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Spring maize is usually subjected to low-temperature stress during seed germination, which 
retards seedling growth later even under a suitable temperature. However, the mechanism 
underlying maize seed germination under low-temperature stress impacting seedling growth 
is still ambiguous. In this study, we used one low-temperature sensitive maize (SM) and one 
low-temperature resistance maize (RM) to investigate the mechanism. The results showed 
that the SM line had higher malondialdehyde content and lower total antioxidant capacity 
(TAC) and germination percentage than the RM line under low-temperature stress, indicating 
the vulnerability of SM line to low-temperature stress. Further transcriptome analysis revealed 
that seed germination under low-temperature stress caused the down-regulation of 
photosynthesis-related gene ontology terms in two lines. Moreover, the SM line displayed 
down-regulation of ribosome and superoxide dismutase (SOD) related genes, whereas 
genes involved in SOD and vitamin B6 were up-regulated in the RM line. Kyoto Encyclopedia 
of Genes and Genomes enrichment analysis revealed that photosynthesis and antioxidant 
metabolism-related pathways played essential roles in response to low-temperature stress 
during seed germination. The photosynthetic system displayed a higher degree of damage 
in the SM line. Both qRT-PCR and physiological characteristics experiments showed similar 
results with transcriptome data. Taken together, we propose a model for maize seed 
germination in response to low-temperature stress.

Keywords: seed germination, seedling growth, low-temperature stress, maize, transcriptome

INTRODUCTION

Maize (Zea mays L.) originated in tropical and subtropical areas and is naturally sensitive to 
low-temperature stress, especially during seed germination. Low-temperature limits the spread 
and production of maize all over the world (Zhang et  al., 2020). As spring maize, seed 
germination and seedling growth at an early stage are usually subjected to low-temperature 
stress. Despite increased temperature after exposure to low-temperature stress, seedling growth 
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is affected due to the inability of plants to respond quickly 
to favorable environmental changes (Sowiński et  al., 2005). 
However, the mechanism underlying maize seed germination 
under low-temperature stress impacting seedling growth is 
still ambiguous.

Numerous studies have shown that cold stress at the seedling 
stage affects photosynthesis by reducing the activity of 
photosystem II (PSII; Savitch et al., 2011). Moreover, cold stress 
also affects energy collection and preservation at different points, 
and the reduction of photosynthetic activity varies among 
different genotypes (Ensminger et  al., 2006). The chloroplast 
ultrastructure of seedlings developed under low-temperature 
stress is disordered and cannot be  repaired after experiencing 
favorable conditions (Grzybowski et  al., 2019). However, the 
mechanism of low-temperature stress at the germination stage 
affecting photosynthesis remains unknown.

Low-temperature stress can increase the accumulation of 
reactive oxygen species (ROS; Li et  al., 2019). ROS can cause 
lipid peroxidation, DNA damage, protein denaturation, 
carbohydrate oxidation, pigment decomposition, and enzyme 
activity damage (Bose et  al., 2014). Low-temperature tolerance 
is varied among different genotypes, which may be  related to 
the antioxidant system. ROS scavenging enzymes mainly include 
superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), 
glutathione peroxidase (GPX), and ascorbate peroxidase (APX) 
in plants. Together with antioxidants glutathione and ascorbic 
acid, these enzymes provide efficient approaches for cells to 
detoxify O2− and H2O2 (Romero-Puertas et  al., 2006). There is 
a close relationship between glutathione and cold resistance 
of maize (Prasad, 1997). Reduced glutathione (GSH), a 
non-enzymatic antioxidant, is essential for maintaining the 
redox state of cells (Noctor et  al., 2012).

Sugars are essential for plant growth and are involved in 
response to stress (Zheng et  al., 2010). Sucrose is a common 
substance for energy storage and osmotic regulation in plant 
cells. Sucrose can also form a sugar layer around the cells, 
which has a higher membrane phase transition temperature 
to prevent cell dehydration (Zhang and Bartels, 2018). The 
increase of sucrose content was the initial reaction of plants 
exposed to cold conditions (Nägele and Heyer, 2013).

Previous studies have reported the mechanism underlying 
seedling growth in response to low-temperature stress at 
the seedling stage (Ma et  al., 2015; Zeng et  al., 2021). 
However, spring maize is more susceptible to low-temperature 
stress at the germination stage than the seedling stage. In 
this study, two maize inbred lines with different 
low-temperature resistance were used to investigate the 
effects  of seed germination under low-temperature stress on 

seedling growth. Maize seed germination at 25°C for 4 days 
(Normal temperature, NT) was used as control, and maize 
seed germination at 13°C for 4 days followed by 25°C for 
2 days (low-temperature stress followed by normal temperature, 
LNT) was considered as low-temperature treatment. The 
physiological experiments showed that the RM line had 
significantly higher TAC and sucrose content than the SM 
line under low-temperature stress, partially explaining the 
different low-temperature resistance phenotypes. Subsequently, 
we further explore the differences in low-temperature resistance 
at the transcriptome level. Taken together, the results provide 
new insights into maize seed germination in response to 
low-temperature stress.

