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Plant specialized metabolites (PSMs) play essential roles in the adaptation to harsh
environments and function in plant defense responses. PSMs act as key components
of defense-related signaling pathways and trigger the extensive expression of defense-
related genes. In addition, PSMs serve as antioxidants, participating in the scavenging of
rapidly rising reactive oxygen species, and as chelators, participating in the chelation of
toxins under stress conditions. PSMs include nitrogen-containing chemical compounds,
terpenoids/isoprenoids, and phenolics. Each category of secondary metabolites has a
specific biosynthetic pathway, including precursors, intermediates, and end products.
The basic biosynthetic pathways of representative PSMs are summarized, providing
potential target enzymes of stress-mediated regulation and responses. Multiple
metabolic pathways share the same origin, and the common enzymes are frequently
to be the targets of metabolic regulation. Most biosynthetic pathways are controlled
by different environmental and genetic factors. Here, we summarized the effects of
environmental factors, including abiotic and biotic stresses, on PSM biosynthesis in
various plants. We also discuss the positive and negative transcription factors involved
in various PSM biosynthetic pathways. The potential target genes of the stress-related
transcription factors were also summarized. We further found that the downstream
targets of these Transcription factors (TFs) are frequently enriched in the synthesis
pathway of precursors, suggesting an effective role of precursors in enhancing of
terminal products. The present review provides valuable insights regarding screening
targets and regulators involved in PSM-mediated plant protection in non-model plants.

Keywords: abiotic stress, biotic stress, plant specialized metabolites, plant protection, transcription factor

INTRODUCTION

The ability of plants to synthesize an extremely wide arsenal of diverse metabolites makes them
preeminent chemists (Fernie et al., 2004). Traditionally, plant metabolites are classified into two
groups: primary and secondary (Patra et al., 2013). Primary metabolites are ubiquitous in all plants
and play crucial housekeeping roles in plant growth and development (Fabregas and Fernie, 2021).
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Secondary metabolites, also called plant specialized metabolites
(PSMs), are involved in various physiological and biochemical
processes, such as defense and adaptation to adverse
environments (Chapman et al., 2019; Sic Zlabur et al., 2021).
With the development of detection technology, more PSMs have
been identified and characterized in plants.

On the basis of their core structures, PSMs form three
major categories: nitrogen-containing chemical compounds,
terpenoids/isoprenoids, and phenolics (Marone et al., 2022).
Nitrogen-containing compounds, consisting of cyanogenic
glycosides, alkaloids, and glucosinolates, have been widely
identified in natural plant products and synthetic compounds
(Aharoni and Galili, 2011). Terpenoids/isoprenoids can be
divided into five subgroups: monoterpenes, sesquiterpenes,
diterpenes, triterpenes, and tetraterpenes, on the basis of the
number of isoprene structural units (Bohlmann et al., 1998).
Phenolics, containing at least one aromatic ring and one hydroxyl
group, can be divided into four functional classes: phenolic acids,
flavonoids, tannins, and stilbenes (Aharoni and Galili, 2011;
Rasouli et al., 2016). Most of PSMs are produced by individual
metabolic pathways and unequally accumulate in different tissues
and organs. The structural complexity and uneven distribution
ensure different biological functions of PSMs under changing
environmental conditions (Desmet et al., 2021).

The roles of PSMs in human health and their potential as
pharmaceutical drugs have been studied extensively (Hamilton,
2004; Tungmunnithum et al., 2018). Medicinal plants produce
valuable PSM-derived drugs, such as, taxol from Taxus media,
quinine from Cinchona officinalis, withanolide from Physalis
angulate, and artemisinin from Artemisia annua, are widely
applied in the treatment of a variety of serious diseases
(Ravishankara et al., 2001; Zhan et al., 2018; Shi et al., 2021;
Wani et al., 2021; Yu et al., 2021). In plants, PSMs are essential
for several physiological processes, such as plant protection,
pollinator attraction, signal transduction, and seed germination,
which are required for their survival in harsh environments
(Chae et al., 2014; Liu et al., 2021d; Singh et al., 2021; Wari et al.,
2021).

Plant specialized metabolites contribute to plant protection
against different types of biotic and abiotic stresses, similar
to the adaptive immune system in animals (Castro-Moretti
et al., 2020; Desmet et al., 2021). To adapt to stress conditions,
plants gear their metabolism toward the biosynthesis of PSMs,
which, although energy-costly, is beneficial for their survival
(Abdala-Roberts et al., 2016). PSMs serve in various parts of
a complete plant defense system, acting as message molecules
and/or antioxidants (Kumar and Pandey, 2013). Some PSMs act
as key components of complex signaling pathways and trigger
both the extensive expression of defense-related genes and the
accumulation of other metabolites (Maag et al., 2015). Other
PSMs serve as antioxidants, participating in the scavenging of
rapidly rising reactive oxygen species (ROS) and in the chelation
of heavy-metal ions under stress conditions (Pacifico et al., 2021).
They not only act as powerful antioxidants, they may also be
toxic to herbivores, microbial pathogens, and competing plant
species (Glas et al., 2012). Overall, some of the credit for a
plant’s capability to tolerate or adapt to a changing environment

goes to PSMs. The purpose of this review is to summarize the
basic biosynthetic pathways of protection-related PSMs on a
limited scale. Furthermore, the environmental and genetic factors
involved in the biosynthesis of PSMs are also briefly summarized.

