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Nitrogen availability and light quality affect plant resource allocation, but their interaction

is poorly understood. Herein, we analyzed the growth and allocation of dry matter and

nitrogen using lettuce (Lactuca sativa L.) as a plant model in a factorial experiment

combining three light regimes (100% red light, R; 50% red light + 50% blue light, RB;

100% blue light, B) and two nitrogen rates (low, 0.1mM N; high, 10mM N). Red light

increased shoot dry weight in relation to both B and RB irrespective of nitrogen supply.

Blue light favored root growth under low nitrogen. Allometric analysis showed lower

allocation to leaf in response to blue light under low nitrogen and similar leaf allocation

under high nitrogen. A difference in allometric slopes between low nitrogen and high

nitrogen in treatments with blue light reflected a strong interaction effect on root-to-shoot

biomass allocation. Shoot nitrate concentration increased with light exposure up to 14 h

in both nitrogen treatments, was higher under blue light with high nitrogen, and varied

little with light quality under low nitrogen. Shoot nitrogen concentration, nitrogen nutrition

index, and shoot NR activity increased in response to blue light. We conclude that the

interaction between blue light and nitrogen supply modulates dry mass and nitrogen

allocation between the shoot and root.

Keywords: blue light, red light, biomass allocation, nitrogen allocation, nitrogen concentration, lettuce

INTRODUCTION

Control environment agriculture allows for whole-year production and high yield, factors that are
particularly important for valuable horticultural crops (Kozai et al., 2019). Nitrogen supply and
light (intensity and spectral composition) are important in these intensive production systems
(Tsukagoshi and Shinohara, 2020). The individual effects of nitrogen and light quality on plant
growth, nitrogen uptake, and allocation of both dry matter and reduced nitrogen attract large
research efforts (Hogewoning et al., 2010; Wang et al., 2016; Zhou et al., 2018; Bian et al., 2020).
However, less attention has been paid to the interactions between nitrogen supply and light quality
on plant growth and resource allocation.

Biomass partitioning is central to plant fitness and adaptation (Korner, 1991,
2015), and increased allocation to grain has been at the core of the improvement
of yield in grain crops over the last decades (Liu et al., 2021; Slafer et al., 2021).
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The relative allocation to shoot and root influences the capture
of below-ground and above-ground resources (Titlyanova et al.,
1999; Husáková et al., 2018), and reflects the cumulative response
of plant growth to variable environments (Mokany et al.,
2006). Partitioning between structural and labile carbohydrates
is ecologically and agronomically relevant, with reserves playing
a role in re-growth after fire or herbivory, grain fill, and osmotic
defense against aphids (Bloom et al., 1985; Sadras, 2021). Sugar
signaling, interacting with nutrients and light, modulates the
partitioning of carbon between functions, including growth,
defense, and reserves (Smith and Stitt, 2007).

Plants absorb radiation efficiently through chlorophylls in
the 600–700 nm (red) 400–500 nm (blue) wavelengths (McCree,
1971), and an array of photoreceptors perceive different
wavebands of sunlight with roles in photomorphogenesis.
Phytochromes mediate perception of red and far-red light,
while cryptochromes (CRY), phototropins, and members of
the ZTL/FKF1/LKP2 family mediate perception of UVA and
blue light (Rai et al., 2019; Hernando et al., 2021; Pierik and
Ballare, 2021). Monochromatic blue light, red light, or their
mixture influence photosynthesis, plant morphology, and dry
mass allocation between organs and between structural and labile
carbohydrates, but their effects seem inconsistent (Hogewoning
et al., 2010; Wang et al., 2016; He et al., 2017). Izzo et al. (2020)
reported that red light reduced tomato root growth and root-
to-shoot ratio compared to the mixture of red light with blue
light. Pham et al. (2019) found blue light reduced root weight
compared to red light and mixed red and blue light in tomato
seedlings. Sakuraba and Yanagisawa (2018) reviewed the effects of
light signaling on sucrose transportation via expression of sugar
transporter by HY5, which could induce phloem-mobile sucrose
in leaf to promote root development and nitrate uptake (Lejay
et al., 2003; Chen et al., 2012; Kircher and Schopfer, 2012).

Nitrogen deficit often increases the root-to-shoot ratio
(Poorter et al., 2012; Sun et al., 2020). Increasing evidence
indicated that nitrate and light coordinately regulate plant
growth. Light signals can induce genes involved in nitrate
metabolism and influence nitrogen uptake and assimilation
(Sakuraba and Yanagisawa, 2018; Pathak et al., 2020). Both red
and blue light showed a positive effect on nitrate metabolism
(Kamiya, 1989; Jonassen et al., 2008). Yuan et al. (2016) reported
that blue light regulated flowering in plants in response to
nitrogen levels. The effect of the interaction between nitrogen and
light on horticultural crops is poorly understood. In this study, we
used lettuce (Lactuca Sativa L.) as a model plant to quantify the
growth, nitrogen uptake, and shoot–root allocation of dry matter
and nitrogen in a factorial experiment combining light quality
and nitrogen supply, with a particular focus on interactions.