MATERIALS AND METHODS

Materials
The low-temperature sensitive maize (SM) B283-1 and 
low-temperature resistance maize (RM) 04Qun0522-1-1maize 
inbred lines used in this study were bred in our laboratory. 
They were grown at the experimental station (36°90′N, 117°90′E) 
of Shandong Agricultural University, Shandong, China. Seeds 
were sown on 12 June 2019. The plant density was 67,500 
plants/ha. Seeds used in this study were harvested 50 days 
after pollination.

Evaluation of Seed Germination
Seed germination was evaluated according to a previous study 
with some modifications (Wen et  al., 2018). The bottom of a 
sprouting bed consisted of 4 cm height silica sand (diameter 
of 0.05–0.8 mm) with 60% saturation moisture content in a 
germination box. Randomly selected 30 maize seeds were sown 
on the surface of the sprouting bed, and then they were covered 
with 2 cm height silica sand with 60% saturation moisture 
content. Subsequently, the germination boxes were placed in 
different germination conditions for various treatments. The 
germination boxes were placed in a growth chamber at 13°C 
for 4 days to detect the percentage of seeds showing radicle 
protrusion. The germination boxes were placed in a growth 
chamber at 25°C for 7 days or at 13°C for 7 days to measure 
germination percentage. A seed was considered as germinating 
seed when the radicle was similar to seed length and the 
germ was similar with half of the seed length. Moreover, some 
germination boxes were placed in a growth chamber at 25°C 
for 4 days (NT) as control, and some germination boxes were 
placed in a growth chamber at 13°C for 4 days followed by 
25°C for 2 days (LNT) as low-temperature treatment. All tissues 
of the two inbred lines under NT and LNT were used for 
later experiments. Each treatment included three replicates.

Measurement of Total Antioxidant Capacity
TAC was measured by a 2,2′-azino-bis (3-ethylbenzothiazoline-
6-sulfonic acid) diammonium salt (ABTS) assay kit (Comin, 
Suzhou, China) following the manufacturer’s protocols. ABTS, 
a colorless substance, can be  oxidized to a stable blue–green 

Abbreviations: SM, Low-temperature sensitive maize; RM, Low-temperature 
resistance maize; TAC, Total antioxidant capacity; SOD, Superoxide dismutase; 
PSII, Photosystem II; ROS, Reactive oxygen species; POD, Peroxidase; CAT, Catalase; 
GPX, Glutathione peroxidase; APX, Ascorbate peroxidase; GSH, Glutathione; 
NT, 25°C for 4 days; LNT, 13°C for 4 days and then 25°C for 2 days; 
ABTS, 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt; 
FW, Fresh weight; SPAD, Soil and plant analyzer development; DEGs, Differentially 
expressed genes.
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cationic radical form ABTS+ (Scalzo et al., 2005). The absorption 
peak of ABTS+ is at 734 nm. When the tested substance is 
added to the ABTS+ solution, the antioxidant components can 
react with ABTS+ and fade the reaction system. The change 
of absorbance at 734 nm was detected. The antioxidant capacity 
quantified with Trolox was used as a control. The results were 
expressed in μmol Ttoloox/g fresh weight (FW). Three biological 
replicates were used for each treatment.

Measurement of Lipid Peroxidation
The content of thiobarbituric acid (TBA) reactive substances 
(TBARS) can be  used to assess lipid peroxidation (Checchio 
et  al., 2021). In this study, lipid peroxidation was detected 
using a commercial kit (Comin, Suzhou, China). The results 
were expressed in nmol/g FW. Three biological replicates were 
used for each treatment.

Measurement of Sucrose Content
The determination principle of sucrose content is that alkali 
is used to heat the sample together to destroy the reducing 
sugar (Handel, 1968). Then, sucrose was hydrolyzed to glucose 
and fructose under acidic conditions, and fructose reacted with 
resorcinol to form a colored substance with a characteristic 
absorption peak at 480 nm. In this study, sucrose content was 
detected using a sucrose content determination kit (Comin, 
Suzhou, China) according to the manufacturer’s protocols. The 
results were expressed in mg/g FW. Three biological replicates 
were used for each treatment.

Measurement of SOD Activity
SOD activity was determined by the photoinhibition of nitro 
blue tetrazole (NBT) according to a previous study (Giannopolitis 
and Ries, 1977). In this study, SOD activity was measured 
using a SOD determination kit (Comin, Suzhou, China) according 
to the manufacturer’s protocols. The results were expressed in 
U/g FW. Three biological replicates were used for each treatment.

Measurement of POD Activity
POD activity was determined by the method of guaiacol 
oxidation (Zhang et  al., 2015a). In this study, POD activity 
was detected using a POD determination kit (Comin, Suzhou, 
China) according to the manufacturer’s protocols. The results 
were expressed in U/kg FW. Three biological replicates were 
used for each treatment.