BASIC BIOSYNTHETIC PATHWAY OF
PLANT SPECIALIZED METABOLITES

There are more than 400,000 vascular plants with up to one
million metabolites on the Earth (Fang et al., 2019). Although
there are many PSMs, their chemical structures are not random
(Fernie et al., 2004). The vast majority of PSMs are variations on
a core derived from several typical backbones having structural
modifications, such as glycosylation, acylation, methylation,
hydroxylation, and prenylation (Wang et al., 2019c). On the
basis of the representative structures, PSMs can be grouped
into major classes, such as nitrogen-containing compounds,
terpenoids, and phenolics (D’Auria and Gershenzon, 2005). Here,
we summarize the basic biosynthetic pathways of representative
PSMs and attempt to better understand the potential targets of
stress-mediated regulation.

Key Enzymes Involved in the
Biosynthesis of Alkaloids
Alkaloids originally consisted of a large class of heterocyclic
nitrogen-containing organic compounds (Zhang et al., 2021b).
The nitrogen atom in the heterocyclic ring generally originates
from an amino acid. On the basis of their amino acid precursors
and chemical structures, alkaloids are classified into five
subgroups: terpenoid indole alkaloids (TIAs), benzylisoquinoline
alkaloids (BIAs), tropine alkaloids, purine alkaloids, and
pyrrolizidine alkaloids (Bhambhani et al., 2021). From precursors
to final products, a series of biochemical modification reactions
occur during the different alkaloidal conversion steps, ensuring
diverse arrays of chemical structures and biological activities
(Lichman, 2021; Zhang et al., 2021c). The present review uses
TIA and BIA as examples to investigate the complexity of
alkaloid biosynthesis.

Terpenoid indole alkaloids are a class of PSMs found in
various non-model medicinal plants, such as Catharanthus
roseus, Rauvolfia serpentina, Ophiorrhiza pumila, and Vinca
minor (Luijendijk et al., 1996; Schlager and Drager, 2016;
Shi et al., 2020a; Zhan et al., 2020; Yang et al., 2021a; Vrabec
et al., 2022). Catharanthus roseus is frequently used as the
model plant to reveal a complete TIA biosynthetic pathway
(O’Connor and Maresh, 2006). Strictosidine, a key skeleton
unique to TIAs, is synthesized by strictosidine synthase with
tryptamine, an indole ring donor derived from decarboxylated
tryptophan, and secologanin, a terpenoid donor from the
methylerythritol 4-phosphate (MEP) pathway (Moreno et al.,
1993; Rai et al., 2013; Kumar et al., 2015). A series of key
enzymes, including geraniol synthase, geraniol 10-hydroxylase,
10-hydroxygeraniol oxidoreductase, iridoid synthase, iridoid
oxidase, 7-deoxyloganetic acid glucosyltransferase, 7-
deoxyloganic acid, loganic acid-O-methyltransferase, and
secologanin synthase, are involved in TIA skeleton biosynthesis
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(Geu-Flores et al., 2012; Simkin et al., 2013; Shen et al., 2017;
Sandholu et al., 2020; Jeena et al., 2021). Then, the intermediate
strictosidine is modified by different enzymes to produce species-
specific TIAs (Qu et al., 2018; Williams et al., 2019). As detection
technology progresses, more novel TIAs and TIA-related
enzymes are being identified in different plant species.

Benzylisoquinoline alkaloids are also members of a
structurally diverse class of PSMs that mainly exist in
the Ranunculales order (Ziegler and Facchini, 2008).
The biosynthesis of BIAs starts with dopamine and 4-
hydroxyphenylacetaldehyde, a tyrosine derivative, to produce
a fundamental precursor trihydroxylated alkaloid (S)-
norcoclaurine by norcoclaurine synthase (Sheng and Himo,
2019). O-methylation, N-methylation, and hydroxylation
successively occur on 4-hydroxyphenylacetaldehyde to
synthetize (S)-3′-hydroxy-N-methylcoclaurine (Liu et al.,
2021c). The conversion of (S)-3′-hydroxy-N-methylcoclaurine
to (S)-reticuline, a branch-point product, in the production of
morphine, tetrahydropalmatine, sanguinarine, and noscapine,
is conducted by 3′-hydroxy-N-methylcoclaurine 4′-hydroxylase
(He et al., 2018). Finally, cytochrome P450 superfamily
proteins are responsible for several modification reactions,
such as hydroxylation, isomerization, and coupling, on the BIA
backbone that produce species-specific BIAs (Hori et al., 2018;
Menendez-Perdomo and Facchini, 2018).

Key Enzymes Involved in the
Biosynthesis of Glucosinolates
As a class of wound-induced PSMs, glucosinolates highly
accumulate in the Brassicaceae family of plants (Sanchez-
Pujante et al., 2017). Most of glucosinolates can be grouped
into three major subgroups, aliphatic, indole-, and aromatic
glucosinolates, on the basis of their amino acid features (Ishida
et al., 2014). The complete biosynthetic pathway of glucosinolates
in Brassica genus consists of three steps: side-chain elongation,
core structure formation, and side-chain secondary modifications
(Sotelo et al., 2016).

