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Transposable elements (TEs, transposons) are mobile DNAs that are prevalent in
most eukaryotic genomes. In plants, their mobility has vastly contributed to genetic
diversity which is essential for adaptive changes and evolution of a species. Such
mobile nature of transposon has been also actively exploited in plant science research
by generating genetic mutants in non-model plant systems. On the other hand,
transposon mobilization can bring about detrimental effects to host genomes and
they are therefore mostly silenced by the epigenetic mechanisms. TEs have been
studied as major silencing targets and acted a main feature in the remarkable growth
of the plant epigenetics field. Despite the importance of transposon in plant biology
and biotechnology, their mobilization and the underlying mechanisms are largely left
unanswered. This is mainly because of the sequence repetitiveness of transposons,
which makes their detection and analyses difficult and complicated. Recently, some
attempts have been made to develop new experimental methods detecting active
transposons and their mobilization behavior. These techniques reveal TE mobility in
various levels, including the molecular, cellular, organismal and population scales. In
this review, we will highlight the novel technical approaches in the study of mobile
genetic elements and discuss how these techniques impacted on the advancement
of transposon research and broadened our understanding of plant genome plasticity.

Keywords: transposon, long terminal repeat (LTR) retrotransposon, retrotransposition, ALE-seq, mobilome-seq,
long-read sequencing, droplet digital PCR (ddPCR)

INTRODUCTION

Transposable elements (TEs or transposons) are stretches of DNA that move around the genomes
and are ubiquitous in most eukaryotic genomes (Feschotte, 2008; Lisch, 2012; Chuong et al., 2017).
Particularly, the genomes of major food crops such as barley, wheat and maize contain myriads
of transposons making up more than 80% of their genomes (Tenaillon et al., 2010). Among the
diverse types of transposons, the long terminal repeat (LTR) retrotransposon is the predominant
type of TEs in most plant genomes (Casacuberta and Santiago, 2003; Grandbastien, 2015; Cho,
2018; Satheesh et al., 2021) and thus will be the main focus of this review. The mobilization of
an LTR retrotransposon is mediated by the reverse transcription of TE mRNAs to cDNAs (also
referred to as extrachromosomal DNA, ecDNA), which happens in virus-like particles (VLPs)
and is followed by the insertion to new genomic positions by the integrase (Cho et al., 2019;
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Satheesh et al., 2021). Due to the mobile nature of transposons
and thereby potential danger of genomic instability, they are
subject to the host genomes’ epigenetic silencing pathways,
including chromatin modification and DNA methylation (Slotkin
and Martienssen, 2007; Matzke and Mosher, 2014). On the
other hand, transposon is one of the major sources of genetic
diversity, which is critical for evolution and adaptive changes of
plants (Lisch, 2012; Dubin et al., 2018). Besides, TEs have been
actively exploited in the plant science field as useful mutagenic
reagents. For example, Tos17 in rice is specifically activated
by in vitro tissue culture and the resulting random insertional
mutants tagged with Tos17 are important genetic resources in
the rice functional genomics (Hirochika et al., 1996; Hirochika,
2010). Similarly, Tnt1 was used to generate genetic mutants in
Medicago truncatula, Brachypodium distachyon, and Glycine max
(D’Erfurth et al., 2003; Tadege et al., 2008; Revalska et al., 2011;
Cui et al., 2012; Nandety et al., 2020), and the maize Ac/Ds
DNA transposon system was used as a functional genomics
tool in Arabidopsis, Oryza sativa, and Glycine max (Long et al.,
1993; Mathieu et al., 2009; Wang et al., 2013). Despite the vast
importance of transposons, little is known about the regulatory
mechanisms of their mobilization, which is largely because of the
lack of experimental methods that can detect the transposition
events with sufficient sensitivity and precision.

