differentially accumulated
metabolites (DEM) while the sensitive genotype accumulated
108 DEM. Both genotypes shared common metabolites, but they
were more highly expressed in tolerant genotypes. Metabolite
profiling of tomato anthers exposed to 38◦C for 2 h revealed
that flavonoids (alkaloids and flavonoids in young microspores)
protect against HS (Paupière et al., 2017a,b). A metabolomics
study on heat-stressed soybean seeds revealed 275 metabolites
that comprised antioxidants, including ascorbate precursors,
tocopherol, flavonoids, phenylpropanoids, which were more
enriched in tolerant than sensitive genotypes (Chebrolu et al.,
2016).
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MOLECULAR BREEDING

Of late, molecular breeding has emerged as one of the
important tools to identify progeny plants possessing the targeted
genes/QTLs including the presence of several genes or ascertain
the amount of genome of recurrent parent in a plant. Molecular
breeding relies on molecular markers and hence the outcome,
unlike the phenotyping, is not influenced by environmental
factors. The molecular breeding has been exploited successfully
in crop breeding and has led to the development of crop varieties
possessing resistance to diseases or varieties with resistance
genes pyramids (Janni et al., 2020). Molecular breeding methods
to improve heat tolerance include (i) transfer of quantitative
trait loci, (ii) marker-assisted selection. Other methods include
marker assisted recurrent selection, marker-assisted pyramiding,
and single nucleotide polymorphism. These methods pave the
way for breeding stress tolerance in plants (Collard and Mackill,
2007). These methods pave the way for breeding stress tolerance
in plants (Collard and Mackill, 2007).

Quantitative Trait Loci
QTL is a stretch of genomic regions on a chromosome that
is linked to a quantitative trait. Usually, this stretch contains
several genes and each QTL contribute partially to the trait in
question; and hence, several QTLs together govern a trait. In
molecular breeding, whole QTL is transferred to the recurrent
parent utilizing markers flanking to the QTLs and sometimes
using markers present within the QTL region. The exploitation
of molecular breeding for QTLs transfers in breeding programs,
a QTL must be well-defined and demonstrated to be linked to
a particular trait (Collard and Mackill, 2009). Heat tolerance is a
polygenic trait governed by several genes (Golam et al., 2012) and
several QTLs. Unprecedented advances in genomics, especially
molecular marker development, have identified numerous QTLs
contributing to HS tolerance by dissecting various traits ranging
from phenological, physiological, biochemical, reproductive
biology to yield and yield-related traits (Lucas et al., 2013; Wen
et al., 2019; Song et al., 2020; Jha et al., 2021; Vargas et al., 2021)
in various vegetable crops, including bottle gourd (Lagenaria
siceraria), cowpea (Vigna unguiculata [L.] Walp.), common
bean, chickpea, chili, and tomato (Table 5). In broccoli (Brassica
oleracea var. italica), five QTLs were identified under HS—
QHT_C02, QHT_C03, QHT_C05, and QHT_C07 from the heat-
tolerant parent and QHT_C09 from the heat-sensitive parent,
with a positive epistatic co-relation between QHT_C03 and
QHT_C05 for heat tolerance and APX activity was co-located
with QHT_C03 (Branham et al., 2017). Likewise, QTLs such as
QHT_C02, QHT_C05, and QHT_C09 were co-located with the
AP2 gene governing floral development under HS (Aukerman
and Sakai, 2003). Similarly, the meristem identity gene (TFL)
was associated with QHT_C02 (Duclos and Björkman, 2008).
Subsequently, two novel QTLs contributing to heat tolerance
were uncovered by phenotypic evaluation of double haploid-
based mapping population for two consecutive summer seasons
and by employing QTL-seq approach in broccoli (Branham and
Farnham, 2019). Recently, subjecting genome wide association
(GWAS) study of one hundred forty two lines unearthed a total