Measurement of Chlorophyll Content
Chlorophyll contents of the two inbred lines germinated at 25°C 
for 6 days or germinated at 13°C for 4 days followed by 25°C 
for 4 days were measured by Soil and Plant Analyzer Development 
(SPAD) 502 chlorophyll meter (Konica Minolta Inc., Japan). 
Three biological replicates were used for each treatment.

RNA-seq and Transcriptome Analysis
All tissues of the two inbred lines under NT and LNT 
conditions were used for RNA extraction. After quick freezing 

with liquid nitrogen, samples from each replication were 
pooled and stored at −80°C. Three biological replicates were 
used for each treatment. Total RNA was extracted using a 
biospin plant total RNA extraction kit (Bioflux, Beijing, China) 
according to the manufacturer’s protocols. Libraries were 
generated using NEBNext® UltraTM RNA Library Prep kit 
for Illumina® (NEB, United States) following the manufacturer’s 
protocols. Illumina sequencing was performed as described 
previously (Yu et  al., 2021). Hisat2 (v2.0.5) was used to build 
an index of the reference genome (B73 v4),1 and then paired-end 
clean reads were aligned to the reference genome (Yu et  al., 
2021). Differential expression analyses of two groups (three 
biological replicates per treatment) were performed using the 
DESeq2 R package (v1.16.1). The resulting values of p were 
adjusted (padj) using Benjamini and Hochberg’s approach 
for controlling the false discovery rate. Differentially expressed 
genes (DEGs) with padj <0.05 and |log2Fold change| ≥ 1were 
used for further analyses.

To understand the main biological functions of DEGs in 
maize, we  carried out an enrichment analysis of DEGs. 
ClusterProfiler R package (v3.4.4) was used to achieve Gene 
Ontology (GO) enrichment analysis of DEGs (Yu et al., 2012). 
GO terms with corrected p < 0.05 were considered as significantly 
enriched GO terms. To understand the primary metabolic 
pathway of DEGs in maize, we  carried out the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis of DEGs. ClusterProfiler R package (v3.4.4) was used 
to test the statistical enrichment of DEGs in the KEGG 
pathway (Yu et al., 2012). Similarly, the KEGG pathways with 
corrected p < 0.05 were assigned as significantly 
enriched pathways.

qRT-PCR
To validate the DEGs identified from transcriptome analysis, 
six genes were randomly selected for a qRT-PCR assay: 
Zm00001d002611 (SOD 13), Zm00001d025103 (Amine oxidase1), 
Zm00001d027557 (Glutathione transferase 31), Zm00001d027422 
(PsbP-like protein 1), Zm00001d021906 (Light harvesting complex 
A2), and Zm00001d046170 (phosphoenolpyruvate carboxylase1). 
Primers were designed using the primer-premier software (v6.0; 
Supplementary Table S6). The maize Actin gene 
(Zm00001d010159) was used as an internal control (Zhang 
et  al., 2015b). An ABI StepOne Plus Real-time PCR System 
(Applied Biosystems, CA, United  States) was used to perform 
qRT-PCR according to the instructions of SYBR® Green Real-
time PCR Master Mix (Takara, Dalian, China). The 2−ΔΔCT 
method was used to calculate the relative expression of genes 
(Livak and Schmittgen, 2001).

Statistical Analysis
Multiple comparisons were performed using Duncan’s test at 
the 0.05 significance level. All the tests were conducted using 
SPSS Version 21.0 for Windows (SPSS, Chicago, IL, 
United  States).

1 http://www.maizesequence.org/index.html
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RESULTS

The SM Line Is More Vulnerable to 
Low-Temperature Stress
To investigate the effects of maize seed germination under 
low-temperature stress on subsequent seedling growth under 
normal temperature, we first measured some traits of two maize 
inbred lines with different low-temperature resistance. When 
maize seeds germinated at 13°C for 4 days, the percentage of 
seeds showing radicle protrusion in the RM line was higher 
compared to the SM line (Figure  1A). In seed testing, maize 
seeds germinating at 25°C for 7 days are usually used for 
evaluating seed germination percentage. The germination 
percentage of the SM line decreased about 60% at 13°C for 
7 days, while there was no significant difference in germination 

percentage between seeds germinated at 13°C for 7 days and 
seeds germinated at 25°C for 7 days in the RM line 
(Figures  1B,C). Maize seeds germinating at 25°C for 4 days 
(NT) are usually used for evaluating seed germination energy 
in seed testing. In this study, the two inbred lines had similar 
germination energy and seedling length (Figure  1D). To 
investigate the effects of maize seed germination under 
low-temperature stress impacting seedling growth under normal 
temperature, we set a similar accumulated temperature between 
NT and low-temperature stress followed by normal temperature 
(LNT) treatment. Given the same accumulated temperature, 
maize seeds first germinated at 13°C for 4 days followed by 
25°C for 2 days under LNT treatment. At this time, the RM 
line had notably higher seedlings than the SM line (Figure 1E). 
Therefore, these results suggested that the SM line was more 