MATERIALS AND METHODS

Two experiments were conducted in a growth room with a
controlled environment to test the effect of nitrogen supply,
light quality, and their interaction on lettuce growth, nitrogen
uptake, and allocation of both dry matter and reduced nitrogen
for a short term (treatment for 1 week, Exp. 1) and long term

(treatment for 3 weeks, Exp. 2). Both experiments had the
same design.

Growing Conditions and Experimental
Design
Lettuce (Lactuca Sativa L. cv. “GreenOak leaf”) seeds were sowed
in a 0.25 cm × 0.25 cm × 0.25 cm sponge (Jiangsu Rongcheng
Agricultural Science and Technology Development Co. Ltd,
Nantong, Jiangsu, P. R. China) and germinated in darkness
for 2 days in a growth room with day/night temperatures of
24/22◦C, CO2 concentration of 400 ppm, and vapor pressure
deficit (VPD) of 1.19/1.06 kPa. Upon unfolding of the first
true leaf (2 weeks after sowing), treatments were established
and maintained for 1 week (Exp. 1) or 3 weeks (Exp. 2)
(Figure 1E). Plants were watered with a nutrient solution for 2
weeks under photosynthetic photon flux density (PPFD) of 200
µmol m−2 s−1 white LED light (light spectrum in Figure 1A)
and a photoperiod of 14 h, 24/20◦C day/night temperature, and
VPD 1.19/0.94 kPa before transferring to a hydroponic system
with the same conditions. The nutrient solution (10mM nitrate-
N) was renewed weekly and contained 4mM KNO3, 0.8mM
KH2PO4, 0.3mM K2HPO4, 1.5mM MgSO4, 3mM Ca (NO3)2,
0.08mM Fe-Na EDTA, 60µM H3BO3, 3µM ZnSO4, 20µM
MnSO4, 0.4µM CuSO4, and 0.03µM (NH4)6Mo7O24, with pH
5.8 and EC 1.38 mS·cm−1.

After 2 weeks of cultivation, vigorous and uniform plants were
selected for the light and nitrogen treatments. Three cultivation
frames were used, each divided into three layers, and two tanks
were placed in each layer (18 cultivation units in total). Light
conditions were 100% red light (R), 50% red light and 50%
blue light (RB), and 100% blue light (B) (light spectrum in
Figures 1B–D). Lighting equipment was red and blue LED light
tubes (150 cm × 60 cm, Shenzhen CT Lighting Technology
Co. Ltd., Shenzhen, Guangdong, P. R. China), with peak
wavelengths of 659 nm and 450 nm, respectively. Light quality
and intensity were measured using a spectroradiometer (SS120,
Apogee Instruments, Inc., Logan, UT, USA). Light intensity at the
canopy level was maintained at 200µmolm−2 s−1. To avoid light
contamination, each cultivation unit was covered with an opaque
black–white plastic film. Nitrogen conditions were low nitrogen
(LN, 0.1mM nitrate-N) and high nitrogen (HN, 10mM nitrate-
N). Low nitrogen treatments were established by replacing KNO3

with KCl and Ca(NO3)2 with CaCl2 to maintain the same K+

and Ca2+ concentrations. Plastic tanks with 15 L of plant nutrient
solution were used for the nitrogen treatment. Six plants were
planted in each tank. An automatic pump was used to maintain
the oxygen content in the nutrient solution.

Sampling and Harvesting
Plants from one tank were harvested as one sample, and three
samples were used during the experiment. In Exp. 1, after 8 days
of treatment, (Figure 1E), shoot and root samples were collected
to determine the concentration of nitrate and soluble sugar at 0, 6,
and 14 h after the onset of the light period. Nitrate reductase (NR;
1.6.6.1) activity wasmeasured in the 6-h sample. For the sampling
of shoots, the newest three expanded leaves were collected, and
the leaf veins were removed with scissors (Figure 1F). Roots were
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FIGURE 1 | Overview of the experiment. (A–D) Spectra of the LED lights used in this experiment, including white light, R, RB, and B. (E) Experimental schedule of

light and nitrogen treatments in Experiments 1 and 2. Germinated lettuce seeds were sowed in the sponge grown in the white LED for 2 weeks, irrigated with HN

nutrition, and then transferred the plants to nutrient solution for another 2 weeks. Four-week-old lettuce plants were treated with different light qualities and nitrogen

concentrations for 1 week (Exp. 1) and 3 weeks (Exp. 2) before harvest. (F) Three newest expanded leaves are labeled with a number. Red arrow shows the main

vein, which was removed.

collected and blotted dry with tissue to remove the excess nutrient
solution. Fresh samples were snap-frozen in liquid nitrogen for
the enzymatic and chemical analyses.