of fifty seven significant marker trait associations for various
physiological and yield related traits under heat stress in Brassica
rapa (Chen et al., 2022). In tomato, Xu et al. (2017) mapped
13 QTLs for heat tolerance linked with reproductive traits,
including pollen viability, pollen number, style protrusion, anther
length, style length, flower per inflorescence, and inflorescence
number. These QTLs showed additive effects and no epistatic
interaction. Likewise, six QTLs linked to fruit set in tomato
at high temperatures were identified (Grilli et al., 2007).
Based on evaluating recombinant inbred lines and introgression
lines developed from Solanum lycopersicum var. “MoneyMaker”
× S. pimpinellifolium across multi environments under high
temperature stress enabled in identification of 22 QTLs related
to reproductive traits (flower number fruit number and fruit
set proportion) on LG1, 2, 4, 6, 7, 10, and 11 explaining
phenotypic variation from 4 to 13% (Gonzalo et al., 2020). In
combination of phenotypic assessment of leaf cell membrane
stability by applying heat stress in F2 derivedmapping population
with QTL-seq approach in F2 derived mapping population
assisted in uncovering a total of seven QTLs qHT1. 1, qHT2. 1,
qHT2. 2, qHT5. 1, qHT6. 1, qHT7. 1, and qHT8. 1 conferring
heat tolerance in bottle gourd (Song et al., 2020). Likewise,
employing conventional QTL mapping and QTL-seq analysis
allowed in identifying a total of five major QTLs qHII-1-1,
qHII-1-2, qHII-1-3, qHII-2-1, and qCC-1-5 (qREC-1-3) related
to heat injury index under heat stress in tomato (Wen et al.,
2019). The authors performed the functional validation of the
underlying selected four potential candidate genes SlCathB2,
SlGST, SlUBC5, and SlARG1. To decipher genetic basis of heat
tolerance in cucumber, QTL analysis of mapping population
developed from “99281” (heat-tolerant) × “931” (heat-sensitive)
population phenotypically evaluated during summer 2018, 2019,
and 2020 allowed to identify one major QTL qHT1.1 on LG1
(Liu et al., 2021). There were 98 genes underlying this QTL. Of
these identified genes, expression ofCsa1G004990 candidate gene
was higher in “99281” than “931” genotype rendering it heat
tolerant. In order to shed light into the functional role of HSP20
contributing to heat tolerance, in Cucurbita moschata, genome
wide bioinformatic analysis enabled in unveiling 33HSP20 genes
across the genome (Hu et al., 2021). Functional validation of
CmoHSP20-7, 13, 18, 22, 26 and 32 genes indicated their possible
role in heat tolerance in Cucurbita moschata (Hu et al., 2021).

In cowpea, five QTLs governing pod set at high temperature,
namely Cht-1, Cht-2, Cht-3, Cht-4, and Cht-5, with CB 27 line
of cowpea donating alleles for four QTLs (Cht-1, Cht-2, Cht-
3, Cht-4) and IT82E-18 contributing alleles for Cht-5 (Lucas
et al., 2013). Combinations of any of the four QTLs with Cht-
5 positively correlated with heat tolerance in cowpea. Further,
the presence of all five QTLs in the same line had the strongest
positive correlation with heat tolerance (Lucas et al., 2013).
Recently, four QTLs were identified in chickpea that conferred
heat tolerance for filled pods (qfpod03_6), grain yield (qgy03_6),
total seed number (qvs05_6), and pod set (q% podset08_6)
using recombinant inbred lines produced from ICC 4567 (heat-
sensitive) × ICC 15614 (heat-tolerant) lines (Paul et al., 2018).
One QTL (qTBP5.2) was detected in lettuce, governing the tip-
burn resistance trait, therefore beneficial in breeding programs
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TABLE 5 | List of selected QTLs contributing to heat tolerance in vegetable crops.

Crop Mapping population Trait used Name of gene/

QTL

Type of

marker

Linkage

groups

Phenotypic

variation

References

Bottle gourd

(Lagenaria

siceraria)

L1 × L6 Relative electrical

conductivity

qHT1.1, qHT2.1,

qHT2.2, qHT5.1,

qHT6.1, qHT7.1, and

qHT8.1

SNP 1, 2, 5, 6, 7, 8 – Song et al., 2020

Cowpea

(Vigna

unguiculata)

CB27 x IT82E-18, RIL

141

– Cht−1, Cht−2, Cht−3,

Cht−4, Cht−5

SNP 2, 3, 6, 7, 10 11–18% Lucas et al., 2013

IT93K-503-1 x CB46,

RIL 113; IT84S-2246 x

TVu146, RIL 136

Seed coat browning Hbs-1, Hbs-2 and

Hbs-3

SNP 1, 3, 8 6–77% Pottorff et al.,

2014

Common bean

(Phaseolus

vulgaris)

IJR × AFR298, RIL Reproductive trait and

yield and yield traits

32 QTLs SNP 1, 2, 3, 4, 5, 8,

9, 10

7.8–36% Vargas et al., 2021

Chickpea

(Cicer arietinum)

DCP 92-3 ×

ICCV92944 RIL(184)