A

D E

F G H

B C

FIGURE 1 | Effects of maize seed germination under low-temperature stress on subsequent seedling growth under normal temperature. (A) Phenotypes of seed 
germination at 13°C for 4 days. (B) Phenotypes of seed germination at 13°C for 7 days. (C) Germination percentage. (D) Phenotypes of seed germination at 25°C 
for 4 days. (E) Phenotypes of seed germination at 13°C for 4 days followed by 25°C for 2 days. Scale bar, 1 cm. (F) Malondialdehyde (MDA) content. (G) Total 
antioxidant capacity. (H) Sucrose content. Data are means ± SD (n = 3 replications of thirty plants). Different letters indicate significant differences among means 
under different treatments ( p < 0.05). FW: fresh weight.
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vulnerable to low-temperature stress. Subsequently, we detected 
the changes in lipid peroxidation, expressed as malondialdehyde 
(MDA) content, TAC, and sucrose content. Although MDA 
contents of the two lines under LNT were about twice as 
high as those under NT, the RM line under LNT had a lower 
MDA content (115 nmol/g FW) than the SM line under LNT 
(195 nmol/g FW; Figure  1F). TAC decreased in the SM line 
but increased in the RM line under LNT treatment compared 
with NT treatment (Figure  1G). TAC under LNT (2.6 μmol 
Trolox/g FW) decreased to about half of that under NT (5.0 μmol 
Trolox/g FW) in the SM line. Moreover, the RM line had 
notably higher sucrose content under LNT than under NT 
(Figure  1H). Taken together, seeds germinated under 
low-temperature stress increased TAC and sucrose content in 
the RM line, which might be related to low-temperature resistance.

Transcriptome Analysis of Maize Seed 
Germination in Response to 
Low-Temperature Stress
To explore genes and metabolic pathways that control maize 
seed germination in response to low-temperature stress, we selected 
samples of RM and SM under NT and LNT for transcriptome 
analysis. After removing adapters and sequences with low-quality 
regions, there remained approximately 40–50 million clean reads 
(Supplementary Table S1). Then, about 35–46 million clean reads 
were mapped to the maize genome. These clean reads included 
83–88% uniquely mapped reads and 2.5–3.0% multiple mapped 
reads. DESeq2 R package was used to identify DEGs using padj 
<0.05 and |log2Fold change| ≥ 1 as the cutoff. The results displayed 
that 3,186 genes were significantly up-regulated and 4,281 genes 
were significantly downregulated in the SM line under LNT 
compared with those under NT (SM_LNTvsNT). Moreover, 2,797 
genes were significantly up-regulated and 3,918 genes were 
significantly downregulated in the RM line under LNT compared 
with those under NT (RM_LNTvsNT; Figure 2A). Venn diagram 
showed that common up-regulated genes (54) were fewer than 

common down-regulated genes (608), most DEGs were specific 
in SM_LNTvsNT and RM_LNTvsNT (Figures  2B,C).

Maize Seed Germination Under 
Low-Temperature Stress Cause 
Down-Regulation of 
Photosynthesis-Related Go Terms
GO enrichment analysis displayed that there was no significantly 
enriched GO term for common up-regulated genes, which might 
be  due to the low number of DEGs. For these SM-specific 
up-regulated DEGs, there were only two significantly enriched 
GO terms, i.e., myosin complex (GO: 0016459, p = 4.82 × 10−4) 
in the cellular component group and ADP binding (GO: 0043531, 
p = 2.32 × 10−5) in the molecular function group (Figure  3A). For 
these RM-specific up-regulated DEGs, there were nine significantly 
enriched GO terms. Among them, the most significantly enriched 
GO terms were superoxide metabolic (GO: 0006801, p = 8.55 × 10−6) 
in the biological process group, vitamin binding (GO: 0019842, 
p = 5.35 × 10−7) in the molecular function group, which might play 
essential roles in RM resistant to low-temperature stress (Figure 3B).

Compared with the up-regulated GO terms, there were more 
down-regulated GO terms. For these common down-regulated 
DEGs, the most significantly enriched GO terms were 
photosynthesis (GO: 0015979, p = 2.16 × 10−44) in the biological 
process group, thylakoid (GO: 0009579, p = 5.33 × 10−54) in the 
cellular component group, iron–sulfur cluster binding (GO: 
0051536, p = 4.38 × 10−8) in the molecular function group 
(Figure 3C). Moreover, many photosynthesis-related GO terms 
were also enriched. The results indicated that maize seed 
germination under low-temperature stress caused the down-
regulation of photosynthesis-related GO terms in the two inbred 
lines. Translation (GO: 0006412, p = 6.79 × 10−16) in the biological 
process group, ribosome (GO: 0005840, p = 7.64 × 10−18) in the 
cellular component group, structural constituent of ribosome 
(GO: 0003735, p = 6.47 × 10−18) in the molecular function group, 
represented the most markedly enriched GO terms in SM-specific 