During side-chain elongation, aliphatic and aromatic
amino acids are utilized to produce 2-oxo acids by
branched-chain amino acid aminotransferase family
enzymes. Then, 2-oxo acid and acetyl-CoA are condensed
by methylthioalkylmalate synthase (Kochevenko et al., 2012).
Side-chain elongation ends with an isomerization process and
an oxidative decarboxylation by isopropylmalate isomerase and
isopropylmalate dehydrogenase, respectively (Sanchez-Pujante
et al., 2017). To produce the core structure of glucosinolates, the
conversion of side-chain-elongated amino acids to aldoximes
is catalyzed by cytochrome P450 mono-oxygenases, such as
CYP79 and CYP83, to produce S-alkyl-thiohydroximate and
thiohydroximate (Robin et al., 2016). Then, thiohydroximate
is catalyzed to form the glucosinolate core structure by two
key enzymes, uridine diphosphate glycosyltransferase 74
and sulfotransferases (Sonderby et al., 2010; Robin et al.,
2016). Finally, side-chain modifications, such as oxidation,
hydroxylation, methoxylation, alkenylation, and benzoylation,
are required for the formation of the terminal glucosinolate

products (Halkier and Gershenzon, 2006; Nguyen et al.,
2020).

Key Enzymes Involved in the
Biosynthesis of Terpenoids
Terpenoids are a structurally diverse group of PSMs in which
each member has a core isoprene unit. The central core of the
terpenoids is synthesized by one-unit dimethylallyl diphosphate
(DMAPP) and three-units isopentenyl diphosphates (IPP) (Yu
et al., 2017). Both DMAPP and IPP originate from the MEP
pathway, occurring in the plastids, and from the mevalonate
pathway, occurring in the cytoplasm, endoplasmic reticulum, and
peroxisomes (Mahmoud et al., 2021).

Here, we take model plant Arabidopsis as an example.
Isopentenyl phosphate kinase, common to most plants, catalyzes
the conversion of isopentenyl monophosphate and dimethylallyl
monophosphate to IPP and DMAPP (Henry et al., 2015).
In plants, there is a classic upstream pathway that forms
prenyl diphosphates having varied chain lengths, such as
geranyl diphosphate (GPP), having 10 isoprene units, farnesyl
diphosphate (FPP), having 15 isoprene units, and geranylgeranyl
diphosphate (GGPP), having 20 isoprene units (Tholl, 2015;
Jia and Chen, 2016). Next, terpene synthases participate in
the conversion of FPP, GGPP, and GPP into mono-/sesqui-
terpenes (Pichersky and Raguso, 2018; Zhou and Pichersky,
2020). Two units of FPP and one unit of GGPP can be
condensed by squalene synthase to produce squalene and by
phytoene synthase to produce phytoene, which are the precursors
of sterols and carotenoids, respectively (Christianson, 2017).
Thousands of different terpenoids having the same core skeleton
are produced by various modifications, such as hydroxylation,
dehydrogenation, reduction, glycosylation, methylation, and
acylation (Liu et al., 2022a).

Key Enzymes Involved in the
Biosynthesis of Phenolics
Phenolic Acids
Phenolic acids are important active ingredients in numerous
medicinal plants (Chen et al., 2021b). Bioactivities, biosynthesis
and biotechnological production of phenolic acids have been
well revealed in Salvia miltiorrhiza (Shi et al., 2019). On the
basis of the number aromatic ring structures, phenolic acids
can be classified into different groups (Choi et al., 2021).
Taking S. miltiorrhiza as an example, most phenolic acids are
synthesized through the phenylpropanoid and tyrosine metabolic
pathways (Wang et al., 2015). In the phenylpropanoid pathway,
phenylalanine is treated as a substrate to produce cinnamic
acid by phenylalanine ammonia-lyase (PAL) (Reyes Jara et al.,
2022). Then, cinnamic acid is catalyzed to p-coumaroyl-CoA
by two enzymes, cinnamic acid 4-hydroxylase (C4H), and 4-
coumarate: CoA ligase (Huang et al., 2008). In the tyrosine
pathway, tyrosine aminotransferase and hydroxyphenylpyruvate
reductase are involved in the conversion of tyrosine to 3,4-
dihydroxyphenyllactic acid (Rizi et al., 2021).

Subsequently, rosmarinic acid, an important precursor for
downstream species-specific phenolic acids, is synthetized by
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rosmarinic acid synthase and cytochrome P450-dependent
monooxygenase CYP98A14 (Deng et al., 2020b; Chen et al.,
2021b). Over-expression of rosmarinic acid synthase and
CYP98A14 resulted in higher content of phenolic acids in
S. miltiorrhiza hairy roots (Fu et al., 2020).

Flavonoids
Flavonoids are a class of water-soluble pigments stored in the
cell vacuoles (Dong and Lin, 2021). In plants, more than 9,000
flavonoids have been identified and classified into different
groups on the basis of the number of hydroxyl/methyl groups
on their heterocyclic or benzene ring (Noda et al., 2017). As
phenolics, flavonoids also originated from the phenylpropanoid
pathway (Wang et al., 2018b). Specific flavonoid biosynthesis
starts with the conversion of p-coumaroyl-CoA, together with
malonyl-CoA and acetyl-CoA, to naringenin chalcone by
chalcone synthase, which is the first rate-limiting enzyme in the
flavonoid biosynthetic pathway (Zhang et al., 2017). Naringenin
chalcone, a basic skeleton for the downstream pathway, is
converted to naringenin by the catalysis of chalcone isomerase, or
it is converted to naringenin chalcone 2’-glucoside by the catalysis
of chalcone 2’-glucosyltransferase (Miyahara et al., 2018).

