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Stone fruit production has enormous economic importance in Spain. Cultivation
locations for these fruit species (i.e., peach, apricot, plum, and sweet cherry) cover wide
and climatically diverse geographical areas within the country. Climate change is already
producing an increase in average temperatures with special intensity in certain areas like
the Mediterranean ones. These changes lead to a decrease in the accumulated chill,
which can have a profound impact on the phenology of Prunus species like stone fruits
due to, e.g., difficulties to cover the chilling requirements to break endodormancy, the
occurrence of late frost events, or abnormal early high temperatures. All these factors
can severely affect fruit production and quality and therefore provoke very negative
consequences from the socio-economic point of view in the incumbent regions. Thus,
characterization of current cultivation areas in terms of agroclimatic variables (e.g.,
chill and heat accumulation and probabilities of frost and early abnormal heat events),
based on data from 270 weather stations for the past 20 years, is carried out in this
work to produce an informative picture of the current situation. Besides, future climatic
projections from different global climate models (data retrieved from the Meteorological
State Agency of Spain—AEMET) up to 2065 for two Representative Concentration
Pathway scenarios (i.e., RCP4.5 and RCP8.5) are also analyzed. Using the current
situation as a baseline and considering the future scenarios, information on the current
and future adaptive suitability of the different species/cultivars to the different growing
areas can be inferred. This information could be the basis of a decision support tool to
help the different stakeholders to take optimal decisions regarding current and future
stone fruit or other temperate species cultivation in Spain.

Keywords: Prunus, stone fruit, adaptation, chill accumulation, phenology, frost risk, varietal choice, agroclimatic
metrics
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INTRODUCTION

Spain is one of the main world producers of stone fruits (i.e.,
peach, apricot, plum, and sweet cherry) with an average annual
production of around 2 million tons. Cultivation of these fruits
has a very important economic role in the country, covering
around 140,260 ha (FAOSTAT, 2019). The main growing areas
in Spain for these cultivars are located in areas with different
agroclimatic characteristics: from warm areas like Guadalquivir
Valley and a large part of the Mediterranean area to cold areas like
northern Extremadura, Ebro valley, and some interior locations
of the Mediterranean area (see Figure 1). Since these crops
require sufficient winter chill to break endodormancy to avoid
production problems (Atkinson et al., 2013), assessing relevant
agroclimatic metrics for current and future scenarios in the
growing areas can help to (i) analyze the current potential
production problems (Hatfield et al., 2019), (ii) study the climate
change influence over such metrics in each area (Campoy et al.,
2011b; Luedeling et al., 2011; Luedeling, 2012), (iii) select the
optimal locations to fulfill the cultivars chilling requirements
(CRs), avoiding frost episodes that can damage flowers and
thus ruin the production in the mid and long term (Julian
et al., 2007; Guo et al., 2015, 2019; Chmielewski et al., 2018),
and (iv) select the best agricultural practices and technologies
to mitigate the effect of climate change (Campoy et al., 2010;
Mahmood et al., 2018).

Chill and heat requirements (Fadón et al., 2020b) or level
of frost damage (Miranda et al., 2005) of the current cultivated
species/cultivars can be coupled with the agroclimatic metrics in
the different areas to build decision tools that help producers and
other stakeholders to design optimal production and economic
policies for medium and long term. Available modeling tools
to process large series of climate and phenological already

FIGURE 1 | Location of the 270 weather stations (black dots) used for this
study.

serve as the basis to build the above-mentioned decision tools
(Luedeling, 2019; Luedeling et al., 2021; Miranda et al., 2021).
Climate projections in the Mediterranean basin reveal that the
effects of global warming can be especially severe in this area
(Giorgi and Lionello, 2008; MedECC, 2020; IPCC, 2021), thus
anticipation measures are critical to avoid future production
problems, which could seriously affect the economy of certain
regions like the ones presented in this study (Olesen and Bindi,
2002; Benmoussa et al., 2018).