It is well documented that transposons can be transcriptionally
activated by the environmental challenges and at specific cell
types and developmental stages (Martínez and Slotkin, 2012;
Cho, 2018; Cho et al., 2019). However, the mobilization
of activated transposons hardly happens likely because of
complex regulation at the post-transcriptional steps (Hung and
Slotkin, 2021; Kim et al., 2021b). Owing to the scarcity of
transposition events and technical difficulty to detect it, it has
been challenging to study transposon mobilization. In the past,
transposon insertion was inferred by phenotypic abnormalities
caused by deleterious mutations of a gene disrupted by TE
integration. For example, some of the epigenetic recombinant
inbred lines (epiRILs) generated from the met1 mutant in
Arabidopsis exhibited various abnormal phenotypes, which were
associated with gene disruption caused by the transposition
of Evade retroelement (Mirouze et al., 2009; Reinders et al.,
2009; Reinders and Paszkowski, 2009). A PCR-based technique
called transposon display (TD) and its derivative methods
are usually the experimental approaches of choice to detect
and locate new insertions of a transposon of interest (Kim
et al., 2021a). Briefly, the adapter with known sequence is
ligated to the restriction enzyme-digested DNA ends. PCR
amplification by the specific sequences of the adapter and
transposon ends yields amplicons containing the genomic
regions flanking the transposon of interest. Although TD is an
efficient and versatile method to study transposition events, it
has certain fundamental limitations; for instance, transposon
of high copy number is difficult to be amplified and hardly
detected for new insertions. In addition, TD requires prior
knowledge of TE sequences and thus relies on the quality of TE
annotation. Most importantly, TD can only reveal the insertions
that are meiotically inherited and fixed in the genomes, thus
is not able to detect transpositions in real time and those

happened in somatic cells (Figure 1). Over the last several
years, there have been significant efforts to unveil the landscape
of transpositions in the plant genomes by developing novel
experimental methods. These innovative approaches reveal the
mobilomes at varying scales from molecular to population
levels. In this review, we will introduce and discuss the
up-to-date experimental techniques tracing mobile DNAs in
the plant genomes.

Molecular Level
The mobilization cycle of an LTR retrotransposon consists
of transcription, reverse transcription, and integration to new
genomic positions. Since the direct detection of transposon
integration is relatively more challenging, the DNA intermediate
which is the final product of reverse transcription reaction and
the direct target of integration has been studied to infer the
transposon mobility. In this section, the cutting edge methods
detecting the DNA intermediates of LTR retrotransposons will be
highlighted (Figures 2A,B).

Detection of Linear ecDNA
The reverse transcription reaction of transposon gives rise to
linear extrachromosomal DNAs (eclDNAs) and it is the linear
form of ecDNAs that is capable of integrating to genomic
DNA (Cho et al., 2019; Wang et al., 2021a,b). As an attempt
to detect eclDNA, Griffiths et al. (2018) established a method
named sequence-independent retrotransposon trapping (SIRT).
SIRT employs the adapter ligation to the end of eclDNAs
and specific amplification targeted to the conserved primer-
binding site (PBS) sequence, which is located immediately
after the upstream LTR. Using this method a novel family of
LTR retrotransposon named DODGER was identified in the
Landsberg erecta ecotype of Arabidopsis mutated with MET1
(Griffiths et al., 2018). Unfortunately, SIRT exhibited limited
robustness when tested in crop genomes, presumably because of
the large size of the crop genomes and abundance of transposon-
related sequences. An improved method was then developed
named amplification of LTR extrachromosomal DNA followed
by sequencing (ALE-seq), which is able to detect the LTRs
of crop genomes with larger size (Cho et al., 2019). ALE-
seq uses two primers specific to sequences of the adapter
and PBS in two separate reactions: in vitro transcription and
reverse transcription. Using this novel method, Cho et al. (2019)
identified a new Copia-family LTR retrotransposon Go-on in
the heat-stressed rice plants. Importantly, the ALE-seq method
is particularly useful in non-reference crop species because the
final amplicon product can reveal the full-length sequences of
the LTR region. Such reference- and annotation-free approach
was successfully tested in tomato pericarp samples and identified
a novel Gypsy-family retroelement Fruit-Induced RetroElement
(FIRE) (Cho et al., 2019). Although ALE-seq is sensitive enough
to identify eclDNAs from crop genomes, it can only sequence
the 5′ LTR regions and it is desired to further improve this
method to cover full range of a TE. Altogether, ALE-seq is a
versatile, efficient and high-throughput method identifying active
LTR retroelements in crop genomes.
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FIGURE 1 | Schematic illustration of transposon display. (A) A single copy TE is present evenly in all cells and is represented as a single band in a transposon display
experiment. (B) Activation and mobilization of a TE gave rise to new and additional copies inserted in different genomic positions as represented in different colors.
Because of the scarcity of newly copied DNA, transposon display method is unable to amplify these DNAs which are illustrated as faint bands. (C) The new TE copy
that mobilized in germline cells is inherited to the next generation. The transgenerationally maintained new TE DNA can be amplified efficiently and is visible as a
discrete band in a gel electrophoresis.