Chalcone is a central intermediate product in different
branch pathways, such as the flavanone biosynthesis, flavone
biosynthesis, isoflavone biosynthesis, and flavonol biosynthesis
(Liu et al., 2021b). In the cytoplasm, chalcone isomerase
participates in the cyclization of chalcones to produce flavanones,
opening a route to the heterocyclic C-ring-containing flavonoids
(Nabavi et al., 2020). In addition, naringenin is the precursor
for eriodictyol biosynthesis by flavanone 3′-hydroxylase catalysis,
and for pentahydroxyflavanone biosynthesis by flavanone 3′,5′-
hydroxylase catalysis (Grotewold, 2006). Flavone biosynthesis
is another branch of the flavonoid biosynthetic pathway.
Flavone synthase catalyzes the conversion of flavanones to
flavones, such as apigenin, dihydroxyflavone, luteolin, and
tricetin (Zuk et al., 2019). Flavanones can also be converted to
apigenin C-glycosides and luteolin C-glycosides by flavanone-2-
hydroxylase (Lam et al., 2019).

Multiple metabolic pathways have the same origin, and the
common enzymes are frequently to be the targets of metabolic
regulation. The MEP pathway provides common precursors for
the TIA biosynthesis and terpenoid biosynthesis pathways. The
phenylalanine pathway provided common precursors for the
phenolic acid biosynthesis and flavonoid biosynthesis pathways.
Manipulation of these common enzymes affects multiple
metabolic pathways to response to environmental stresses.

EFFECTS OF ENVIRONMENTAL
FACTORS ON PLANT SPECIALIZED
METABOLITES BIOSYNTHESIS

The synthesis and tissue-specific accumulation of PSMs
are strictly controlled in spatio-temporal mode and
affected by various biotic and abiotic factors (Yang et al.,
2012). Environmental stresses influence the formation and
accumulation of PSMs in plants (Gupta and Dutta, 2011).

Effects of Environmental Factors on
Alkaloid Biosynthesis
Over a hundred TIAs, such as bisindole alkaloids, have been
detected in the medicinal plant C. roseus (Shukla et al., 2006).
Catharanthus roseus seedlings under drought- and salinity-stress
conditions exhibit a greatly higher alkaloid content compared
with under control conditions (Hassan et al., 2021; Yahyazadeh
et al., 2021). Furthermore, the impact of drought and salt
stresses on the biosynthesis and accumulation of alkaloids, such
as dihydrocoptisine, has also been revealed in Chelidonium
majus (Yahyazadeh et al., 2018). Cadmium chloride elicitation
increases the yields of reserpine and ajmalicine, two important
MIAs, in the endangered medicinal plant Rauvolfia serpentina
(Zafar et al., 2020).

Under herbivore attack, the biosynthesis of physostigmine,
an approved antiherbivore alkaloid, rapidly increases in the
damaged area (Rivero et al., 2021). Various stresses elevate the
content of a mixture of toxic pyrrolizidine alkaloids in Echium
plantagineum plants, protecting them from insect and livestock
herbivory (Skoneczny et al., 2019). Aphid predation induces the
biosynthesis of quinolizidine alkaloids, a type of toxic secondary
metabolites produced in lupin species (Frick et al., 2019). As
a type of PSM, both of biotic and abiotic stresses up-regulate
the content of alkaloids, suggesting their important roles of in
resistance to environmental stress.

Effects of Environmental Factors on
Glucosinolate Biosynthesis
Glucosinolates are important precursors to various active
ingredients in the Brassicaceae family of plants (Moreno et al.,
2006). In pak choi (Brassica rapa), strong light, high-temperature,
and drought increase the accumulation of glucosinolates (Park
et al., 2021; Rao et al., 2021). Brassica oleracea has a powerful
tolerance to chilling and freezing, and the low temperature-
induced content of glucosinolates is hypothesized to be involved
in the protective mechanism that enables this tolerance (Ljubej
et al., 2021). In addition to low temperature, other postharvest
stresses, such as wounding, also induce the biosynthesis of
glucosinolates in B. oleracea (Villarreal-Garcia et al., 2016). In
Broccoli sprouts, both of UV-A and UV-B light doses affect
the tailored glucosinolate and phenolic profiles, suggesting an
important role for light stress in glucosinolate biosynthesis
(Moreira-Rodriguez et al., 2017).

Biotic stresses also can influence the glucosinolate
composition in plants. The aphid-induced expression of
CYP79B2, CYP79B3, and PAD33 leads to the accumulation of
indolyl glucosinolates (Mewis et al., 2012). A gain-of-function
Arabidopsis mutant, cml42, with a higher aliphatic glucosinolate
content than the wild type, shows a strong resistance to herbivory
(Vadassery et al., 2012).