Different research studies have determined the negative
influence of global warming on the production of temperate fruits
and nuts in different regions across the planet. The main causes
are related to the decrease in winter chill although the increase
of frost risks due to the expected advance in blooming and
flowering is also taken into account in some studies. For instance,
Fernandez et al. forecasted a decrease in winter chill needed
for deciduous fruit production in Chile, with expected negative
impacts in northern areas of the country. At the same time,
they projected significant reductions of frost probabilities during
the most plausible period of budburst for deciduous fruit trees
for all the considered sites (Fernandez et al., 2020); Lorite et al.
analyzed phenomena like lack of winter chill, frost risk, and warm
conditions during flowering in the Iberian Peninsula for some
almond cultivars coupling climate projections and phenological
information. They found that, in general (and depending on the
considered cultivar), (i) the lack of winter chill will be more
pronounced in the Mediterranean coast and the Guadalquivir
Valley, (ii) warm conditions during flowering will be more intense
in the Central Plateau and Ebro Valley, and (iii) the risk of
frost will be reduced to particular areas of the Northern Plateau
and Northern Hilly Areas (Lorite et al., 2020). Benmoussa et al.
projected important future winter chill reductions in Tunisia
that can significantly affect the production of some fruits and
nuts. For example, for the most pessimistic scenario, only low-
chill almond cultivars could be viable. In other scenarios, some
pistachios and peach cultivars could be viable even in the long
term for the North-Western part of the country (Benmoussa
et al., 2020); Fraga and Santos considered both the future chilling
and heat accumulation and their impacts on the production
of different fruits in Portugal. They projected strong declines
in winter chilling that will more severely affect the inner-most
regions of the country. The northern apple growing areas will
be particularly exposed to chilling reduction. The authors also
projected increases in heat accumulation, with a higher impact in
the southern and coastal areas of the country. They highlighted
that this fact may increase the risk of frost damage due to the
advance of phenological stages (Rodríguez et al., 2019, 2021;
Fraga and Santos, 2021) compared the current situation of the
production areas of some temperate fruits in Spain with future
climate change scenarios regarding chill accumulation. They
forecasted important chill losses in some areas (e.g., South-East
or Gualdalquivir area) even in the near future. For the far future
(>2070), these authors stated that considering current growing
areas, plum, almond, and apple cultivars can be seriously affected
by the lack of chill (Rodríguez et al., 2019, 2021).

In this study, we assessed the main agroclimatic variables
related to stone fruit adaptation in different regions within
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Spain, including those where the most important stone
fruits production takes place using data from 270 weather
stations during the period 2000–2020. This is accompanied by
future temperature projections to estimate the chill and heat
accumulation evolution and the future probabilities of frost
and early abnormal heat events compared with the current
situation. This information can be very useful for taking the
optimal decisions related to setting up new orchards, relocating
current ones, or selecting the optimal cultivars to obtain profit
in the long run.

The main contribution of this study is that we analyzed at
the same time different agroclimatic variables related to stone
fruit adaptation. Not only the chill accumulation to fulfill CRs
as performed in the study by Rodríguez et al. (2019, 2021) but
also heat accumulation for proper flowering, frost risks, and
a variable rarely quantified in the literature: the probability of
abnormal heat events in winter that can boost endodormancy
release with a negative impact on fruit production, quality,
and yield, as it has been observed in warm areas within
the past years. We used data from a very dense network of
weather stations that provide accurate metrics for the current
situation. We focused on the current producing areas as decisions
regarding warming adaptation will probably be taken in those
areas, where the suitable technologies and knowledge are well
settled down. In such areas, crop relocations would produce
undesirable socio-economic consequences and depopulation.
Further, for characterizing the current situation, we used real
hourly temperatures instead of estimated ones, which confer
more accuracy to the results compared with other studies where
hourly temperatures are interpolated from daily ones. The used
resolution (∼5 km) is finer than in other similar studies in Spain
(Rodríguez et al., 2019, 2021; Lorite et al., 2020) and helps to make
decisions even at a local level.