Phenological,

physiological and yield

related traits

77 QTLs SNP LG1–LG8 5.9–43.5% Jha et al., 2021

DCP 92-3 ×

ICCV92944F2(206)

Phenological and

physiological traits

2 QTLs SSR – Jha et al., 2019

ICC 4567 × ICC

15614, RILs(292)

Yield and yield traits 4 QTLs SNP CaLG05,

CaLG06

– Paul et al., 2018

GPF2 × ILWC292, RIL Phenological,

physiological and yield

related traits

28 + 23 QTLs SNP All LG groups

except LG8

5.7–13.7% Kushwah et al.,

2021

Chili

(Capsicum

annuum)

AVPP0702 × Kulai,

backcross

Reproductive and yield

trait

Hsp70 and sHsp gene SSR – – Usman et al., 2018

Tomato

(Lycopersicon

esculentum)

Nagcarlang ×

NCHS-1180 F2

Reproductive traits;

viz., pollen viability,

pollen number, style

length, anther length;

inflorescence number

and flowers per

inflorescence

qPV11, qPN7, qSP1,

qSP3, qAL1, qAL2,

qAL7, qSL1, qSL2,

qSL3, qFPI1 qIN1,

qIN8

SNP 1, 2, 3,7, 8, 11 10.5–38.7% Xu et al., 2017

MAGIC population Yield components,

phenology andfruit

quality

69 plasticity QTLs SNP Bineau et al., 2021

LA1698 × LA2093 Relative electrical

conductivity REC),

chlorophyll content

(CC) and maximum

photochemical

quantum

5 major QTLs qHII-1-1,

qHII-1-2,qHII-1-3,

qHII-2-1and qCC-1-5

(qREC-1-3)

SNP 1, 2 16.48% Wen et al., 2019

Solanum lycopersicum

var. “MoneyMaker” ×

S. pimpinellifolium

accession TO-937RIL

and IL

Reproductive traits viz.,

flower number, fruit

number per truss and

percentage of fruit set,

stigma exsertion

(SE),pollen viability (PV),

tip burn

22 QTLs SNP8K SNP

SOLCAP

Infinium chip

1, 2, 4, 6, 12 3.6–12.8% Gonzalo et al.,

2020

(Jenni et al., 2013). The information on genomes of crops is
expanding rapidly. The sequencing coupled with resequencing
will generate more information that will subsequently be used
to gather detailed knowledge of QTLs and genomic bases of
heat tolerance in crops. The closely-related crops share syntenic
relationships and possess similar genomic regions with each
other. In the forthcoming years, comparative genomic analysis
and advancements in knowledge of molecular biology might

allow us to transfer heat tolerant regions from one crop to
another, thereby expanding the repository of cold tolerance in
crop plants.

MARKER-ASSISTED SELECTION

As mentioned earlier, phenotype-based selection is prone to
environmental conditions sometimes leading to erroneous
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conclusions especially if trait is complex and conferred by
polygenes or QTLs. Under such circumstances, genotype-based
selection is more effective, precise and fast as compared to
phenotypic selection. Genotype-based selection rather than
phenotype-based selection is possible using markers linked
to gene of interest. Genotype-based selection utilizes DNA
markers that are linked tightly to the gene(s) of interest
(Collard and Mackill, 2007). For MAS, first step is to identify
markers linked to the gene or QTL using either mapping
populations or association mapping where a panel of genotypes
is used to identify liked markers. Subsequently, these markers
are used to ascertain transfer of the gene to the progeny
populations. Different types of markers, such as RFLP (restricted
fragment length polymorphism), AFLP (amplified fragment
length polymorphism), SSR (single sequence repeat), and SNPs
(single nucleotide polymorphisms), can be detected, and the
amount of variation in eachmarker can be determined. Using this
approach, gene mapping and identifying gene associations with
particular traits are useful for genetic crop improvement (Ruane
and Sonnino, 2007).