A B C

FIGURE 2 | Differentially expressed genes in two maize inbred lines. (A) The number of up-regulated and down-regulated differentially expressed genes (DEGs) 
between low-temperature sensitive maize (SM) and low-temperature resistance maize (RM) lines. (B) Venn diagram of up-regulated DEGs in SM_LNTvsNT and RM_
LNTvsNT. (C) Venn diagram of down-regulated DEGs in SM_LNTvsNT and RM_LNTvsNT. SM: low-temperature sensitive maize inbred line; RM: low-temperature 
resistant maize inbred line. NT treatment: seeds germinated at 25°C for 4 days. LNT treatment: maize seeds germinated at 13°C for 4 days followed by 25°C for 
2 days. SM_LNTvsNT: SM line samples under LNT compared with those under NT. RM_LNTvsNT: RM line samples under LNT compared with those under NT.
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down-regulated DEGs, suggesting that ribosomes of SM line 
might be  damaged by low-temperature stress (Figure  3D). For 
RM-specific down-regulated DEGs, the most prominently 
enriched GO terms were response to oxidative stress (GO: 
0006979, p = 2.41 × 10−17) in the biological process group, apoplast 
(GO: 0048046, p = 4.58 × 10−7) in the cellular component group, 
peroxidase activity (GO: 0004601, p = 1.14 × 10−17) in the molecular 
function group (Figure 3E). The results indicated that peroxidase 
activity might not be  involved in the enhanced antioxidant 
capacity of the RM line in response to low-temperature stress.

Photosynthesis and Antioxidant 
Metabolism Pathways Are Involved in 
Response to Low-Temperature Stress at 
the Germination Stage
KEGG enrichment analysis showed photosynthesis-antenna 
proteins, photosynthesis, phenylpropanoid biosynthesis, flavonoid 
biosynthesis, glutathione metabolism, porphyrin and chlorophyll 
metabolism, stilbenoid, diarylheptanoid, and gingerol biosynthesis 
were markedly enriched KEGG pathways for common DEGs 
(Figure 4). Therefore, photosynthesis and antioxidant metabolism 

A

D E

B C

FIGURE 3 | Significantly enriched gene ontology (GO) terms in (A) SM-specific up-regulated genes. (B) RM-specific up-regulated genes. (C) Common down-
regulated genes. (D) SM-specific down-regulated genes. (E) RM-specific down-regulated genes in SM_LNTvsNT and RM_LNTvsNT. SM: low-temperature sensitive 
maize inbred line; RM: low-temperature resistant maize inbred line. NT treatment: seeds germinated at 25°C for 4 days. LNT treatment: maize seeds germinated at 
13°C for 4 days followed by 25°C for 2 days. SM_LNTvsNT: SM line samples under LNT compared with those under NT. RM_LNTvsNT: RM line samples under LNT 
compared with those under NT.
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pathways might play essential roles in response to low- 
temperature stress at the germination stage.

Only the ribosome pathway was significantly enriched for 
SM-specific DEGs, which was also enriched in GO enrichment 
analysis. In the ribosome pathway, there were 78 DEGs in 
SM_LNTvsNT (Supplementary Table S2). Of the 78 DEGs, 
most genes were down-regulated except for three genes 
(Zm00001d022111, Zm00001d022197, and Zm00001d002462), 
indicating that low-temperature stress might have a significant 
influence on the ribosomal pathway of low-temperature sensitive 
inbred lines. For RM-specific DEGs, the significantly enriched 
KEGG pathways were related to phenylpropanoid biosynthesis, 
phenylalanine metabolism, ubiquinone, and other terpenoid-
quinone biosynthesis, tropane, piperidine and pyridine alkaloid 
biosynthesis (Supplementary Table S3). Only one gene was 
down-regulated among five DEGs involved in tropane, piperidine 
and pyridine alkaloid biosynthesis.

The Photosynthetic System of the SM Line 
Is More Vulnerable to Low-Temperature 
Stress
The DEGs enriched in photosynthesis-related pathways were 
mainly located in the chloroplast and annotated to function 
as antenna proteins, photosystems I  and II components, 
porphyrin, and chlorophyll metabolism-related proteins 
(Figure 5; Supplementary Table S4). Although DEGs involved 
in photosynthetic-antenna proteins were all down-regulated 
in both SM and RM lines, the degree of down-regulation of 
the DEGs was lower in the RM line than in the SM line. 
Moreover, most of the DEGs involved in photosynthesis and 
porphyrin and chlorophyll metabolism pathway were also 
down-regulated in both SM and RM lines, and the RM line 
also had a lower degree of down-regulation of the DEGs 
than the SM line (Figure  5; Supplementary Table S4). 

Taken  together, the photosynthetic system of the SM line 
was even more damaged when seed germinated under 
low-temperature stress.