MATERIALS AND METHODS

Climatic Data and Agroclimatic Variables
Climatic data from 340 weather stations located in the main
stone fruits producing areas in Spain (see Figure 1) were
used to assess the agroclimatic metrics. Data comprised
the main climatic variables, including mean, maximum,
and minimum temperature (◦C), relative humidity (%),
rainfall (mm), evapotranspiration (ETo, mm), and solar
radiation (W/m2). Incomplete records and issues were
found in some of the considered stations. After applying
the Spanish regulation (UNE 500540, 2004), a final number
of 270 stations was selected. Hourly temperature data were
complete except for empty hours corresponding to maintenance
events that were not filled as they consisted in a negligible
percentage of the total. Mean hourly temperatures in the
period 2000–2020 were used to calculate the main agroclimatic
variables, including chill and heat accumulations as well
as probabilities of potentially harmful frost and abnormal
heat events in winter. The number of complete years per
station varies per station: from 5 to 21 years (median = 20)
depending on the station.

Chill accumulation for each season was calculated from the
1st of November until the 28th of February of the following
year. Utah (Richardson et al., 1974) and Dynamic (Fishman
et al., 1987) models were used to perform this calculation.
Heat accumulation for each season was calculated from the 1st
of January to the 8th of April (around 14 weeks) using the
Richardson (Richardson et al., 1974) and Anderson (Anderson
et al., 1986) models, which provide the results in growing degree
hours (GDHs). Probabilities of frost and abnormal heat events
were calculated per week as follows: for each week, a frost
event occurs if the temperature falls below −1◦C during at least
three consecutive hours. Then, the probability of occurrence of
frost events in a particular week is defined as the number of
times that week had at least one frost event during the study
period divided by the number of years considered. Similarly,
an abnormal heat event occurs if the temperature rises above
25◦C for at least three consecutive hours. Then, the probability
of occurrence of abnormal heat events is calculated as explained
for frost events. Week 1 started at the 1st of January. For frost
events, weeks from 2 to 10 were considered as representative
potential dangerous weeks. First weeks in the range (i.e., week
2 to week 5–6) would be the most dangerous ones in warm
areas, whereas the rest (i.e., weeks 5–6 to week 10) would be
the critical ones in cold areas. For abnormal heat events, the
considered period ranged from week 49 of the previous year
(beginning of December) to 8 (end of February) when these
events could boost early dormancy release associated to later
production problems.

Future Scenarios
Regarding future scenarios, temperature projections calculated
by the Spanish State Meteorological Agency (AEMET) were
used. AEMET has been producing in recent years a set of
reference downscaled climate change projections over Spain
either applying statistical downscaling techniques to the outputs
of the global climate models (GCMs) or making use of the
information generated by dynamical downscaling techniques
through European projects or international initiatives such
as PRUDENCE, ENSEMBLES, and EURO-CORDEX (Amblar-
Francés et al., 2018). In this study, we used the projected daily
temperatures (i.e., maximum and minimum) using statistical
downscaling based on artificial neural networks. This has been
evaluated as a suitable method to produce climate projections
in the current and future scenarios in Spain while reducing
the GCMs model biases (Hernanz et al., 2022a,b) over a
grid of 5 km resolution. Two temporal horizons have been
considered, namely, 2025–2045 (characterized by 2035) and
2045–2065 (characterized by 2055) to provide results for
short and medium term. Two representative concentration
pathways, i.e., RCP4.5 and RCP8.5, were considered (van
Vuuren et al., 2011). Of note, eleven GCMs were used
in this study (Table 1). Results were presented using an
ensemble methodology (Semenov and Stratonovitch, 2010;
Wallach et al., 2018) where the average values of the projected
metrics (e.g., chill and heat accumulation or probabilities)
computed by all the models were used in subsequent steps.
Hourly temperatures to calculate the agroclimatic indexes
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TABLE 1 | List of global climate models used in this study.