Effects of Environmental Factors on
Terpenoid Biosynthesis
Terpenoids play frequent roles in plant protection in the form of
phytohormones, particularly as diterpene gibberellins, triterpene
brassinosteroids (BRs), and sesquiterpene abscisic acid (ABA)

Frontiers in Plant Science | www.frontiersin.org 4 April 2022 | Volume 13 | Article 877304

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-877304 April 4, 2022 Time: 12:17 # 5

Zhan et al. Plant Protection-Associated Secondary Metabolites

(Patra et al., 2013; Chen et al., 2021a; Liu et al., 2021a).
In lettuce, long-term high temperature expose facilitates the
accumulation of gibberellin to accelerate bolting (Liu et al., 2020).
Under drought-stress conditions, significant accumulations of
ABA occur in wheat guard cells (Wang et al., 2021). In maize
sprouts, NaCl stress greatly increases the content of carotenoid,
which is a typical tetraterpenoid with an intense antioxidant
capacity, by up-regulating the expression of several carotenoid
biosynthetic pathway genes (He et al., 2021). In winter wheat,
cold treatments elevate the endogenous BR content, indicating
a role of triterpene BR in improving the cold tolerance of winter
cereals (Janeczko et al., 2019).

Biotic stresses can also influence the terpenoid contents of
plants. In various Iranian cultivars of basil, water-deficit stress
enhances the accumulations of linalool, germacrene D, and
γ-cadinene, three important aromatic terpenes with verified
cytotoxic activities (Khakdan et al., 2021). The ability to
synthesize specialized antimicrobial avenacins, belonging to the
triterpenoids, is likely to have allowed oats (Avena spp.) to combat
various diseases (Qi et al., 2004). Terpenoids are rich in Euphorbia
peplus latex and function as defensive chemical substances against
insect herbivores and various agricultural phytopathogenic fungi
(Hua et al., 2017).

A large number of works showed that terpenoids are involved
in the resistance to environmental stress in the form of
phytohormones. Phytohormones, as signal molecules, transmit
environmental signals to plant cells.

Effects of Environmental Factors on
Phenolic Acid Biosynthesis
The biosynthesis of phenolic compounds is significantly affected
by various abiotic stress conditions (Sharma et al., 2019).
In many inbred maize lines, long-term drought treatments
cause significant reductions in various phenolic acids, such as
protocatechuic, caffeic, and sinapic (Kravic et al., 2021). In
Chinese cabbage, salt stress leads to great decreases in phenolic
compounds, such as sinapic acid, salicylic acid, and ferulic acid
(Linic et al., 2021). Under alkaline conditions, rice enhances
phenolic acid secretions in the root epidermis and stele, which
effectively increases ion uptake and alleviates the Fe-deficiency
responses (Li et al., 2021b). In Achillea pachycephala, drought
stress dramatically increases the contents of phenolic acids, such
as chlorogenic and caffeic (Gharibi et al., 2019).

Rhizobacteria-mediated systemic resistance helps protect
plants from pathogens and insects (Singh et al., 2002). Phenolic
acid-induced systemic resistance provides bio-protection to
plants under pathogenic stress conditions (Nicholson and
Hammerschmidt, 2003). In rice, the correlation between
phenolics and seedling protection from Rhizobium solani has
been revealed. An High Performance Liquid Chromatography
analysis showed that the biosynthesis of phenolic acids is
more enhanced in Rhizobium-infected seedlings compared
with uninfected controls (Mishra et al., 2006). In the orchid
D. officinale, a Dendrobium viroid infection increases the total
phenolic acid content, which may play an important role in the
activation of pathogen defense responses (Li et al., 2022).

Phenolic acid has complex biological functions. Some stresses
inhibit phenolic acid synthesis, and some other stresses promote
phenolic acid contents, suggesting that phenolic acids may play
both positive and negative roles in the process of resisting
environmental stress.

Effects of Environmental Factors on
Flavonoid Biosynthesis
Flavonoids, common polyphenols, are antioxidants required in
plant stress resistance (Laoue et al., 2022). Plants with high
flavonoid contents have potential cellular antioxidant capacities
under environmental stress conditions (Hidayat and Wulandari,
2021). The over-accumulation of several flavonoids, such as
kaempferol, quercetin, and cyanidin, has been well documented
in model plants (Nakabayashi et al., 2014). In Chinese liquorice,
the contents of some ortho-dehydroxylated B-ring flavonoids,
effective scavengers of ROS, increase under UV-B exposure
(Zhang et al., 2018). In rice, salt and heat stresses enhance
flavonoid accumulation, which is crucial for stress tolerance
(Jan et al., 2021). In some plant species, abiotic stresses
play negative roles in flavonoid accumulation. For example,
accumulated Na2+ in Apocynum venetum leaves reduces the
flavonoid concentration and decreases salt tolerance under salt-
stress conditions (Xu et al., 2021).

The protective roles of hesperidin and hesperetin, the
major flavonoids in citrus fruit, against invading microbes and
toxins have been well investigated (Iranshahi et al., 2015).
Several flavonol glycosides, such as quercetin and kaempferol
glycosides, increase under short-wavelength radiation, which
enhances plant defenses against various herbivorous insects
(Rechner et al., 2017).