Validation of Transcriptome Data by 
qRT-PCR and Physiological 
Characteristics
All the DEGs showed similar expression patterns in the qRT-PCR 
assays as their changes of relative expression level identified by 
RNA-seq, suggesting the transcriptome data were credible 
(Figure 6). By extending the seedling growth at 25°C for 2 days, 
we observed that maize seed germination under low-temperature 
markedly inhibited subsequent seedling growth under normal 
temperature, especially in the SM line (Figures  7A,B). 
Subsequently, we  further detected the changes in SPAD value, 
SOD, and POD activities. Both SM and RM lines displayed a 
significant decrease of SPAD value under LNT, and the level 
of reduction in the SM line was larger than that in the RM 
line, which was consistent with the changes of the photosynthetic 
system from transcriptome analysis (Figure  7C). The SM line 
had lower SOD activity and higher POD activity under LNT 
than NT treatment, while the RM line showed the opposite 
trend of SOD and POD activities, which were consistent with 
the results of GO enrichment analysis (Figures 7D,E). Moreover, 
the changes in SOD activities in both SM and RM lines were 
similar to TAC trends (Figures 1F, 7D). Therefore, SOD activity 
might play a key role in TAC in seed germination under 
low-temperature stress.

DISCUSSION

Low-temperature stress often occurs at the germination 
stage,  which retards the seedling emergence of spring maize. 

A B C

FIGURE 4 | Top 20 KEGG pathways in (A) Common DEGs. (B) SM-specific DEGs. (C) RM-specific DEGs in SM_LNTvsNT, and RM_LNTvsNT. SM: low-
temperature sensitive maize inbred line; RM: low-temperature resistant maize inbred line. NT treatment: seeds germinated at 25°C for 4 days. LNT treatment: maize 
seeds germinated at 13°C for 4 days followed by 25°C for 2 days. SM_LNTvsNT: SM line samples under LNT compared with those under NT. RM_LNTvsNT: RM line 
samples under LNT compared with those under NT.
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Maize is vulnerable to low-temperature stress at the germination 
stage and the early stage of seedling establishment (Zhang 
et  al., 2020). Deciphering the mechanism underlying maize 
seed germination in response to low-temperature stress can 
help improve low-temperature resistance.

ROS generation in plant cells can be  induced by some 
environmental factors, such as cold (Li et  al., 2019), drought 
(Zheng et  al., 2020), heat (Zhao et  al., 2018), and cadmium 
stress (Gu et al., 2019). ROS, as signal molecules, trigger signal 
transduction pathways in response to these abiotic stresses.  

In addition, ROS can cause irreversible cell damage through 
its strong oxidation characteristics, thereby promoting the change 
of plant morphology and structure and enhancing resistance 
(Bose et  al., 2014; Ohama et  al., 2017). ROS can cause lipid 
peroxidation, DNA damage, protein denaturation, carbohydrate 
oxidation, pigment decomposition, and enzyme activity damage 
(Bose et  al., 2014). In the present study, both SM and RM 
lines showed enhanced MDA content in seed germination 
under low-temperature stress, which was consistent with 
previous studies.

FIGURE 5 | Heat map of photosynthesis-related genes enriched in Kyoto encyclopedia of genes and genomes (KEGG) pathways in SM_LNTvsNT and RM_
LNTvsNT. SM: low-temperature sensitive maize inbred line; RM: low-temperature resistant maize inbred line. NT treatment: seeds germinated at 25°C for 4 days. 
LNT treatment: maize seeds germinated at 13°C for 4 days followed by 25°C for 2 days. SM_LNTvsNT: SM line samples under LNT compared with those under NT. 
RM_LNTvsNT: RM line samples under LNT compared with those under NT. Detailed lists of the DEGs are shown in Supplementary Table S3. The color code from 
blue to red suggests the expression level of the DEGs normalized as the log2 (Fold change).
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The detoxification mechanism of ROS plays a vital role in 
the normal metabolism of plants, especially under stress. The 
main ROS scavenging enzymes in plants include SOD, POD, 
CAT, GPX, and APX. Previous studies have shown that CAT 
and monodehydroascorbate reductase activities are effective 
screening tools for maize hybrids with cold resistance (Hodges 
et  al., 1997). The activities of antioxidant enzymes significantly 
increase when maize seeds germinate under low-temperature 
(Cao et  al., 2019). In the present study, the RM line under 
LNT displayed increased SOD activity and decreased POD 
activity compared with NT treatment, while the SM line showed 
opposite trends in both SOD and POD activities (Figures 7D,E). 
Moreover, GO enrichment analysis showed similar trends with 
the activities of SOD and POD (Figures  3B,E). Interestingly, 
the changes in TAC were consistent with SOD activity 
(Figures  1F, 7D). Therefore, SOD activity might play a key 
role in the TAC of maize seed germination under low-temperature 
stress. A previous study has shown that the intrinsic high 
level of SOD in halophytes is necessary to trigger a series of 

adaptive responses, and the role of other enzymatic antioxidants 
might reduce the basic level of H2O2 (Bose et al., 2014). Whether 
SOD activity also triggers a series of adaptive responses under 
low-temperature stress needs further study.