For the destructive measurements, plants were harvested
on the 8th day (Exp. 1) and the 21st day (Exp. 2) after
the treatment (Figure 1E). Plants were divided into shoot and
root in Exp.1. The shoot was divided into three parts in

Exp. 2: old, expanded, and unexpanded leaves. Old leaves
were the first five leaves and unexpanded leaves were the
newest unexpanded 3–4 leaves, while the remaining leaves
were the expanded leaves. We measured fresh weight and
dry weight after drying on a forced air oven at 65◦C until
a constant weight was obtained. The dried samples were
milled with a TISSUELYSER-24/32L (Shanghai Jingxin Industrial

Frontiers in Plant Science | www.frontiersin.org 3 May 2022 | Volume 13 | Article 864090

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Liang et al. Light Quality Modulates Resource Allocation

Development Co. Ltd., Shanghai, China) at 60Hz for 1min for
chemical analysis.

Chemical Analysis
We measured leaf and root nitrate concentration with the
salicylic acid method (Cataldo et al., 1975). Frozen leaf/root
samples (0.2 g) were homogenized using a TISSUELYSER-24/32L
(Shanghai Jingxin Industrial Development Co. Ltd., Shanghai,
China) at 60Hz for 1min and incubated with 1ml of water
at 25◦C for 30min. Then the samples were centrifuged at
10,000 × g for 15min. The reaction mixture contains 10 µl of
supernatant, 40 µl of reaction buffer, and 950 µl of H2SO4. The
absorbance of the extract was measured at 410 nm using a UV–
VIS spectrophotometer (UV-1800, Shimadzu, Japan). Nitrogen
concentration was measured in 0.1 g dried samples digested with
concentrated sulfuric acid (98%) and hydrogen peroxide (≥30%)
using the micro-Kjeldahl procedure. Soluble sugar content was
analyzed with the anthrone method (Ruuska et al., 2006). The
homogenized frozen leaf/root samples (0.2 g) were incubated in
1.5ml of 80% ethanol in a 50◦C water bath for 20min, and then
centrifuged at 10,000 × g for 10min. The supernatants were
used to determine the soluble sugar content at the absorbance of
620 nm.

NR Activity
In a preliminary trial, we noticed that the NR activity
decreased significantly after storage, especially at −80◦C. To
minimize this effect, the activity of NR was tested immediately
after harvest. The NR activity was determined using the
commercial reaction agent (www.geruisi-bio.com) according to
the manufacturer’s instructions. Briefly, 0.1 g of sample was
homogenized in 1ml of extraction buffer (pH 7.5, containing
100mM Hepes-KOH, 7mM cysteine, 1mM EDTA, 3% PVPP
(polyvinylpolypyrrolidone), and 1% BSA) and centrifuged at
10,000 × g for 10min. Then, 80 µl of the supernatant was
mixed with 400 µl of reaction buffer containing potassium
nitrate and NADH. Another tube with 80 µl of the supernatant
mixed with 400 µl of reaction buffer and containing only
potassium nitrate without NADH was used as the control.
All the tubes were incubated at 30◦C for 30min in the dark.
The content of NO−

2 was determined at the absorbance of
530 nm by adding 400 µl of color agents (1% sulfanilamide
and 0.02% N-1-naphthyl-ethylene-diamine dihydrochloride in
1.5M HCl). The difference in the NO−

2 value between the assay
tubes and control tubes indicates the nitrate content that is
reduced by the extracted enzyme solution. The amount of NO−

2
produced by the enzyme solution per minute indicates the NR
enzyme activity.

Data Analysis
Following the definition of Poorter and Sack (2012), we
calculated leaf mass fraction (LMF) as the ratio of shoot dry
weight to total dry weight, and root mass fraction (RMF)
as the ratio of root dry weight to total dry weight. The N
nutrition index (NNI) was calculated as the ratio of actual
and critical N concentration in the shoot at 1 week and 3
weeks. Critical N content was derived from the N dilution

curve for lettuce reported by Yin et al. (2021). Shapiro–
Wilk test was performed to verify normality (when p > 0.05,
normal distribution), and the Levene’s test (when p > 0.05,
equal variance) was conducted to verify the homogeneity of
variances. If p < 0.05, the data were log-transformed to meet
the equal variance assumption. Two-way ANOVA was used
to evaluate the effect of nitrogen supply, light quality, and
their interaction on plant biomass, allocation-related traits, and
nitrogen-related traits. One-way ANOVA was used to evaluate
the effect of light quality and diurnal variation on nitrate
concentration and soluble sugar concentration in shoot and root.
Principal component analysis was performed with GraphPad
Prism 9 to explore the relationships among morphological,
physiological, and nitrogen traits and their responses to
treatments. Correlations between traits were explored with
Model II linear regression to account for errors in both x- and
y-axes (Ludbrook, 2012).