Paul et al. (2018) identified SNP markers linked to QTLs for
heat tolerance traits (50% flowering, podding behavior, total filled
pods, % pod set, total seed number, grain yield, biomass, harvest
index, 100-seed weight) in chickpea RILs (heat-tolerant ICC
15614×heat-sensitive ICC 4567). Composite interval mapping
analysis affirmed two genomic regions (CaLG05 and CaLG06)
with four QTLs (grain yield, total seed number, total filled pods,
% pod set). A GWAS used 16,877 SNPs to identify marker-
trait associations (MTA) in 135 diverse pea lines exposed to
>28◦C in the field to understand the genetic basis for heat
tolerance (Gali et al., 2019). The study identified 32 MTAs
and 48 candidate genes associated with various traits, including
chlorophyll concentration, photochemical reflectance index,
canopy temperature, reproductive stem length, internode length,
pod number, with the potential for developing heat-tolerant
cultivars (Tafesse et al., 2020). Lin et al. (2006) identified 14 RAPD
markers linked to heat tolerance traits (flower number, fruit
number, fruit set, yield) in tomato RILs derived from CL5915
(heat-tolerant) and L4422 (heat-sensitive) under HS. Developing
heat tolerant Capsicum annuum through transferring heat shock
protein encoding gene Hsp70 and sHsp from AVPP0702 into
Kulai an elite C. annuum cultivar by adopting marker assisted
back crossing approach is notable illustration of marker assisted
breeding for heat tolerance (Usman et al., 2018). Likewise, three
non-synonymous SNPs identified in the qHT2.1 major effect
QTL in bottle gourd (Song et al., 2020) and non-synonymous
SNP identified in the QHT_C09.2 QTL regions in broccoli
(Branham and Farnham, 2019) contributing to heat tolerance,
which could be potentially used as candidate markers for
screening heat tolerant bottle gourd and broccoli genotypes.

TRANSGENICS

Altering the genetic makeup of vegetable crops is a possible
solution for developing crops that can grow and reproduce well
under increasing temperatures. Plants have an inherent ability

to endure supra optimal temperatures (“basal thermotolerance”
or “acquired tolerance to increasing temperature”) (Grover et al.,
2013). The level of thermotolerance varies between plant species
depending on their genetic makeup and specific expression of
defense-related genes, however, levels of thermotolerance vary
in different plant species again due to differences in genetic
makeup of the plant species. Even within a species, genotypes
differ for reaction (tolerance or sensitive) to HS owing to varying
genetic makeup. Considerable number of genes/QTLs conferring
tolerance to HS has been identified in vegetable crops and these
genes/QTLs can be transferred from heat-tolerant genotypes to
heat-sensitive genotypes using transgenic approaches to develop
genetically modified heat tolerant crops. Genes expressed in heat-
tolerant crops can be transferred to heat-sensitive crops using
transgenic approaches to develop genetically modified heat-
tolerant crops. Candidate genes for development of transgenics
for heat tolerance are HSP, compatible osmolyte, and antioxidant
levels, and detoxifying pathways (Parmar et al., 2017).

Manipulating HSPs
Many vegetable crops have been manipulated for increased
expression of HSPs. For instance, in tomato, overexpression
of trehalose-6-phosphate synthase/phosphatase (TPSP) gene
derived from Escherichia coli increased the expression of HsfA1,
HsfA2, and HsfB1, which was linked to escalating Hsp17.8,
ER-sHsp and Mt-sHsp levels to impart heat tolerance (Lyu
et al., 2018). Similarly, overexpression of small heat shock
protein (CaHsp 25.9) improved thermotolerance in Capsicum
transgenic lines (R9 and B6) under HS, decreasing MDA content
and increasing proline and SOD content (Feng et al., 2019).
In transgenic potato lines, overexpression of the A2 HSc70
(Heat-Shock Cognate) allele-maintained tuber yield at elevated
temperature (Trapero-Mozos et al., 2018).