Anthocyanins, another subgroup of flavonoids, are frequently
induced in plants by biotic and abiotic stresses (Li et al., 2021a).
Various environmental factors play distinct roles in anthocyanin
biosynthesis and tissue-specific accumulation in plants (Li et al.,
2012; An et al., 2020). In apple, drought, low temperature, UV-
B, and light exposure significantly up-regulate the accumulation
of anthocyanins in fruit, and high temperature and increased
nitrogen fertilizer significantly down-regulate the accumulation
of anthocyanins in fruit (Gao et al., 2021).

EFFECTS OF GENETIC FACTORS ON
THE BIOSYNTHESIS OF PLANT
SPECIALIZED METABOLITES

Accumulations of PSMs under stressful environment conditions
is controlled by an intricate network containing a large number
of Transcription factors (TFs). Many key enzyme-encoding genes
involved in PSM biosynthesis are the downstream targets of
different TFs (Patra et al., 2013).

Transcription Factors Involved in the
Biosynthesis of Alkaloids
Previous studies have identified several TFs that control
specific steps and branches of the TIA and BIA biosynthetic

Frontiers in Plant Science | www.frontiersin.org 5 April 2022 | Volume 13 | Article 877304

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-877304 April 4, 2022 Time: 12:17 # 6

Zhan et al. Plant Protection-Associated Secondary Metabolites

pathways. In C. roseus, an ORCA3 TF regulates the
expression of TIA biosynthetic pathway-related genes, such as
GEISSOSCHIZINE SYNTHASE, STRICTOSIDINE SYNTHASE,
and DEACETYLVINDOLINE ACETYLTRANSFERASE (Khataee
et al., 2020). The interaction of MYC2 and GBFs governs TIA
biosynthesis by modulating the TIA pathway genes in C. roseus
(Sui et al., 2018). WRKY1 is a positive regulator of the TIA
biosynthetic pathway (Suttipanta et al., 2011). A MAP kinase
cascade modulates the TIA biosynthetic pathway by activating
its downstream target AP2/ERF TF genes (Paul et al., 2017).
In addition, the zinc-finger TF ZCT1 acts as a transcriptional
repressor in the TIA biosynthetic pathway (Mortensen et al.,
2019). In Ophiorrhiza pumila, OpWRKY2 and OpWRKY3
were identified as two positive regulators in the biosynthesis of
camptothecin (Wang et al., 2019a; Hao et al., 2021).

In lotus (Nelumbo nucifera), WRKY40a and WRKY40b
participate in the BIA biosynthetic pathway by regulating the
TYDC, NCS, CYP80G, and 7OMT genes (Meelaph et al.,
2018; Li et al., 2019a). In narrow-leafed lupin, the TF RAP2-
7 is involved in the regulation of the quinolizidine alkaloid
biosynthetic pathway (Czepiel et al., 2021). Two jasmonate-
responsive TFs, ERF189 and ERF199, are involved in the
biosynthesis of nicotine, the predominant alkaloid in tobacco
leaves (Kato et al., 2014; Kajikawa et al., 2017). Under high
temperature-stress conditions, MYC2 enhances the nicotine
content by regulating the expression of the PMT1 gene, which
encodes a putrescine N-methyl transferase involved in the key
step of the pyridine alkaloid pathway (Yang et al., 2016). In
Coptis japonica, isoquinoline alkaloid biosynthesis is controlled
by CjbHLH1 homologs (Yamada et al., 2011).

Transcription Factors Involved in the
Biosynthesis of Glucosinolates
Arabidopsis is a model plant used to reveal the transcriptional
regulation of glucosinolate biosynthesis (Hirai et al., 2004).
An analysis of the R2R3-MYB family in Arabidopsis showed
that MYB34, MYB51, and MYB122 control the biosynthesis of
indolic glucosinolates, whereas MYB28, MYB29, and MYB76
control the biosynthesis of aliphatic glucosinolates (Frerigmann
and Gigolashvili, 2014; Baskar and Park, 2015). Another two
Arabidopsis TFs, FRS7 and FRS12, are transcriptional repressors
in the glucosinolate biosynthetic pathway (Fernandez-Calvo
et al., 2020). In addition, a well-identified central circadian
clock regulator, CCA1, participates in the host resistance of
plants to the caterpillar Trichoplusia ni by enhancing basal
indole glucosinolate biosynthesis (Lei et al., 2019). A bHLH
TF, IAA-LEUCINE RESISTANT3, modulates the accumulation
of glucosinolates under iron deficiency conditions and during
pathogen infection (Samira et al., 2018). A proteomic analysis
identified a jasmonate-responsive MYC2 TF that has opposite
effects on the indolic and aliphatic glucosinolate pathways
(Guo et al., 2012).

Short-term temperature treatments can enhance the
accumulation of glucosinolates in B. rapa. A co-expression
analysis identified a MYB family member, MYB51, that regulates
the biosynthesis of glucosinolates after a short-term high

temperature treatment (Rao et al., 2021). In addition, MYB28.3,
MYB29.1, and MYB122.2, which are highly responsive to various
abiotic and biotic stresses, are positive regulators of aliphatic
glucosinolate biosynthesis in B. rapa (Baskar and Park, 2015; Seo
et al., 2017).