Model Institution References

bcc-csm1-1-m Beijing Climate Center—Climate
System Model 1.1

Wu et al., 2014

BNU-ESM Beijing Normal University Ji et al., 2014

CanESM2 Canadian Earth System Model Chylek et al., 2011

CMCC-CM Centro Euro-Mediterraneo sui
Cambiamenti Climatici

Scoccimarro et al.,
2011

GFDL-ESM2G Geophysical Fluid Dynamics
Laboratory—Earth System Models

Delworth et al., 2006

inmcm4 Institute of Numerical Mathematics Volodin et al., 2010

IPSL-CM5A-LR Institut Pierre Simon Laplace—Climate
Model 5A

Dufresne et al., 2013

MIROC-ESM Model for Interdisciplinary Research on
Climate

Watanabe et al., 2011

MPI-ESM-LR Max-Planck-Institute für Meteologie Giorgetta et al., 2013

MPI-ESM-MR

MRI-CGCM3 Meteorological Research Institute
(Japan)

Yukimoto et al., 2012

were simulated from daily ones using the chillR package
(Luedeling, 2019).

To compare the agroclimatic variables in the present and
future scenarios, the actual locations of the weather stations were
compared with their closest points from the grid. Maximum,
minimum, and mean distances from the weather stations to
their closest points in the grid were 3.87, 0.26, and 2.14 km,
respectively. In all cases (current and future scenarios), an
interpolated area around the considered weather stations (i.e., no
further than 50 km away from the closest weather station) was
calculated using the inverse distance weighting method.

RESULTS

Chill Accumulation
As pointed out above, two models were used to calculate
the chill accumulation, namely, the Utah (in chill units) and
the Dynamic model (in portions). Using the mean values
of the total accumulated chill within the whole period for
all stations, a very high correlation was found between both
indexes (R2 = 0.95, Supplementary Figure 1). Therefore, results
are presented using only one of them (portions). Figure 2
shows the spatial patterns of mean chill portions over the
different considered periods. In the current situation, we can
see that there are several geographical areas with high chill
accumulation (≥75 portions), like the Ebro Valley, northern
Extremadura, and some interior areas in the Mediterranean.
Only in the Mediterranean and Guadalquivir Valley, warm areas
with chill accumulation below 60 portions (even below 50 in
some isolated areas) are found. The future scenarios show a
clear decrease of accumulated chill in warm areas, in northern
Extremadura and some interior areas of the Mediterranean.
The decrease of accumulated chill in the Ebro Valley will be
produced in the eastern part of that area, while the interior
will accumulate significant winter chill even in the most

pessimistic scenario (e.g., 2055_RCP8.5). The effects of global
warming over winter chill decline are more intense in the
2055_RCP8.5 scenario as expected. Supplementary Tables 1–4
show the mean chill accumulation in the considered period
(1st November to end of February) in portions for all locations
and models in every considered future scenario. The mean
value of the outputs of the eleven models is shown, as well as
the registered accumulated chill for the period 2000–2020 for
comparison purposes.

To check if the expected chill accumulation decline will
have a similar influence over the locations depending on their
current chill accumulation, a classification of the 270 weather
stations was performed, dividing them in terms of mean
accumulated portions in the current scenario: low accumulation
(<60 portions, 34 stations), medium accumulation (between 60
and 80 portions, 121 stations), and high accumulation (above
80 portions, 115 stations). Figure 3 shows the boxplots of
the accumulated portions in every scenario for the three types
of locations. The observed chill accumulation decline is as
expected according to each scenario. In terms of differences
in median values between current and future scenarios, it
seems that the three types of locations present the same
behavior (which means that the percentual losses are higher
in low accumulation areas). However, the spread of the data
is very different. Low and high chill accumulation areas show
lower dispersion (with some outliers in the low end of the
distribution) than medium areas, which present a higher
dispersion but no outliers. The analysis of these outliers for
high chill accumulation areas reveals that the outlier for all the
four future scenarios corresponds to an interior Mediterranean
location (Játiva). For low chill accumulation areas, the outlier
in every case (including the current scenario) corresponds to
a coastal Mediterranean location (Almería). The outliers for
the high end of the distribution in low chill accumulation
areas correspond to interior locations in the Mediterranean (i.e.,
Montesa, Callosa de Sarriá, and Murcia) although they could
be artifacts since projections forecast more chill accumulation
in future than in the current scenario. They could be caused
by the possible climatic differences between the actual location
of the weather stations and their closest point in the grid for
future projections.