Detection of Circular ecDNA
Two LTRs of eclDNAs are bound by the integrases and
homodimerization of integrases place two ends of an eclDNA
close next to each other, which is then recognized as a
DNA double-strand break by the cellular DNA damage
response pathways (Møller et al., 2015, 2016; Lanciano et al.,
2017). The homologous recombination and non-homologous
end joining pathways repair the LTR-LTR gap, resulting
in single-LTR and double-LTR extrachromosomal circular
DNAs (eccDNAs), respectively (Lanciano et al., 2017). As
a by-product of an activated LTR retrotransposon (albeit
incapable of integration) eccDNA is considered to represent
active TE mobility. Lanciano et al. (2017) established an
experimental method called mobilome-seq that specifically
sequences circular DNAs including retrotransposon-derived
eccDNAs. The mobilome-seq procedure first initiates with
digestion of linear DNA (mostly derived from genomic DNA)
and randomly amplifying the remaining circular DNA by
the isothermal stand displacement amplification (i.e., rolling
circle amplification, Figure 2B). Unlike ALE-seq, mobilome-
seq has additional advantage that can sequence full-length
retroelement; however, it is also important to note that it
reads sequences derived from organellar circular DNAs requiring
additional filtering steps to remove them, which compromises
the sequencing efficiency (Lanciano et al., 2017; Satheesh et al.,
2021). Nonetheless, mobilome-seq can be a useful approach
to investigate active retroelements because it requires relatively
low sequence coverage, which can be particularly useful to

studies using rare plant materials and samples with limited
availability. For example, Lanciano et al. (2017) discovered a
PopRice retrotransposon family that becomes active in the rice
endosperm. In addition, Thieme et al. (2017) identified Houba,
a Copia-like retrotransposon in rice, that was activated by the
treatment of chemical inhibitors of RNA Polymerase II and
DNA methylation. Moreover, Esposito et al. (2019) found that
nightshade, a Copia/Ale retrotransposon in potatoes, produces
large amount of eccDNAs in non-stressed plants, while under
the cold stress condition is no longer active, presumably because
of the hypermethylation induced by cold stress. More recently,
mobilome-seq revealed that Onsen, a Copia-like retrotransposon
specifically activated in the heat-stressed Arabidopsis plants,
produces eccDNAs mostly from two copies, AT1G11265 and
AT5G13205 (Roquis et al., 2021). In summary, mobilome-seq
is a useful method detecting the retrotransposon mobility by
sequencing eccDNAs.

Long-Read Sequencing
One of the challenges in the study of transposon is that TE
sequences are repetitive in genomes and thus cause serious
ambiguity in their analysis. This is particularly more troublesome
when analyzing short-read sequencing data. Recently, the long-
read sequencing technologies advanced remarkably and greatly
improved the accuracy of transposon sequence analysis. For
example, in the recent work of Panda and Slotkin, Oxford
Nanopore Technology (ONT) sequencing was tested in the DNA
methylation-deficient mutants of Arabidopsis, which significantly
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FIGURE 2 | Methods detecting transposon mobility at varying scales. (A) Activated retrotransposon gives rise to extrachromosomal DNAs in both linear and circular
forms. SIRT and ALE-seq are the methods that can detect linear DNA intermediates of retroelements. Gray box, long terminal repeats; white box, open reading
frame; red box, adapter; blue box, PBS. (B) Extrachromosomal circular DNAs can be amplified by the isothermal strand displacement DNA polymerization.
(C) Fluorescence reporter retrotransposition system can specifically label the cells in which transposition occurred. Green box, fluorescence reporter gene; arrows,
transcriptional start sites; broken arrow, intron. (D) Transposon mobilization at tissue or organismal level can be assessed by ddPCR. Fragmented DNAs are
randomly distributed in separate droplets and independently amplified. Lines in circles represent fragmented genomic DNA colored for different PCR templates. Red,
a single-copy reference gene; green, transposon of interest; black, non-templated DNA. (E) The split reads method uses the reads tagged with transposon
sequences that map to the insertion positions. TOI, transposon of interest; gray box, transposon; gray line, transposon sequence; red line, flanking sequence of
transposon. (F) The discordant reads method uses the paired-end reads, which map to transposon from one side and to a distant genomic site from the other side
of a read pair.
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improved the quality of TE annotation (Panda and Slotkin, 2020).
In an independent work by Lee et al. (2020) the ONT method
was tested in the VLP fraction collected from the epigenetic
mutants of Arabidopsis. This allowed direct identification of
active transposable elements in their full lengths and also revealed
diverse forms of DNA intermediates (Lee et al., 2020). Overall, the
long-read sequencing technology is apparently a game-changer in
the field of transposon research and highly expected to unveil the
hidden aspects of transposon mobilization which was previously
unable to be studied.