Glutathione metabolism regulates redox-sensitive signal 
transduction of plant tissues and maintains antioxidant properties 
(Cnubben et  al., 2001; Noctor et  al., 2012). Compared with 
NT treatment, glutathione metabolism-related genes encoding 
GPX (Zm00001d026154 and Zm00001d002704), glutathione 
transferase (Zm00001d018220, Zm00001d027557, 
Zm00001d042102, Zm00001d029706 and Zm00001d043344), 
isocitrate dehydrogenase (Zm00001d044021) were all up-regulated 
only in the RM line under LNT (Supplementary Table S5). 
Of these genes, Zm00001d026154 and Zm00001d029706 have 
been reported to help maize resist drought stress (Zheng et al., 
2020). Therefore, Zm00001d026154 and Zm00001d029706 might 
be  essential for resistance to various abiotic stresses in maize.

Vitamin B6 contains six forms, pyridoxal, pyridoxamine, 
pyridoxine, pyridoxal 5′-phosphate (PLP), pyridoxamine 

FIGURE 6 | Validation of DEGs by qRT-PCR. Zm00001d002611 (Superoxide dismutase 13); Zm00001d025103 (Amine oxidase1); Zm00001d027557 (Glutathione 
transferase 31); Zm00001d027422 (PsbP-like protein 1); Zm00001d021906 (Light harvesting complex A2); Zm00001d046170 (phosphoenolpyruvate carboxylase1). 
The black and gray bars represent the relative expression level from the RNA-seq and qRT-PCR data. The maize Actin gene, as an internal control, was used to 
normalize the expression levels of the target genes. The error bars represent the standard deviations of three replicates. SM: low-temperature sensitive maize inbred 
line; RM: low-temperature resistant maize inbred line. NT treatment: seeds germinated at 25°C for 4 days. LNT treatment: maize seeds germinated at 13°C for 
4 days followed by 25°C for 2 days. SM_LNTvsNT: SM line samples under LNT compared with those under NT. RM_LNTvsNT: RM line samples under LNT 
compared with those under NT.
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5′-phosphate, and pyridoxine 5′-phosphate, of which PLP is the 
active form (Denslow et  al., 2007). PLP is essential for many 
biochemical reactions, including decarboxylation, transamination, 
deamination, racemization, and trans sulfur reactions, which are 
mainly related to amino acid synthesis (Drewke and Leistner, 
2001). Vitamin B6 as a cofactor has been fully confirmed. Moreover, 
vitamin B6 as an effective antioxidant and a factor that can 
increase resistance to biotic and abiotic stress has been proved 
(Huang et  al., 2013). Previous studies have shown that VB6 is 
an effective singlet oxygen quencher, and its quenching rate is 
equivalent to or higher than that of vitamin C and E, which 
are known as the two most effective biological antioxidants 
(Ehrenshaft et al., 1998, 1999; Denslow et al., 2007). In the present 
study, GO enrichment analysis of RM-specific up-regulated DEGs 
showed pyridoxal phosphate binding (GO: 0030170, p = 2.08 × 10−6) 
and vitamin B6 binding (GO: 0070279, p = 3.85 × 10−8) were 
significantly enriched in the molecular function group (Figure 3B). 
Therefore, vitamin B6 might be  involved in enhancing the 
low-temperature resistance of maize at the germination stage.

Photoinhibition occurs when the harvested light energy 
exceeds the available energy of chloroplasts or low-temperature 
sensitive plants exposed to low-temperature stress (Li et  al., 
2019). Moreover, low-temperature stress can regulate PSII 
activity, leading to the loss of photosynthetic capacity (Savitch 
et  al., 2011). The down-regulation of light-harvesting complex 
protein will affect the downstream energy-related processes 
and ultimately affect plant growth and development (Savitch 
et  al., 2011). Most genes related to photosynthetic apparatus 
were down-regulated in both RM and SM lines, but the level 
of reduction of the SM line was greater than that of the RM 
line (Figure  5). Compared with NT treatment, the RM line 
showed better recovery ability in photosynthesis than the SM 
line under LNT. Cold affects photosynthesis through 
overexcitation of PSII reaction centers and the production of 
oxygen free radicals (Nie et al., 1992). ROS has harmful effects 
on photosynthetic devices (Di Fenza et  al., 2017). The RM 
line has higher TAC than the SM line, which might be  related 
to the smaller decrease in photosynthesis in the RM line. 

A

C D E

B

FIGURE 7 | Validation of transcriptome data by physiological characteristics. (A) Phenotypes of seed germination at 25°C for 6 days. (B) Phenotypes of seed 
germination at 13°C for 4 days followed by 25°C for 4 days. (C) SPAD value. (D) Superoxide dismutase. (E) Peroxidase. Data are means ± SD (n = 3 replications of 30 
plants). Different letters indicate significant differences among means under different treatments ( p < 0.05). FW: fresh weight. SM: low-temperature sensitive maize 
inbred line; RM: low-temperature resistant maize inbred line.
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After low-temperature treatment, the SPAD values of the two 
lines decreased significantly, but the level of reduction of the 
SM line was greater than that of the RM line, which was 
consistent with the transcriptome data. Therefore, seed 
germination under low-temperature stress reduced subsequent 
seedling photosynthesis, but the level of reduction of 
photosynthesis was different between maize inbred lines with 
various low-temperature resistance.