RESULTS

Effect of Nitrogen Supply and Light Quality
on Plant Biomass Accumulation and
Allocation
The effects of nitrogen, light quality, and their interaction are
summarized in Figure 2. Shoot dry weight (DW) was higher in
R compared to RB and B after 1 week and 3 weeks of treatment,
irrespective of the nitrogen supply (Figures 2A,B). Under low
nitrogen, root DW was higher with blue light after 1 week
and 3 weeks of treatment (Figures 2C,D). Under high nitrogen,
the light quality did not affect the root DW (Figures 2C,D).
Differences in total DW were incipient after 1 week, and after
3 weeks, total DW was higher under red light irrespective of
nitrogen and higher under high nitrogen irrespective of light
(Figures 2E,F). After 1 week, the root-to-shoot ratio (R/S) was
lowest under red light and high nitrogen, with no interaction
(Figure 2G). After 3 weeks, an interaction was apparent whereby
R/S had a coefficient of variation of 0.28 and ranked R < RB < B
under low nitrogen, in comparison to the coefficient of variation
of 0.15 and ranking R < RB≈ B under high nitrogen.

Figure 3 shows leaf mass fraction (LMF) and root mass
fraction (RMF) in response to treatments. LMF was highest
and RMF lowest under red light after 1 week irrespective of
the nitrogen treatment. After 3 weeks, an interaction developed
whereby LMF ranked R > RB > B at low nitrogen and R >

RB ≈ B under high nitrogen, with a mirror response for RMF.
Figure 4 further analyzes allocation to leaf and root to account
for size-dependent effects (Poorter and Sack, 2012). Under low
nitrogen, the slope of LMF against the log of plant weight ranked
RB≈ B< R, whereas the slopes were similar under high nitrogen
(Figures 4A,B). The slopes of RMF against the log of plant weight
were the mirror images of those for LMF. Next, we compared the
allometric slopes for R, RB, and B under high and low nitrogen
(Figures 4E,F). The allometric slope of LMF did not vary with
light treatment under high nitrogen, but the slope was higher
under red light compared to RB and B under low nitrogen.
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FIGURE 2 | Growth and root-to-shoot ratio of lettuce in a factorial experiment combining three light and two nitrogen treatments in Experiments 1 and 2. (A–F) Shoot,

root, and total dry weight (DW). (G,H) Root-to-shoot ratio. Error bars indicate one standard deviation (n = 12 and 3 in Exp. 1 and Exp. 2, respectively). Lower case

letters are used for comparison between nitrogen input under the same light quality, and upper case letters for comparison among light treatments under the same

nitrogen input. Different letters indicate differences at p = 0.05 according to Fischer’s LSD test. Effects of light, nitrogen, and interaction from ANOVA: ***p < 0.001,

**p < 0.01, *p ≤ 0.05, and n.s. p > 0.05.
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FIGURE 3 | LMF (leaf mass fraction) and RMF (root mass fraction) of lettuce in a factorial experiment combining three light and two nitrogen treatments in

Experiments 1 and 2. (A,B) LMF and (C,D) RMF. Error bars indicate one standard deviation (n = 12 and 3 in Exp. 1 and Exp. 2, respectively). Lower case letters are

used for comparison between nitrogen input under the same light quality, and upper case letters for comparison among light treatments under the same nitrogen

input. Different letters indicate differences at p = 0.05 according to Fischer’s LSD test. Effects of light, nitrogen, and interaction from ANOVA: ***p < 0.001, **p < 0.01,

*p ≤ 0.05, and n.s. p > 0.05.

Nitrogen Concentration, Nitrogen Content,
and Nitrogen Allocation in Response to
Nitrogen Supply and Light Quality
The effect of nitrogen, light quality, and their interaction on
nitrogen traits are summarized in Figure 5. Shoot nitrogen
concentration was lowest and root nitrogen concentration
was highest in R compared to RB and B after 1 week and
3 weeks of treatment, except for lack of variation in root
nitrogen concentration with low nitrogen after 3 weeks of
treatment (Figures 5A–D). After 1 week of treatment, shoot
nitrogen content was lowest in R under high nitrogen, with
no interactions. No interaction effect was detected in the shoot
nitrogen content after 3 weeks of treatment (Figures 5E,F). After
1 week of treatment, root nitrogen content did not vary with light

treatments (Figure 5G). After 3 weeks, an interaction developed
whereby root nitrogen content ranked R < RB ≈ B at low
nitrogen and R > RB≈ B under high nitrogen (Figure 5H).