Cellular Level
In the previous section, we focused on the methods detecting the
DNA intermediates produced from active LTR retrotransposons
which could be used as a proxy of TE mobility. It is important
to note that the presence of DNA intermediates can be a good
indication of TE activation; however, it does not necessarily
represent transposition events directly. While in plants there has
not been any robust methods detecting transposition events at
the cellular level so far, the transposition reporter system used
in humans and yeast has served as a standard method assessing
transposon mobility. In this section, the transposition reporter
assay systems revealing transposon insertion at the cellular level
will be introduced (Figure 2C).

Retrotransposition reporter system was first suggested in
yeast using the Ty retroelement TyH3 that includes an intron
fragment (Boeke et al., 1985). Heidmann et al. (1988) had
later developed an improved version using the neo (neomycin
phosphotransferase) gene cassette (neoRT). In this system,
the neo gene is disrupted by an artificial intron containing
polyadenylation signals, thereby the functional neo proteins
can be produced only from the transposed intron-free DNA
(Heidmann et al., 1988). This method allows for determination
of transposition efficiency when cells are grown in the selective
G418-containing media (Heidmann et al., 1988). Similar methods
have been developed to study mobilization of other types of TEs
including the intracisternal A-type particles (IAPs) in mice and
the long interspersed elements (LINEs) in Drosophila and human
cells (Heldmann and Heidmann, 1991; Jensen and Heidmann,
1991; Tchenio et al., 1993; Maestre et al., 1995; Esnault et al.,
2000). Further improvement of retrotransposition assay system
was attempted by Moran et al. (1996) by developing the reporter
cassette consisting of an antisense copy of neo gene incorporated
in two human L1 elements (L1.2 and LRE2) in a cultured
human cell line (Rangwala and Kazazian, 2009). In addition,
other alternative methods have also been developed by employing
blasticidin S deaminase, his3 auxotrophic marker and a lacZ
colorimetric indicator (Curcio and Garfinkel, 1991; Tchenio
and Heidmann, 1992; Goodier et al., 2007). However, such
intron-containing reporter systems had some drawbacks that
retrotransposition assay is dependent on antibiotics resistance
and assessed by counting colonies, which usually takes long time
and has relatively low throughput. Recently, innovations to this
classical method have been made by replacing the antibiotics
resistance genes to visual fluorescence (Ostertag et al., 2000)
and bioluminescence genes (Xie et al., 2011), which dramatically
increases the sensitivity and throughput, enabling large-scale

screening experiments. In summary, the retrotransposition assay
systems have been widely used to determine the transposition
rate of a retroelement mostly in non-plant systems. Introducing
such system to the plant systems will enable single-cell detection
of transposition and greatly improve our understanding of
transposon mobilization.

Tissue/Organism Level
Droplet Digital PCR
The retrotransposition reporter assay system described in the
previous section can be potentially useful for cell- and tissue-
level detection of transposition events. The synthetic artificial
retrotransposon mobility assay is powerful because it enables
direct visualization of transposition; however, such transgenic
approach can be challenging in many non-reference plant species.
Determination of copy number changes of an endogenous TE can
be one of the easiest alternative methods to assess transpositional
activity. It is worth noting, however, that the logarithmic
quantitative real-time PCR analysis is difficult to measure subtle
differences of copy number (Bubner and Baldwin, 2004; Bubner
et al., 2004; Fan and Cho, 2021). Droplet digital PCR (ddPCR) is
a far more accurate and sensitive technique that allows for digital
measurement of DNA copy number (Hindson et al., 2013; Doi
et al., 2015; Campomenosi et al., 2016; Głowacka et al., 2016;
Fan and Cho, 2021). The ddPCR experiment performs DNA
amplification in thousands of nanoliter-scale droplets that read-
out positive or negative fluorescence signals (Figure 2D). The
resulting digital data is then processed by a Poisson probability
distribution to derive copy numbers. In fact, we previously
showed that ddPCR can be a robust method that accurately
detects the copy number of a retrotransposon (Fan and Cho,
2021). Importantly, the ddPCR technique only requires a trace
amount of DNA and is therefore possible to be performed in
DNAs extracted from small amount of tissues and rare samples.