Heat Accumulation
Heat accumulation was calculated using two models
(i.e., Richardson and Anderson models) similarly to chill
accumulation. A high correlation was also found between the
outcomes of both models (R2 = 0.998, Supplementary Figure 2).
Therefore, results are presented using only the outcomes of
the Anderson model. Figure 4 shows the spatial patterns of
mean GDH over the different considered periods. All the
scenarios regarding GDH seem to inversely correlate with their
corresponding chill accumulation scenarios (Figure 2). Places
where chill accumulation is low present high heat accumulation
and vice-versa. As chill accumulation decreases in future
scenarios, heat accumulation increases proportionally in each
area. For instance, the Pearson correlation coefficient between
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FIGURE 2 | Chill accumulation in the main stone production areas in Spain for the current situation (approximately 2000–2020), two time horizons (2025–2045 and
2045–2065) and two future scenarios (RCP4.5 and RCP8.5).

the lost chill accumulation and the gained heat accumulation for
current and 2055_RCP8.5 scenarios is 0.68 (p-value < 1e−15).

Like in the chill accumulation case, the effects of GDH increase
are more intense in the 2055_RCP8.5 scenario as expected.
Supplementary Tables 5–8 show the mean heat accumulation
in the considered period (1st January–8th April) in GDH for all
locations and models in every considered scenario. The mean
value of the outputs of the eleven models is shown, as well as

the registered accumulated heat for the period 2000–2020 for
comparison purposes.

Frost and Abnormal Heat Events
Probabilities
The probability of frost events as defined above is shown in
Figure 5 comparing weeks 2–10 for the current and 2035_RCP4.5
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FIGURE 3 | Boxplots of accumulated chill in all scenarios for low (<60
portions), medium (between 60 and 80 portions), and high (>80 portions) chill
accumulation stations, referred to the current scenario.

and 2055_RCP8.5 scenarios (only probabilities ≥ 10%).
In the current situation, significant probabilities of frost
events were recorded especially in areas of the Ebro Valley
but also northern Extremadura and interior areas of the
Mediterranean. Frost probabilities decrease from weeks
2 to 10 as expected, but some particular locations in the
Ebro Valley still present a significant probability of frost on
week 10. The analyzed future scenarios in Figure 5 are the
most optimistic (i.e., 2035_RCP4.5) and pessimistic (i.e.,
2055_RCP8.5), respectively, in terms of temperature rise. The
probability of frost events vanishes from Extremadura and
decreases in all areas, whereas just reduced areas of the Ebro
Valley and some isolated areas in the interior Mediterranean
show probabilities above 10% even in week 10. Like in the
current situation, frost probabilities decrease from weeks 2
to 10. Remarkably, 2035_RCP4.5 and 2055_RCP8.5 scenarios
present similar pictures in terms of probabilities of frost
events, revealing that the Ebro Valley and some interior
Mediterranean locations will undergo frost events in all the
considered scenarios.

Regarding abnormal heat events as defined above, Figure 6
shows the probability of occurrence of such events from weeks 49
(i.e., beginning of December of the previous year) to 8 (i.e., end
of February). Only probabilities≥ 10% are considered. Therefore,
maps for current and 2035_RCP4.5 scenarios are not shown since
just a few isolated locations comply with that value. The shown
future scenarios show that Guadalquivir Valley and locations
near the coastal Mediterranean area will undergo the highest
number of abnormal heat events in winter. Clear differences
appear between 2035_RCP8.5 and 2055_RCP8.5 scenarios. The
areas that will undergo these types of events are expanded in the

latter covering interior Mediterranean locations and some areas
of the Ebro Valley.