Manipulating Antioxidants
HS causes oxidative damage in plants; therefore, developing
transgenics with enhanced antioxidative mechanisms may
enhance thermotolerance in plants. Antioxidant mechanisms
were manipulated in pea by incorporating heat shock factor
gene (HsfA1d) from Arabidopsis thaliana. Under HS (42◦C),
transgenic pea plants had five-fold higher expression of HsfA1d
than wild pea, decreasing H2O2 accumulation, and higher SOD
and APX activities and proline content (Shah et al., 2020). Tang
et al. (2006) developed transgenic potato plants (SSA plants)
expressing Cu/Zn SOD and APX gene in chloroplasts under
the control of a SWPA2. The transgenic plants had less damage
induced by methyl viologen than non-transgenic plants. In the
same study, photosynthetic activity decreased by 29% in non-
transgenic plants but only 6% in transgenic plants under HS
(42◦C for 20 h). Overexpression of cytosolic APX (cAPX) in
transgenic tomato (Lycopersicon esculentum cv. Zhongshu No.
5) under HS (40◦C for 13 h) resulted in several-fold higher APX
activity than wild plants, reducing electrolyte leakage (24% in A9
line and 52% in A16 line) compared with wild plants. Similarly,
overexpression of cAPX in transgenic tomato increased tolerance
HS (Wang et al., 2006).
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Cross-Talk Between HSP and Redox
Mechanism
Equilibrium between ROS generation and ROS scavenging is
disturbed by the high temperature stress (Foyer and Noctor,
2005). One of the best strategies adopted by the plant cells is
the production of HSPs on exposure to high temperature (Wang
et al., 2004). HSPs positively affect thermotolerance by protecting
ROS scavenging system and actively resulting in lower ROS
concentration. HSPs also enable protein refolding, preventing
aggregation of non-native proteins and stabilize polypeptides
and membrane under stress conditions (Scarpeci et al., 2008).
It is unclear whether there is specific interaction between
HSPs and ROS scavenging machinery but ROS accumulation
is reduced via HSP induced ROS scavenging activity. Hence
the cross-talk between production of HSFs/HSPs and ROS
scavenging activity play important role in acclimation (Kang
et al., 2022). The communication between ROS and HSFs involve
Mitogen Activated Protein Kinase (MAPK). ROS dependent
phosphorylation can play vital role in HSF activation (Driedonks
et al., 2015). MAPK3 and MAPK6 are the key players which
are activated by H2O2 and further phosphorylate the HSFs, for
instance in tomato, heat induced MAPK transduces the heat
stress signal via HSFA3 (Link et al., 2002). Induction of heat
shock transcription factors HsfA2 and HsfA4 is reported to be
regulators of genes associated with ROS mitigation. HsfA4A is
the principle candidate to function as H2O2 sensor (Scarpeci
et al., 2008). At transcriptional level, HSPs are regulated by
HSFs that bind to the conserved regulatory element of heat
shock element (HSEs) and act as promoter for Hsp genes.
Under stress conditions ROS mainly H2O2 functions as signal
transduction molecule and cause HSF activation. ROS enhances
the dissociation of HSP and HSF complex and promote the HSF
trimerization and relocate the same to the nucleus leading to
activation of the expression of HSPs and other heat responsive
genes (Ul Haq et al., 2019) (Figure 4).

AGRONOMIC APPROACHES

By employing improved agronomic practices for different
crops has improved crop yields. These practices include better
soil, water, nutrient, weed, and pest management strategies,
selection of varieties, and appropriate planting times and planting
densities, and more and more (HanumanthaRao et al., 2016).
Agronomic practices control soil temperature by minimizing the
evaporation (Ferrante and Mariani, 2018) helping the cultivators
with sustained water use, proper fertilizer use, and improved land
maintenance, consequently improving crop quality and quantity.
In addition, agronomic practice also helps with increased
soil physical, chemical and microbial status. These help with
water and nutrient availability and plant uptake. Agronomic
practices for increasing vegetable crop yields that are efficient,
cost-effective, and easily adaptable for HS management are
described below.

Land preparation for planting involves tillage, seedbed
shaping, and mulching. These practices depend on the soil
type, physical and chemical properties. Sandy loam soils are

best for raising vegetables such as potato, cauliflower, lettuce,
cabbage, and tomato. Tillage includes breaking up/loosening the
soil by plow, favoring seed germination, and proper seedling
growth. Tillage also helps control weeds, aerate soil, and bury the
previous crop’s residues; the tillage method varies between crops
(Kladivko, 2001). However, the same benefits can be obtained
with no-till or minimum tillage practices that minimizes soil
disturbance and helps with building of soil organic carbon over
time. Mulching is a process of covering the soil with chopped
residues; it has many benefits, including reduced soil erosion and
water loss, which maintain soil temperature (Mulumba and Lal,
2008). Use of conservation agricultural practices with minimum
soil disturbance, grass mulch cover and crop rotations not only
significantly increased yield of green pepper but also decreased
irrigation water use and runoff, while increasing percolated water
in the root zone (Belay et al., 2020). Similarly, improved yields
of tomato, cucumber and bitter guard were observed under
conservation agriculture (Paudel et al., 2020). Conservation
agricultural practices in vegetable production systems has shown
to increase soil organic matter and nutrients (Belay et al., 2022).
Irrigation increases soil moisture, decreasing soil temperature
(by 2◦) compared to non-irrigated soil (Lobell and Bonfils,
2008). Water quality and supply varies according to soil type,
crop (warm- or cool-season), and weather conditions. Generally,
vegetable crops are irrigated at 4–6-day intervals during summer
and 14–15-day intervals during winter to reduce the high-
temperature effects. Many modern technologies for irrigation
are available that minimize water use, such as drip or trickle
irrigation and overhead micro-sprinklers.