Population Level
Next-Generation Sequencing-Based Transposable
Element Mapping
Arabidopsis 1,001 genome project produced massive paired-end
short-read whole-genome sequencing data from 1,135 accessions
from a worldwide collection (Weigel and Mott, 2009; Cao et al.,
2011; Alonso-Blanco et al., 2016). Similar attempt has been made
in rice generating sequencing data from a total of more than
3,000 germplasm accessions (Li J.-Y. et al., 2014; Li Z. et al.,
2014). Equipped with relatively well-assembled and annotated
reference genomes available for both plant species, TE insertion
polymorphisms have been intensively profiled at population level.
Several softwares have been developed so far to systematically
identify transposon insertions. These tools take advantage
of diverse sequencing read information; for instance, split
reads in Transposon Insertion Finder (TIF) (Nakagome et al.,
2014), SPLITREADER (Baduel et al., 2021b), and RTRIP (Liu
et al., 2020), discordant read pair alignment in TRACKPOSON
(Carpentier et al., 2019), and combination of these two as
demonstrated in TEPID (Stuart et al., 2016). Additionally, in
a recent work of Baduel et al. (2021a) SPLITREADER and
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TEPID pipelines were integrated, building an intensive map of
TE landscape in Arabidopsis.

The split-reads method first searches for reads containing the
end sequences of a TE and target site duplications (TSDs), which
are identical sequences flanking a TE and created as a result
of transposition (Figure 2E). In TIF, the read sequences tagged
with transposon end sequences are mapped to the reference
genome to identify the locations of de novo insertions (Nakagome
et al., 2014). Similarly, SPLITREADER extracts reads that do
not properly map to the reference genome and forcedly map to
5′ and 3′ TE sequence extremities (within a range of 300 bp)
by soft clipping (Baduel et al., 2021b). Then, the bona fide
insertions and their locations are identified by mapping the
clipped reads to the reference genome. Recently, Liu et al. (2020)
tested a similar method in rice and generated the RTRIP database,
which contains the comprehensive profile of transposon insertion
polymorphisms in the rice 3K genome project.

The discordant read pair method employs mapping of reads
from one side to the target TE and the other side to a distant
genomic region (Figure 2F). TRACKPOSON, for instance, first
maps all reads of a given accession onto each TE family
represented by a single consensus sequence, and then maps
the unmapped paired reads to the rice reference genome to
determine its location (Carpentier et al., 2019). The transposition
landscape revealed by these methods uncovered that transposon
proliferation is most strongly associated with the presence of a
transposon at a specific location, which was somehow activated
during the evolutionary process (Carpentier et al., 2019).

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

We reviewed the recent technical advances in transposon
research by highlighting several new methods identifying active
TEs and detecting transposition events (Figure 2). These novel
experimental methods and improved transposon annotation
aided by the long-read sequencing technologies and population-
scale genome resequencing databases will open-up a new window
to unveil a long-lasting mystery of jumping genes. Although the
experimental techniques described above has greatly improved
our ability to observe transposition events, there are still several
issues left to be dealt with. Firstly, detection of transposition

events at single-cell level will be obviously the next task to be
accomplished. To this end, a novel approach for the single-cell
detection of transposon mobilization is highly desired. Secondly,
the single-cell genomics will vastly benefit the transposon biology.
The transposition reporter systems introduced above rely on
the artificially engineered TE sequences. The investigation of
the native TEs and their transposition at high resolution will
only be possible when the single-cell genomics technologies
become more available. Thirdly, the detection sensitivity of
transposon research tools will have to be improved further. The
new experimental tools to study transposon such as ALE-seq and
mobilome-seq are mostly tested in the epigenetic mutants where
transposons become unusually active in mobility. Although
these methods were sensitive enough to discover novel active
retroelements (Go-on and PopRice), the moderately active TEs
were difficult to be identified (Lanciano et al., 2017; Cho et al.,
2019). Considering the rarity of DNAs representing activated TE
intermediates or derived from transposed copy, the improvement
of detection sensitivity of these methods will help identify new
transposons that are present in small niches of cells or activated
only to a moderate level. Altogether, the technical advances of
transposon research at varying scales have greatly contributed to
our understanding of TE life cycle and will broaden the breadth
of knowledge on mobile genetic elements and genome plasticity.
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