Nitrogen concentration in the old leaves was higher in RB

than in R and B under both nitrogen supplies (Table 1). The

nitrogen concentration of the expanded leaves and young leaves

was lower in R compared to B under both nitrogen treatments.

Nitrogen content of old leaves under low nitrogen was higher in
R compared to B, while no differences in the nitrogen content
were found for expanded and unexpanded leaves. Under high
nitrogen, nitrogen content in RB was higher than in R and
B in the old leaves; nitrogen content of B was higher in the
expanded leaves and lower in the unexpanded leaves compared
to R and RB.
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FIGURE 4 | Allometric relations between (A,B) LMF and (C,D) RMF with plant size for plants grown under (A,C) high and (B,D) low nitrogen. (E,F) Comparison of

allometric slopes in response to light quality and nitrogen supply. In (A–D), data are pooled across 1-week and 3-week experiments. Open and solid circles indicate

LN and HN, respectively. Lines are least square regressions. Significance of slope is ***p < 0.001, **p < 0.01, *p ≤ 0.05, and n.s. p > 0.05. In (E,F) open and solid

circles indicate allometric slope in LN and HN treatments, respectively, and error bars are one standard deviation of the allometric slope.

Effect of Nitrogen Supply and Light Quality
on Nitrogen Nutrition Status and
Partitioning of Nitrogen
The nitrogen nutrition index (NNI) accounts for the allometry
between the concentration of nitrogen and dry matter, and is
an unequivocal indicator of plant nitrogen status (Sadras and
Lemaire, 2014). An NNI = 1 indicates that the plant nitrogen
status is sufficient to meet maximum growth, whereas NNI <

1 indicates a deficiency, and NNI > 1 indicates excess nitrogen.
After 1 week, plants with low nitrogen supply were close to or
just below nitrogen sufficiency under low nitrogen, and they were
nitrogen deficient after 3 weeks (NNI about 0.4) (Figures 6A,B).
The high nitrogen treatment ensured no limitation (NNI > 1) at
1 and 3 weeks. After 1 week, red light reduced NNI irrespective
of the nitrogen supply (Figure 6A). After 3 weeks, the effects of

light and light× nitrogen interaction were not apparent for NNI
(Figure 6B).

Figures 6C,D shows the partitioning of nitrogen between root
and shoot. Root-to-shoot nitrogen content was lowest with red
light irrespective of nitrogen after 1 week. After 3 weeks, an
interaction was apparent whereby root-to-shoot nitrogen content
remained lowest under low nitrogen, but light effects were no
longer apparent under high nitrogen.

Linear correlation analysis was performed between NNI and

R/S to evaluate resource allocation in response to nitrogen

status. After 1 week, NNI and R/S correlated with a slope of

0.207 ± 0.037 under low nitrogen and 0.098 ± 0.014 under

high nitrogen (Figure 6E). After 3 weeks, R/S correlated with

NNI only under low nitrogen, with a slope of 2.35 ± 1.02
(Figure 6F).
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FIGURE 5 | Nitrogen concentration and nitrogen content of lettuce in a factorial experiment combining three light and two nitrogen treatments in Experiments 1 and 2.

(A,B) Shoot and (C,D) root nitrogen concentration. (E,F) Shoot and (G,H) root nitrogen content. Error bars indicate one standard deviation (n = 3). Lower case letters

are used for comparison between nitrogen input under the same light quality, and upper case letters for comparison among light treatments under the same nitrogen

input. Different letters indicate differences at p = 0.05 according to Fischer’s LSD test. Effects of light, nitrogen, and interaction from ANOVA: ***p < 0.001, **p < 0.01,

*p ≤ 0.05, and n.s. p > 0.05.
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TABLE 1 | Nitrogen concentration and total nitrogen content in old, expanded, and unexpanded leaves in response to nitrogen input and light quality after 3 weeks of

treatment.