DISCUSSION AND CONCLUSION

This study tried to characterize the main stone fruits producing
areas of Spain using historic agroclimatic data (particularly
temperatures) from 270 weather stations spread throughout such
areas and compare the results with future projections in two time
horizons and RCP scenarios. The study areas were selected based
on the fact that current and future decisions to be made regarding
the cultivation of stone fruits (i.e., peach, apricot, plum, and sweet
cherry) will be mainly taken within the current producing areas,
where the knowledge and technology for growing these crops are
strongly installed. Thus, this study does not focus on other future
potential locations for stone fruit cultivation.

The main computed variables, i.e., chill and heat
accumulation, reveal that the considered areas are quite diverse
from the agroclimatic point of view and that climate change will
have an important impact, especially in the warmest areas even
in the medium term. The models used to calculate either of them
(i.e., Utah and Dynamic for chill and Richardson and Anderson
for heat accumulation) show very high correlations as previously
found by Ruiz et al. (2007, 2018).

Important chill accumulation reductions are projected in all
areas, which agrees with previous studies in Mediterranean areas
(Benmoussa et al., 2018, 2020; Rodríguez et al., 2019; Delgado
et al., 2021; Fraga and Santos, 2021). The chill accumulation
decrease will be similar in absolute values in all the studied
regions, but the warmest ones (i.e., Mediterranean area and
Guadalquivir Valley) can be much more affected in terms of
stone fruits cultivation suitability since their current situation
is already a limitation for many cultivars. In cold areas like
Ebro Valley and Extremadura, the chill accumulation decline
will not be in principle an obstacle to continue cultivating,
although in some particular cold locations in Extremadura and
the Mediterranean, the chill accumulation decline will be more
intense than in other cold locations. It is to note that, according
to Figure 3, a sudden drop in chill accumulation between the
current situation and the near future is observed. The resolution
of the used grid, even if fine (∼5 km) can be a cause of
this effect. Other possible sources of discrepancies leading to
exaggerated differences between the projected and the real values
could be the remaining GCM model biases not being completely
minimized during the downscaling process, or the fact that we are
comparing calculations carried out with real hourly temperatures
(i.e., current scenario) and calculations carried out with idealized
temperature curves derived from projected daily maximum and
minimum temperatures (Linvill, 1990) for the future scenarios.
Similar sudden drops in the near future were also observed
by Rodríguez et al., who forecasted a decrease of up to 30
chilling portions for the period 2021–2050 in some locations in
Spain (Rodríguez et al., 2019), which agrees with our results.
Benmoussa et al. (2020), Delgado et al. (2021), and Fraga and
Santos (2021) also reported sudden drops between the historic
and future scenarios in Tunisia, Portugal, and Asturias (North
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FIGURE 4 | Heat accumulation in the main stone production areas in Spain for the current situation (approximately 2000–2020), two time horizons (2025–2045 and
2045–2065) and two future scenarios (RCP4.5 and RCP8.5).

Spain), respectively. Like in our case, these studies also showed
that no important differences for accumulated chill appear in
the near future regardless of the RCP considered. Contrarily to
chill accumulation, heat accumulation will rise in all the scenarios
(especially in 2055_RCP8.5 as expected), and its evolution is
inverse to this of chill accumulation. This was also observed by
Fraga and Santos (2021) for Portugal.

Probabilities of frost and abnormal heat events in the weeks
where they can importantly affect yield and production (e.g.,

late frost or abnormal heat events before endodormancy release)
were computed as well. For the current scenario, frost events are
more frequent in cold areas, as expected. Abnormal heat events
in key weeks have been concentrated in the Mediterranean area
during the past years but with very low probabilities. Future
estimations for these variables show that frost events in weeks
where stone fruit production can be affected (Miranda et al.,
2005; Julian et al., 2007) will decrease as the century advances
and will be less frequent for RCP8.5, which agrees with previous
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FIGURE 5 | Probability of frost events in the main stone production areas in Spain for weeks 2 to 10 for the current, 2035_RCP4.5 and 2055_RCP8.5 scenarios.