Variety selection is a successful agronomic approach for
achieving high yields under high-temperature stress. Selection
characteristics include high yield, disease resistance, maturity
group, and grain quality (Pedersen, 2003). Suitable crop
genotypes need to be early maturing and high yielding to escape
heat by completing their life cycle early and thus perform better
under HS (Sekhon et al., 2010). Furthermore, shifting the sowing
time (early or late) is another strategy to avoid HS and avoid heat
induced yield reduction as has been reported in mungbean (up to
50%) and soybean where yield declined tremendously by delay in
the sowing date (Coventry et al., 1993;Miah et al., 2009). The goal
of selection of crop duration and time of planting is to avoid HS
during sensitive stages of reproductive development. In contrast,
late sowing has been used to screen large populations of chickpea
(Gaur et al., 2013), mungbean (Sharma et al., 2016), and lentil
(Sita et al., 2017) genotypes for heat tolerance, some of which
have been released (e.g., chickpea ICCV 92944) (Gaur et al.,
2013). Heat-tolerant varieties of some vegetable crops are listed in
Table 6. Hence, determining the ideal sowing time and selection
of heat tolerant varieties is crucial for growth, development, and
yield of crops.

Nutrients/Thermo-Protectants
HS can be alleviated by exogenous application of nutrients
or thermo-protectants as a seed pretreatment, foliar spray, or
by fertilizer application via broadcasting, pellet placement, or
band placement (Waraich et al., 2012; HanumanthaRao et al.,
2016). Macro-nutrients such as N, P, K, Ca, and Mg are
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FIGURE 4 | Cross talk between HSPs and redox reaction: -Heat stress imposes damages to plant like increased membrane fluidity, unfolding of proteins, ROS

production and dissociation of HSP70/90-HsfA1 complex. To endure HS, Plants activate various mechanisms to preserve their adaptation. First such mechanism is

the activation of cyclic nucleotide gated calcium (CNGC) channels that result in the movement of Ca2+ ions in to cytoplasm and bind with Calmodulin Protein (CaM3)

forming the Ca2+-CaM3 complex and help in the activation of Heat shock factors (HSFs). Second mechanism involves Phosphoinositol signaling pathway that also

lead to the influx of more Ca2+ in to the cytoplasm and merge with Ca2+-CaM3 pathway. Another mechanism during HS is the activation of ROS signaling network by

Respiratory Burst Oxidase Homolog D (RBOHD) that produce O2− which is converted in to H2O2 that is involved in the induction of HSFs activation. ROS like H2O2

also activate the HSFs complex through mitogen activated protein kinase (MAPK). On activation, HSFs move to the nucleus and activate HSE and HSP target genes.

HS also lead to the dissociation, of HSP70/90-HsfA1 complex; on dissociation HsfA1 undergoes trimerization that further activates the HSFs complex in the cytosol

and Heat shock element (HSE) in the nucleus. Their activation has many positive effects on the cellular metabolism like transcriptional regulation, activation of

antioxidant system and multi chaperone network (HSP60, HSP70, HSP90, HSP100, and sHSP) that may lower down the ROS levels in the cell and help in achieving

thermotolerance.

required by plants (>10mM) and help maintain structural and
functional integrity (Waraich et al., 2011). Nutrient deficiencies
alter the levels of tolerance to abiotic stresses. During HS, N
deficient plants were associated with increased lipid peroxidation,
while N supplemented plants tolerated photo-oxidative damage
(Kato et al., 2003). Likewise, K deficient plants had reduced
translocation of photo-assimilates to the sink organ, whereas K
application improved the translocation and utilization of photo-
assimilates, maintained cell turgidity, and upregulated enzymatic
activity under HS (Mengel et al., 2001; Cakmak, 2005), increasing
yield by 1.9-fold in Capsicum and 2.4-fold in tomato (Waraich
et al., 2012). Similarly, exogenous application of calcium (2 L/ha)
increased lettuce production under HS (Almeida et al., 2016).