Trait Nitrogen Light Old leaf Expanded leaf Unexpanded leaf

Nitrogen concentration (% DW) LN R 0.90 ± 0.04b 0.71 ± 0.01c 1.13 ± 0.05b

RB 1.13 ± 0.07a 0.85 ± 0.01b 1.25 ± 0.05b

B 0.96 ± 0.04b 1.04 ± 0.09a 1.43 ± 0.05a

HN R 2.38 ± 0.11b 3.77 ± 0.17b 4.20 ± 0.19b

RB 3.64 ± 0.49a 4.74 ± 0.02a 4.67 ± 0.09a

B 2.65 ± 0.21b 4.47 ± 0.16a 4.48 ± 0.13ab

Light ** *** **

Effect Nitrogen *** *** ***

L×N n.s. ** *

Nitrogen content (mg plant-1) LN R 3.32 ± 0.48a 12.54 ± 0.21a 15.97 ± 1.43ab

RB 3.06 ± 0.26ab 10.15 ± 0.55b 12.51 ± 0.80b

B 2.43 ± 0.07b 12.27 ± 0.77a 17.63 ± 1.95a

HN R 7.82 ± 2.44b 99.75 ± 7.37b 95.56 ± 4.74a

RB 15.85 ± 1.12a 98.72 ± 7.27b 69.84 ± 1.60b

B 8.67 ± 1.98b 123.62 ± 5.84a 57.20 ± 0.97c

Light * n.s. ***

Effect Nitrogen *** *** ***

L×N * n.s. **

R is 100% red light, RB is 50% red light and 50% blue light, and B is 100% blue light. Mean ± standard deviation (n = 3); different letters indicate differences at p = 0.05 according to

Fischer’s LSD test. Effects of light, nitrogen, and interaction from ANOVA: ***p < 0.001, **p < 0.01, * p ≤ 0.05, and n.s. p > 0.05.

Old leaves were the first five leaves, unexpanded leaves were the newest unexpanded 3–4 leaves in the stem apex, and the remaining 5–7 (LN) and 9–11 (HN) leaves were the

expanded leaves.

Effect of Nitrogen and Light Quality on
Diurnal Changes of Nitrate Concentration,
Soluble Sugar Concentration, and NR
Activity
In Exp. 1, the nitrate concentration of the newest three
fully expanded leaves and root was determined at 0, 6,
and 14 h after exposure to light treatments (Figures 7A,B);
(Supplementary Tables S1,S2). Shoot nitrate concentration
increased with light exposure in both nitrogen treatments,
was higher under blue light in plants with high nitrogen, and
varied little with light treatment under low nitrogen. Nitrate
concentration was lower in root than in shoot, particularly under
low nitrogen, with no apparent response to light treatment.

The concentration of sugar in shoot and root was higher in
nitrogen-deficient plants and decreased with the duration
of light exposure under low nitrogen (Figures 7C,D);
(Supplementary Tables S1,S2). Soluble sugars in the root
were less responsive to light exposure time (Figure 7D).
Concentrations of sugars and nitrate were negatively correlated
(Figures 7E,F). The nitrate-to-soluble sugar ratio of the red light
deviated from that of blue light in a gentle slope (Figures 7E,F).
Shoot NR activity increased with nitrogen supply, ranked B >

RB > R, and did not vary with the interaction between light and
nitrogen (Figure 7G).

Associations Between Traits
Principal component analysis revealed clusters separated by
nitrogen supply (PC1) and light quality (PC2) (Figure 8).

The first principal component accounted for 53.65% of the
total variance and the second for 39.33%. Low nitrogen
supply, PC1(–), increased the root growth and soluble sugar
concentration. High nitrogen supply, PC1(+), increased the
nitrogen-related traits, including SNC, RNC, SN, RN, SNi,
RNi, SNR, and NNI. Red light and blue light (RB and B)
were separated along PC2. PC2(–) and PC2(+) contributed
to the traits associated with the root (R/S, RMF) and shoot
(SDW, LMF), respectively, suggesting blue light and red light
modulate resource allocation differentially. Blue light [RB and B;
PC2(–)] contributed to nitrogen-related traits, except RNC that
is associated with red light.

DISCUSSION

Blue light and red light play different roles in resource allocation
within shoot and root. In our study, red light increased shoot DW
and reduced root DWcompared to B and RB under both nitrogen
supplies (Figure 2). Similar results were reported in the seedlings
of lettuce (Chen et al., 2014) and other horticultural plants (Di
et al., 2020; Gil et al., 2020; Izzo et al., 2020). Higher leaf area
can over-compensate the reductions in photosynthesis with red
light resulting in increased biomass (Hogewoning et al., 2010;
Trouwborst et al., 2016; Wang et al., 2016). Monochromic blue
light enhanced the root growth, compared to a monochromic
red light or mixed light treatment (Izzo et al., 2020), which
led to a higher root dry weight and root-to-shoot ratio in our
blue light treatments (Figures 2C,G). Light quality modulates
plant biomass allocation via photoreceptors; for example, in
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FIGURE 6 | Nitrogen nutrition index and ratio of root-to-shoot nitrogen content of lettuce in a factorial experiment combining three light and two nitrogen treatments in