FIGURE 6 | Probability of abnormal heat events in the main stone production areas in Spain for weeks 49 (beginning of December) to 8 (end of February) in the
2035_RCP8.5, 2055_RCP4.5, and 2055_RCP8.5 scenarios.
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studies (Leolini et al., 2018). However, some areas of the Ebro
Valley and particular interior locations of the Mediterranean
areas will still undergo a significant number of frost events
within the incumbent weeks even in the warmest scenario
(i.e., 2055_RCP8.5, Figure 5). The definition of a frost event
in terms of temperature and exposure time is closely related
to the phenological stage of the incumbent cultivar (Miranda
et al., 2005). Given the large variety of possible stone fruit
cultivars, from very low to very high CR, and the number of
analyzed locations, from cold to warm, establishing particular
cultivar/location frost event definitions is not feasible in this
study due to the huge volume of information involved. These
types of studies are usually carried out using a few locations
and/or cultivars, like the one performed by Lorite et al. (2020) for
almonds in Spain, Fernandez et al. (2020) in Chile, who computed
minimum temperatures below 0◦C during the blooming period
of the most representative deciduous fruit tree species cultivated
at each of the nine considered sites, or Parker et al. (2021)
who considered different temperatures and phenological stages
for three species (i.e., almonds, avocados, and oranges) but also
performed a general characterization of the area by considering
three temperatures (0, −2, and +2◦C) and exposure time. Our
choice of −1◦C and at least three consecutive hours aims at
characterizing the evolution of the frost events rather than
relating the specific damage to particular cultivars, which would
suppose a different study. This definition was adopted after
retrieving experts’ opinions. Due to the wide number of cultivars
in terms of CR and HR and the diversity of temperature
regimes in the considered areas in this study, we selected
those weeks (from 2 to 10) where all (or most) combinations
of cultivar/location could be susceptible of undergoing frost
damages according to their phenological stage. For decision-
making purposes, producers should select the map that best
fits their particular situation (i.e., cultivar/location) to make the
optimal decision. In general, warm areas and/or early flowering
cultivars will be related to earlier weeks in the considered
range, whereas cold areas and/or late flowering cultivars will be
related to later weeks in the considered range. Abnormal heat
events in winter that can boost an early endodormancy release,
which negatively affects production (Viti and Monteleone, 1995;
Rodrigo and Herrero, 2002; Ladwig et al., 2019), will be increased
mainly in Guadalquivir Valley, coastal Mediterranean areas,
and also in Extremadura and some areas of the Ebro Valley
in mid- or late February (Figure 6). Quantification of this
metric is usually not addressed in the literature but can provoke
important production issues in warm areas as has been observed
in recent years. Again, setting 25◦C or above for at least three
consecutive hours to define such an event was motivated by
experts’ opinions. Similarly as with probabilities of frost events,
we selected those weeks (from 49 to 8) where all (or most)
combinations of cultivar/location could be susceptible of being
affected by these events according to their phenological stage.
In general, warm areas and/or early flowering cultivars will be
related to earlier weeks in the considered range, whereas cold
areas and/or late flowering cultivars will be related to later weeks
in the considered range.

The agroclimatic metrics calculated in this study provide
valuable information for producers to select the most suitable

cultivars in every producing area from an adaptive point of view.
Each cultivar has its CRs to break endodormancy (Campoy et al.,
2011b; Fadón et al., 2020b). A decline in chill accumulation as
projected in future scenarios may cause that currently grown
cultivars do not fulfill their CR in certain areas, especially
those of the Mediterranean and the Guadalquivir Valley areas,
which are already warm. This would involve an incomplete
endodormancy release that affects the fruit trees in three main
aspects, namely, flower bud drops (and thus poor flowering),
delay in flowering and sprouting, and lack of uniformity in both
processes, which lead to serious productive problems (Legave
et al., 1983; Erez, 2000; Atkinson et al., 2013). All of these can
produce important economic losses to producers. In this context,
knowledge about CR for different cultivars is crucial although the
currently available information is relatively scarce in stone fruit
trees (Fadón et al., 2020b), including peach (Maulión et al., 2014),
apricot (Ruiz et al., 2007), plum (Ruiz et al., 2018), and sweet
cherry (Alburquerque et al., 2008).