Transcription Factors Involved in the
Biosynthesis of Terpenoids
A number of TFs are involved in the terpenoid biosynthetic
pathway (Patra et al., 2013). Artemisinin is an important
sesquiterpene lactone in sweet wormwood, and several
artemisinin biosynthesis-related TFs have been identified
(Efferth, 2017). In sweet wormwood, two JA responsive TFs,
ERF1 and ERF2, affect artemisinin biosynthesis by regulating
the expression of AMORPHA-4,11-DIENE SYNTHASE and CYP
SEQUITERPENE OXIDASE genes (Yu et al., 2012). AaWRKY1
controls the expression of 3-HYDROXY 3-METHYLGLUTARYL-
COA REDUCTASE and ARTEMISINIC ALDEHYDE111(13)
REDUCTASE, which are key genes in the artemisinin biosynthetic
pathway (Jiang et al., 2016).

Several stress-related TFs are involved in the biosynthesis
of terpenoids. In cotton (Gossypium arboretum), GaWRKY1
regulates the conversion of sesquiterpenes to gossypol, which
plays a role in responses to fungal infection (Xu et al., 2004).
Terpenoids are enriched in the latex products from the rubber
tree (Hevea brasiliensis). HbWRKY1 and HbEREBP1 are positive
and negative regulators, respectively, of latex biosynthesis
induced by wounding (Chen et al., 2012; Wang et al., 2013).
Clade Iva bHLH TFs in the JA-signaling pathway participate in
the regulation of bioactive terpenoid biosynthesis (Mertens et al.,
2016b). In Medicago truncatula, two bHLH TFs, TSAR1 and
TSAR2, affect triterpene saponin biosynthesis by regulating the
expression of HMGR1, which encodes the rate-limiting enzyme
for triterpene biosynthesis, under stress conditions (Mertens
et al., 2016a). In roses, the over-expression of the PAP1 TF
gene significantly activates the terpenoid biosynthetic pathway to
enhance the production of terpenoid scent compounds (Zvi et al.,
2012). The JA-responsive TF WRKY24 promotes the biosynthesis
of saponin by increasing the expression of terpenoid biosynthetic
pathway genes in Conyza blini (Sun et al., 2018). In Taxus media,
a phloem-specific MYB3 affects the transcriptional regulation
of paclitaxel biosynthesis, a classic diterpenoid compound, by
activating the expression of TBT, DBTNBT, and TS genes
(Yu et al., 2020).

Transcription Factors Involved in the
Biosynthesis of Phenolic Acids
Several TFs act as regulators of the phenolic acid pathway in the
Chinese medicinal plant S. miltiorrhiza (Sun et al., 2019a). A large
number of TFs, including two ERF family members (SmERF115
and SmERF1L1), three MYB family members (SmMYB2a,
SmMYB2b, and SmMYB52), four bHLH family members
(SmbHLH3, SmbHLH37, SmbHLH51, and SmbHLH148), one
ZIP family member (SmZIP1), and two GRAS family members
(SmGRAS1 and SmGRAS2), are involved in the regulation
of the phenolic acid biosynthetic pathway (Zhou et al., 2016;
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Du et al., 2018; Li et al., 2019b; Deng et al., 2020a; Zhang
et al., 2020). Furthermore, the corresponding downstream targets
of the above TFs also have been identified in S. miltiorrhiza.
SmMYC2a/b binds to the E-boxes in the promoter regions of
SmHCT6 and SmCYP98A14, which are key genes involved in
the synthesis of 4-coumaroyl-3′,4′-dihydroxyphenyllactic acid
and rosmarinic acid, respectively (Zhou et al., 2016). SmGRAS1,
together with SmGRSA2, binds to the GARE box in the
promoter region of SmKSL1, which catalyzes the biosynthesis of
tanshinones from GGPP (Li et al., 2019b). SmbZIP1, an ABA-
responsive TF, binds to the G-Box-like1 motif in the promoter
region of SmC4H1, which is involved in the biosynthesis of
phenolic acid precursors (Deng et al., 2020a). SmbHLH148 and
SmMYB1 regulate phenolic acid biosynthesis by activating the
expression of downstream genes, such as PAL1, C4H1, TAT,
HPPR, RAS, and CYP98A14 (Xing et al., 2018; Zhou et al., 2021b).
SmMYB52 simultaneously affects the production of phenolic
acids by binding to the MBE elements in promoter regions of
SmTAT1, Sm4CL9, SmC4H1, and SmHPPR1 (Yang et al., 2021b).
Furthermore, SmbHLH3 acts a repressor in the biosynthesis of
phenolic acids in S. miltiorrhiza hairy roots by reducing the
expression of DXS3, DXR, HMGR1, KSL1, CPS1 and CYP76AH1
(Zhang et al., 2020). In S. miltiorrhiza hairy roots, tanshinone
and salvianolic acid biosynthesis are controlled by SmMYB09
(Hao et al., 2020). Interestingly, over-expression of Arabidopsis
MYC2 simultaneous promotes the biosynthesis of tanshinone
and phenolic acid in S. miltiorrhiza hairy roots (Shi et al., 2020b).

Additionally, SmJRB1 was identified as a positive regulator in
regulation of phenolic acid biosynthesis (Zhou et al., 2021a).

Transcription Factors Involved in the
Biosynthesis of Flavonoids
The complete flavonoid biosynthetic pathway, consisting of three
major branches, has been well-studied in plants. Recently, TFs
from different families, such as MYB, bHLH, and WRKY, have
also been characterized (Lloyd et al., 2017; Yan et al., 2021).