Experiments 1 and 2. (A,B) Nitrogen nutrition index (NNI). (C,D) Root-to-shoot nitrogen content (R/S N). (E,F) Associations between root-to-shoot ratio and NNI. In

(A–D), error bars indicate one standard deviation (n = 12 and 3 in Exp. 1 and Exp. 2, respectively). Lower case letters are used for comparison between nitrogen input

under the same light quality, and upper case letters for comparison among light treatments under the same nitrogen input. Different letters indicate differences at p =

0.05 according to Fischer’s LSD test. Effects of light, nitrogen, and interaction from ANOVA: *** p < 0.001, ** p < 0.01, * p ≤ 0.05, and n.s. p > 0.05. In (E,F), open

and solid circles indicate LN and HN treatments, respectively. Lines are least square regressions, and significance is indicated as ***p < 0.001, **p < 0.01, *p ≤ 0.05,

and n.s. p > 0.05.

Arabidopsis, red light photoreceptor (phytochrome) regulated
shoot growth, while blue light photoreceptor (cryptochrome)
mediated the root elongation (Canamero et al., 2006; Yang et al.,
2016). Nitrogen availability affects biomass allocation between
root and shoot. Limited nitrogen supply inhibits shoot growth,
while stimulating root elongation and lateral root formation,
thus increasing the root-to-shoot ratio (Zhang and Forde, 2000;
Bouguyon et al., 2016). In our study, root DW increased
under low compared to high nitrogen in the 1-week treatment
(Figure 2C), whereas shoot DW did not vary with nitrogen after

1 week of treatment, consistent with other studies (Zhou et al.,
2018). In our study, which was conducted in 4-week-old lettuce
plants, the nitrogen pool in leaves was sufficient to maintain the
growth for a short period.

Root DW and root-to-shoot ratio responded to the interaction
between nitrogen and light, whereas shoot DW did not
(Figure 2). A similar result was reported in rocket leaves
(Signore et al., 2020). To account for size-dependent variation
in allocation, we related leaf mass fraction (LMF) and root
mass fraction (RMF) to the log of plant DW (Poorter and
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FIGURE 7 | Nitrate concentration, soluble sugar concentration, and NR activity of lettuce in a factorial experiment combining three light and two nitrogen treatments in

Exp. 1. Change in nitrate concentration in (A) shoot and (B) root with light exposure. Change in soluble sugar concentration in (C) shoot and (D) root with light

exposure. Associations between nitrate and soluble sugar in (E) shoot and (F) root under three light treatments. (G) NR activity in the shoot. In (A–D), open and solid

circles indicate LN and HN treatments, respectively. Circles and lines with different colors indicate different light treatments. Error bars are one standard deviation (n =

3). In (E,F), inverted triangles and lines with different colors indicate different light treatments. Lines are least square regressions with a slope not different from zero

(dashed) or slopes different from zero (solid) (p = 0.05). In (G), error bars indicate one standard deviation. Lower case letters are used for comparison between

nitrogen input under the same light quality, and upper case letters for comparison among light treatments under the same nitrogen input. Different letters indicate

differences at p = 0.05 according to Fischer’s LSD test. Effects of light, nitrogen, and interaction from ANOVA: ***p < 0.001, **p < 0.01, *p ≤ 0.05, and n.s. p > 0.05.

Sack, 2012). At the same plant size, RMF was higher in RB
and B compared to R (Figures 3C,D). Similar results were
found with tomato seedlings where the blue light increased
the RMF, although the root-to-shoot ratio was 0.14 in red
light and 0.31 under blue light in the experiment by Izzo

et al. (2020), and 0.10 and 0.08 in the study of Pham et al.
(2019). The slope of RMF vs. log-total DW was higher in RB
and B treatments under low nitrogen (Figure 4C). Allometric
analysis in our study revealed a clear shift of slope from high
nitrogen to low nitrogen in RB and B treatments, indicating
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FIGURE 8 | Principal component analysis of growth, nitrogen, and

allocation-related traits of lettuce in response to light quality and nitrogen

supply. SDW, shoot dry weight; RDW, root dry weight; TDW, total dry weight;

R/S, root-to-shoot ratio; LMF, leaf mass fraction; RMF, root mass fraction;

SNC, shoot nitrogen concentration; RNC, root nitrogen concentration; SN,

shoot nitrogen content; RN, root nitrogen content; SNi, shoot nitrate

concentration; RNi, root nitrate concentration; NNI, nitrogen nutrition index;

R/S N, root-to-shoot nitrogen content; NR, shoot nitrate reductase activity;

SS, shoot soluble sugar concentration; RS, root soluble sugar concentration.

an interaction between nitrogen and blue light on biomass
allocation (Figures 4E,F). A synergy effect was demonstrated
whereby the blue light, combined with nitrogen limitation,
could increase the root dry weight and root-to-shoot ratio
in lettuce.