In warm areas like the Mediterranean and Guadalquivir
Valley, where the accumulated chill is below 60 portions in
the current situation, early ripening cultivars with CR between
30 and 60 portions are grown. CR fulfillment for these
cultivars can be at risk in all the analyzed future scenarios
(Figure 2). To ensure the adaptive suitability of the different
species/cultivars to these areas, a relocation may be needed,
and some of the cultivars should be moved to close areas
(interior zones in the Mediterranean area or toward Extremadura
in the case of the Guadalquivir Valley) where the CR will
be fulfilled even in the future scenarios, and the frost risks
are expected to decrease. In this context, the introduction
or development of cultivars with very low CR becomes a
crucial target to be considered in breeding programs of the
incumbent species/cultivars, especially to be suitable for the
warm areas where current cultivars’ adaptation will be at risk
in future scenarios. Otherwise, these areas will not be able
to keep their productive and economic activities related to
stone fruit production. Apart from this, different agronomic
practices and strategies could also be applied to minimize the
chill accumulation decline in these areas at least locally. The
application of bio-stimulants to break endodormancy before
fulfilling the CR or the use of shading nets during different
dormancy stages have already been described in warm areas
for stone fruit production (Gilreath and Buchanan, 1981; Erez,
1987; Costa et al., 2004; Campoy et al., 2010; Petri et al.,
2014), although further research and optimization must be
carried out to make these techniques more effective and promote
their systematic use. In contrast, in the coldest producing
areas like the Ebro Valley, northern Extremadura, and some
interior locations in the Mediterranean area, fewer frost events
are expected, which could allow earlier cultivars than current
ones, which would expand the number of viable cultivars
and, therefore, the offer to the market with positive economic
consequences for the area. Overall, in all the producing areas, it
is crucial to consider the currently grown cultivars and analyze
which are at the edge of their CR fulfillment to substitute
or move them or to introduce the management practices
described above to ensure the adaptation to the new climate
change scenarios.
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Regarding heat accumulation, the future scenarios forecast an
increase of this variable in all the considered areas (Figure 4). In
warm and intermediate areas, this variable is not as decisive as the
chill accumulation but can have a relevant impact on phenology,
producing an advance in flowering dates and thus increasing the
potential frost injury risk (Mosedale et al., 2015; Unterberger
et al., 2018; Ma et al., 2019). As an additional point, this flowering
advance will involve a ripening advance as well (Peñuelas and
Filella, 2001; Campoy et al., 2011b), which must be taken into
account by producers to strategically put their products on the
markets. In contrast, in cold areas, the lack of heat accumulation
in the current situation can harm the phenological development
and fruit growth (Fadón et al., 2020a). These currently cold areas
will be favored by the forecasted heat accumulation increase for
future scenarios. As shown in Figure 6, abnormal heat events will
be more frequent in future scenarios on dates where the fruit trees
have not yet released endodormancy, especially in warm areas
like the Guadalquivir Valley and Mediterranean locations. These
events can have a very negative effect when the CR are partially
covered (around 60–70%), inducing an incomplete dormancy
release that may involve vegetative and flowering problems, with
a negative impact on fruit set and yield (Rodrigo and Herrero,
2002; Campoy et al., 2011a).

In any case, changes in the chill and heat accumulation
regimes do not have a common effect on all cultivars and
their locations since some compensation effects can take place
regarding the balance chill/heat accumulation in terms of
endodormancy release or flowering dates prediction (Pope et al.,
2014). Besides, agroclimatic characterization of locations at a
very local scale may require a particular calibration of data
due to the spatial heterogeneity (Lorite et al., 2020) to make
the best decisions regarding the optimal cultivar selections.
The results presented in this study can be useful not only for
stone fruit production but also for other temperate fruits with
enormous importance in the incumbent areas, e.g., grapevines
in La Rioja (Ebro Valley) or others. These results can be the
basis of decision support systems to aid producers in making
optimal strategic decisions (e.g., cultivar selection, relocation,
and implementation of mitigation management practices) in the
medium and long term.
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