Micronutrients such as B and Mn also provide heat
tolerance of plants by increasing antioxidant activity and

alleviating the damage induced by HS stress (Waraich et al.,
2011). Other elements such as Se increased enzymatic activity
and decreased membrane damage and ROS production in
soybean (Djanaguiraman et al., 2005). Seed pretreatment
and foliar application of thermoprotectant molecules such as
proline, glycinebetaine, salicylic acid, spermidine, putrescine,
GABA, ascorbic acid provides thermotolerance to crop plants
(HanumanthaRao et al., 2016). For instance, exogenous
application of proline mitigated HS effects in chickpea (Kaushal
et al., 2011). Ascorbic acid application to mungbean seedlings
under HS in a controlled environment improved seedling growth
(Kumar et al., 2011). In cucumber, a 1mM SA foliar spray
provided heat tolerance by increasing CAT activity and thus
reducing membrane damage and H2O2 levels (Shi et al., 2006).
Similarly, Kaur et al. (2009) reported that exogenous application
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TABLE 6 | Heat-tolerant varieties of some vegetable crops.

Crop Trait indicating tolerance Heat-tolerant varieties References

Broad bean

(Vicia faba)

Seed yield C.52/1/1/1 Abdelmula and Abuanja, 2007

Broccoli

(Brassica oleracea var. italica)

Gypsy and Packman Farnham and Bjorkman, 2011

Cabbage

(Brassica oleracea var. capitata)

Cell membrane thermostability Sousyu Chauhan and Senboku, 1996

ASVEG#1 Fu et al., 1993

Capsicum

(Capsicum annuum)

Mr. Lee No. 3 selex, CCA-119A,

Susan’s Joy, CCA-3288

Dahal et al., 2006

IIHR Sel.-3 Devi et al., 2017

Cauliflower

(Brassica oleracea var. botrytis)

IIHR316-1, IIHR371-1 and

PusaMeghna

Devi et al., 2017

Chickpea

(Cicer arietinum)

ICCV07110, ICCV92944 Kumar et al., 2013

Common bean

(Phaseolus vulgaris)

Chlorophyll fluorescence Ranit and Nerine RS Petkova et al., 2007

IIHR-19-1 Muralidharan et al., 2016

Cowpea

(Vigna unguiculata)

IT93K-452-1, IT98K-1111-1,

IT93K-693-2, IT97K-472-12,

IT97K-472-25, IT97K819-43 and

IT97K-499-38.

Timko and Singh, 2008

Lettuce

(Lactuca sativa)

S24 and S39 Han et al., 2013

Mungbean

(Vigna radiata)

Seed yield NFM-6-5 and NFM-12-14 Khattak et al., 2006

Biomass, number of flowers, pods

and seeds weight/plant

EC693357, EC693358, EC693369,

Harsha and ML1299

Sharma et al., 2016

Okra

(Abelmoschus esculentus)

Yield (fruit number) L2-11 and L4-48 Hayamanesh, 2018

Potato

(Solanum tuberosum)

Tuber yield and dry matter HT/92-621 and HT/92-802 Minhas et al., 2001

Pea

(Pisum sativum)

IIHR-1 and IIHR-8 Muralidharan et al., 2016

Soybean

(Glycine max)

Pollen traits 45A-46 Alsajri et al., 2019

Pollen traits DG 5630RR Salem et al., 2007

Spinach

(Spinacia oleracea)

Seed germination Ozarka II, Donkey, Marabu, and

Raccoon

Chitwood et al., 2016

Tomato

(Lycopersicon esculentum)

CL1131-0-043-0-6,

CL6058-0-3-10-2-2-2

PusaSadabahar, PusaSheetal,

Pusa Hybrid-1

Abdul-Baki, 1991*

Devi et al., 2017

of SA (10 and 20µM) to heat-stressed brassica seedlings (40–
55◦C) improved CAT and POX activities. Pretreatment of SA to
mungbean seedlings decreased lipid peroxidation and enhanced
antioxidant activity, improving membrane stability (Saleh et al.,
2007). In chickpea, a 100µM SA foliar spray to heat-stressed
seedlings (46◦C) increased proline content (Chakraborty and
Tongden, 2005). Thus, exogenous SA application mitigates
the harmful impacts of heat-induced damage by strengthening
antioxidative pathways. Foliar spray of Se (8µM) to cucumber
plants exposed to 40/30◦C during flower initiation (35–75 DAS)
decreased oxidative damage by stabilizing the antioxidative
mechanism and increasing ROS scavenging (Balal et al., 2016).