Ribosomes are implicated in resistance to various adverse 
conditions (Garcia-Molina et  al., 2020). Many down-regulated 
DEGs were enriched in the ribosome (GO: 0005840, 
p = 7.64 × 10−18) in the SM line (Supplementary Table S2). In 
mammalian cells, nucleolus, especially ribosome, is considered 
to be the hub of integrating cell response to adverse conditions 
(Yang et  al., 2018; Pfister, 2019). Some plant species have 
similar regulatory roles of ribosomes under abiotic and biotic 
stresses (Garcia-Molina et  al., 2020). So far, many ribosomal 
proteins (RPS) mutants with defects in chloroplast ribosomes 
have been reported in plants (Schultes et  al., 2000; Xu et  al., 
2013; Zhang et  al., 2016). In the present study, gene 

(Zm00001d012353) encoding 30S ribosomal protein S17 
chloroplastic was significantly down-regulated in SM_LNTvsNT. 
The first plant plastid ribosomal protein mutant (high chlorophyll 
fluorescence 60) in maize displays an unstable light green effect 
on seedling growth due to the lack of plastid ribosomal small 
subunit protein 17 (Schultes et  al., 2000). The transcription 
level of RPS is up-regulated after low-temperature acclimation 
(Garcia-Molina et  al., 2020). The up-regulation of RPS under 
low-temperature stress is considered to maintain the rate of 
protein synthesis under adverse thermodynamic conditions 
(Garcia-Molina et al., 2020). The genes encoding 30S ribosomal 
protein S1 chloroplastic (Zm00001d038835), 30S ribosomal 
protein S10 chloroplastic (Zm00001d028153), 30S ribosomal 
protein S4 chloroplastic (Zm00001d047186), 30S ribosomal 
protein S6 alpha chloroplastic (Zm00001d034808), 50S ribosomal 
protein L1 chloroplastic (Zm00001d038084), 50S ribosomal 
protein L11 chloroplastic (Zm00001d027421), 50S ribosomal 
protein L17 chloroplastic (Zm00001d012998), 50S ribosomal 
protein L21 chloroplastic (Zm00001d053377), 50S ribosomal 
protein L6 chloroplastic (Zm00001d047462) were all down-
regulated only in the SM line. The role of translation and 
ribosome in adaptation to abiotic environment changes has 
been found in a recent analysis of the corresponding Arabidopsis 
mutants (Reiter et  al., 2020). In particular, various examples 
of impaired cold tolerance due to the inactivation of chloroplast 
proteins involved in translation have been described, including 
subunits (Wang et  al., 2017), biogenesis factors (Reiter et  al., 
2020) of the plastid ribosome-associated proteins (Pulido et al., 
2018), translation initiation or elongation factors (Liu et  al., 
2010) and RNA-binding proteins (Kupsch et al., 2012). Therefore, 
down-regulated chloroplastic ribosomal protein-related genes 
in the SM line under LNT might cause the down-regulation 
of genes involved in the photosystem, thereby affecting 
photosynthesis and decreasing SPAD value.

Overall, we  propose a possible network of maize seed 
germination under low-temperature stress affecting subsequent 
seedling growth (Figure  8). Maize seed germination under 
low-temperature stress caused the down-regulation of 
photosynthesis-related genes in both SM and RM lines, but 
the degree of down-regulation of the genes was lower in the 
RM line than in the SM line. Moreover, the SM line displayed 
the down-regulation of the ribosome and SOD-related genes, 
whereas genes involved in SOD and vitamin B6 were up-regulated 
in the RM line. SOD activity might play a key role in the 
TAC of maize seed germination under low-temperature stress 
because the changes in TAC were consistent with SOD activity. 
The inhibition of maize seed germination under low-temperature 
on seedling growth might be  mainly due to impaired 
photosynthesis. The differences of TAC (especially SOD activity) 
among various lines might affect low-temperature resistance 
at the germination stage.

CONCLUSION

In summary, maize seed germination under low-temperature 
stress displayed an increase of lipid peroxidation and inhibited 

FIGURE 8 | A possible network of maize seed germination under low 
temperature affecting subsequent seedling growth. The thickened blue line 
indicates stronger changes induced by low-temperature stress (according to 
Figure 5).
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subsequent seedling growth under normal temperature. 
Transcriptome analysis revealed that photosynthesis and 
antioxidant metabolism-related pathways played essential roles 
in seed germination in response to low-temperature stress at 
the germination stage, and the photosynthetic system of the 
SM line was more vulnerable to low-temperature stress. Moreover, 
SOD activity might play a key role in TAC in seed germination 
under low-temperature stress. Therefore, this study provides 
new insights into maize seed germination in response to 
low-temperature stress.
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