In M. truncatula, MtMYB134 activates flavonol biosynthesis
by binding the promoters of MtFLS1, MtFLS2, and MtCHS2
(Naik et al., 2021). In apple, MdNAC52 regulates the biosynthesis
of anthocyanin and proanthocyanidin by activating the
promoters of MdMYB9 and MdMYB11 genes (Sun et al., 2019b).
In buckwheat, MYBF1 regulates the flavonol biosynthetic
pathway by up-regulating the DFR and LDOX genes (Matsui
et al., 2018). In Fagopyrum tataricum, light-induced FtMYB116
promotes the accumulation of rutin by binding directly to
the promoter region of F3’H (Zhang et al., 2019). In pear
(Pyrus pyrifolia), PpMYB17 positively controls the flavonoid
biosynthetic pathway by activating the promoters of PpCHS,
PpCHI, PpF3H, PpFLS, and PpUFGT (Premathilake et al.,
2020). Another pear (Pyrus × bretschneideri) TF, PbWRKY75
affects flavonoid biosynthesis by regulating the expression
of PbDFR, PbUFGT, and PbMYB10b (Cong et al., 2021).
In Populus tomentosa, PtMYB6 promotes anthocyanin and

FIGURE 1 | The network of transcriptional regulation of plant under biotic and abiotic stresses. Red arrow indicated activation pathways and green arrow indicated
inhibition pathways.
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proanthocyanidin biosynthesis by interacting physically with
KNAT7 (Wang et al., 2019b). In potato (Solanum tuberosum),
StWRKY13 promotes anthocyanin biosynthesis in tubers by
activating the promoters of StCHS, StF3H, StDFR, and StANS
(Zhang et al., 2021a). The over-expression of MdWRKY11
in apple calli revealed its novel function in promoting the
accumulation of flavonoids and anthocyanin by binding to the
promoter of MdHY5 (Wang et al., 2018a; Liu et al., 2019).

Furthermore, many negative regulators of the flavonoid
biosynthetic pathway have been identified in different plant
species. AtMYB4 and its close homologs AtMYB7 and
AtMYB32 inhibit flavonoid accumulation by down-regulating
the expression of ADT6, which catalyzes the key step that
supplies phenylalanine (Wang et al., 2020). The over-expression
of MYB15L in red-fleshed apple calli represses anthocyanin
accumulation and cold tolerance (Xu et al., 2018). Homodimers
of MdMYB16 inhibit anthocyanin synthesis through their
C-terminal EARs, which are weakened by interactions with
the TF MdbHLH33 (Xu et al., 2017). The over-expression
of Arabidopsis MYB60 in lettuce plants significantly reduces
the production and accumulation of anthocyanin pigments
by inhibiting the expression of DIHYDROFLAVONOL-4-
REDUCTASE gene (Park et al., 2008). The loss of MYB2-
1 expression causes the purple color in cabbage leaves,
suggesting that it encodes a potential negative regulator
of the flavonoid biosynthetic pathway (Song et al., 2018).
In Ginkgo biloba, a negative regulator, GbMYBF2, affects
flavonoid biosynthesis by down-regulating several key genes,
such as GbPAL, GbANS, GbFLS, and GbCHS2 (Xu et al.,
2014). A Brassica napus WRKY TF, BnWRKY41-1, acts as
a repressor of anthocyanin biosynthesis (Duan et al., 2018).
In S. miltiorrhiza, SmbHLH60 was identified as a negative
regulator in anthocyanin biosynthesis mainly via SmDRF gene
(Liu et al., 2022b).

Environmental signals pass through cell membrane through
a large number of TFs to activate downstream functional genes.
To date, a number of TF involved in metabolic pathway have
been identified in different plants. Our review summarizes a
network that is involved in the transcriptional regulation of PSM
biosynthesis under environmental stresses (Figure 1). To date,
a large number of positive TFs have been identified, but the
number of negative TFs is still limited. Negative regulatory TFs
are also the key factors in the establishment of dynamic balance of
plant secondary metabolism. In the future research, cloning and

identification of negative regulatory TFs has become an urgent
research hotspot.

CONCLUSION AND FUTURE
PERSPECTIVES

Plants produce a large number of PSMs having diversified
structures, and they play important physiological and ecological
roles in stress tolerance. The biosynthesis of stress-related PSMs
is controlled by environmental and genetic factors. Artificial
regulation of PSM biosynthesis is helpful to enhance plant
resistance to environmental stresses. We summarized potential
genetic and environmental factors and their targets, particularly
in MYB, bHLH, and WRKY families. For plant genetic
improvement, overexpression of activating TFs or inhibition
of expression of inhibitory TFs can increase the yield of PSM
and enhance the resistance of plants to environmental stress.
We further found that the downstream targets of these TFs
are frequently enriched in the synthesis pathway of precursors,
suggesting an effective role of precursors in enhancing of terminal
products. Although most of PSM-related TFs have been identified
in different plant species, including the model plant Arabidopsis,
medicinal plant C. roseus, and woody plant poplar, these results
also provide good guides for the regulation in other plants. This
review summarizes the key enzymes and TFs involved in PSM
biosynthetic pathways, providing valuable insights for screening
targets and regulators in non-model plants.
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