Microorganisms Imparting
Thermotolerance
In addition to other factors, plant-associated microorganisms,
including plant-growth-promoting rhizobacteria, endophytic
bacteria, and symbiotic fungi, play a significant role in
imparting thermotolerance in plants (Grover et al., 2011). Many
agriculturally important microbes have been discovered that
colonize and promote plant growth and aid in nutrient and
disease control through various direct and indirect methods
(Singh et al., 2016). The interaction betweenmicroorganisms and
host plants imparting stress tolerance is a complex process and
polygenic in nature. Ali et al. (2009) discovered a thermotolerant
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FIGURE 5 | Heat stress has various negative impacts on the plant like reducing vegetative and reproductive growth, interfering with the physiological and cellular

functions. To combat such impacts, plant activates multiple responses and heat avoidance mechanisms which can be used to identify heat resilient vegetable crops.

Different approaches categorized in this article for this purpose are physiological based, omics based, molecular breeding based and agronomic based. Such possible

options will pave the way for improving adaptation and mitigation of heat stress in vegetable crops.

strain of Pseudomonas sp. AMK-P6 in sorghum that elicits
HSPs synthesis under high-temperature stress, and improves
biochemical activities by inducing the synthesis of osmolytes such
as proline, sugars, amino acids, and chlorophyll. Pseudomonas
putida NBRI0987, a thermotolerant strain (<40◦C) was isolated
from the chickpea rhizosphere (Srivastava et al., 2008). A
recent study on different rhizobacterial strains of pigeon pea
at high temperature (30, 40, 50◦C) showed that S1p1 and
S12p6 were the most promising strains for plant growth
and development, stimulating auxin production, flavonoid
production, and siderophore formation (Modi and Khanna,
2018). It would be worth evaluating the effectiveness of these
microbes in vegetable crops for induction of thermotolerance.

Protected Cultivation
Growing vegetables in protected environments on small-scale
farms using modern technologies has gained considerable
attention for their high yields and quality and regular
vegetable supply in the off-season (Sabir and Singh, 2013).
Protected cultivation involves manipulating environmental
factors such as temperature, humidity, light, water, and soil by
designing suitable structures and following appropriate practices

(Wittwer and Castilla, 1995). The main practices for protected
cultivation are row tunnels, polytunnels, and mulching, which
are more beneficial than open-field cultivation with less demand
for fertilizers, pesticides, and water (Choudhary et al., 2013). In
tomato, using a fogging system for 20min/h (between 10 a.m. and
4 p.m.) in a hot shade house (>37◦C) obtained high fruit yields
with fewer physiological disorders (Ro et al., 2021). A similar
fogging system improved the antioxidant defense responses in
tomato plants (Leyva et al., 2013). Related approaches have been
used to cultivate cucumber, capsicum, and lettuce with high
yields (Sabir and Singh, 2013).

CONCLUSIONS

Vegetables are a distinct collection of plant-based foods that
vary in nutritional diversity and form an important part of
healthy diets. They also have great potential for boosting human
health. Exposure to high temperatures or HS can directly
or indirectly influence the production and quality of fresh
vegetables. Several heat-induced morphological damages, such as
poor vegetative growth, leaf tip burning, rib discoloration in leafy
vegetables, sun burned fruits, decreased fruit size; pod abortion,
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and unfilled pods are common, which can render vegetable
cultivation unprofitable. Key physiological and biochemical
effects associated with crop failure include membrane damage,
photosynthetic inhibition, oxidative stress, and reproductive
tissue damage. Reproductive stage has extensively been studied
and found to be more sensitive to HS as it directly affects yields
by reducing processes like pollen germination, pollen load, pollen
tube growth, stigma receptivity, ovule fertility, and seed filling,
resulting in poorer yields. Hence, sound and robust adaptation
strategies are needed to mitigate the adverse impacts of HS to
ensure the productivity and quality of vegetable crops.

Most important strategy to manage HS is deployment of
heat tolerant cultivars (Figure 5). Physiological traits, such as
stay-green trait, canopy temperature depression, cell membrane
thermostability, chlorophyll fluorescence, relative water
content, and stomatal conductance, are especially important
in developing high-yielding heat-tolerant varieties/cultivars.
Molecular approaches like omics, molecular breeding and
transgenics have the potential to enhancing heat tolerance
either by transferring heat tolerant genes/QTLs to elite cultivars
with the help of molecular markers or elucidating mechanisms
of tolerance leading to identification of heat tolerance genes
and transferring those across genera or families via genetic
modifications. Besides these approaches, simple agronomic
methods are also important for mitigating HS effects at the
grassroots level. Therefore, developing heat-tolerant plant types

using physiological, molecular, and breeding-based techniques
is essential for sustaining vegetable production systems and
human health. Further, these approaches will offer insight
into the physiological and molecular mechanisms that govern
thermotolerance and pave the way for engineering ‘designer’
vegetable crops for better health and nutritional security.
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