A higher nitrogen accumulation in plant shoot grown under
monochromic blue light has been reported in several crop
plants (Wang et al., 2016; Chen et al., 2021; Liang et al., 2021).
Under R, shoot nitrogen concentration was lower than under
B and RB, while the root nitrogen concentration was higher
(Figures 5A–D). Similar results were found by Signore et al.
(2020) in rocket leaves. An interaction effect between light
quality and nitrogen tended to be observed in N concentration,
rather than content (Figure 5), indicating that shifts in nitrogen
allocation were partly caused by the dilution effect of biomass
(Figure 2). Nitrogen uptake is coregulated by nitrogen supply
and crop biomass accumulation., and the NNI captures the
nitrogen-biomass allometry (Lemaire et al., 2008). Few studies
have explored the relationship between light quality and NNI.
Our study demonstrated a significant improvement in NNI
in RB and B treatments under both low and high nitrogen
supply, which unambiguously demonstrates better nitrogen
nutrition with blue light (Figure 6A). Furthermore, a higher
root-to-shoot ratio of nitrogen content was also detected under B
(Figures 6C–F). Blue light thus plays a positive role to maintain
the nitrogen allocation from root to shoot, particularly under
limited nitrogen supply.

Diurnal variation of nitrate absorption depends on the
light intensity and duration (Okuyama et al., 2015). Nitrate
concentration increased upon exposure to light (Reed et al.,

1983; Kamiya, 1997). Blue light contributed to the maintenance
of nitrate concentration in shoot under limited nitrogen supply
compared to red light (Figure 7A). Previous studies indicated
that red light induced a higher NR activity (Lillo and Appenroth,
2001; Sakuraba and Yanagisawa, 2018); however, the activation
of NR activity in Arabidopsis by low levels of red light in the
presence of sucrose in the growth medium suggests that carbon
plays a dominant role in the activation of NR in the absent of
blue light (Jonassen et al., 2008). In a non-photosynthetic mutant
of Chlorella kessleri, blue light enhanced the uptake of nitrate,
ammonium, amino acids, and nitrogen metabolism (Kamiya,
1988, 1989, 1995, 1997; Kamiya and Saitoh, 2002), which agrees
with our findings (Figure 7G). Therefore, red light and blue
light play different roles in nitrogen metabolism. Moreover, NR
activity is regulated by several environmental factors, and the
post-translational regulation of NR activity depends on light
quality, rather than nitrate supply in the leaves (Kaiser and
Huber, 2001). Appenroth et al. (2000) excluded the function of
red light signal on post-translational regulation of NR. However,
more evidence was needed to prove that blue light induced the
NR activity at the post-translation level. In our experiment, the
variation of NR activity was three-fold with light treatments
compared to 43% with nitrogen supply (Figure 7G), highlighting
the major role of blue light in regulating the NR activity.

Light quality modulated soluble sugar concentration,
achieving higher concentration under monochromic red light
(Figure 7C), as reported by previous studies (Wang et al.,
2016; Chen et al., 2021). This phenomenon could be associated
with a restriction of photosynthate translocation out of leaves
and feedback inhibition of photosynthesis (Hogewoning et al.,
2010; Wang et al., 2016; Liang et al., 2021). In Arabidopsis,
phytochrome promotes cell wall formation and protein synthesis
(Yang et al., 2016). In our study, a negative association between
the concentration of nitrate and soluble sugars (Figures 7E,F)
reflects a generalized, albeit poorly understood relation in
plants (Hoogmoed and Sadras, 2016). Monochromic red light
increased plant soluble sugar concentration associated with lower
nitrate concentration, indicating that blue light played a role
in maintaining the carbon: nitrogen (C:N) ratio (Hogewoning
et al., 2010). HY5 is induced by blue light and coordinates leaf
photosynthesis and root nitrogen uptake that favors the C:N
balance in plants (Chen et al., 2016; Liang et al., 2021), consistent
with our assumption that blue light is essential to main the C:N
ratio in plants.

In summary, our research highlights the effects of the
interactions between nitrogen supply and light quality on dry
matter and nitrogen accumulation and allocation between shoot
and root. Resource allocation is central to plant adaptation and
crop yield. This study has potential applications in the design of
light/nitrogen regimes for controlled environment horticulture.
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