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Coleanthus subtilis (Tratt.) Seidel (Poaceae) is an ephemeral grass from the monotypic
genus Coleanthus Seidl, which grows on wet muddy areas such as fishponds or
reservoirs. As a rare species with strict habitat requirements, it is protected at
international and national levels. In this study, we sequenced its whole chloroplast
genome for the first time using the next-generation sequencing (NGS) technology on
the Illumina platform, and performed a comparative and phylogenetic analysis with
the related species in Poaceae. The complete chloroplast genome of C. subtilis is
135,915 bp in length, with a quadripartite structure having two 21,529 bp inverted
repeat regions (IRs) dividing the entire circular genome into a large single copy region
(LSC) of 80,100 bp and a small single copy region (SSC) of 12,757 bp. The overall GC
content is 38.3%, while the GC contents in LSC, SSC, and IR regions are 36.3%, 32.4%,
and 43.9%, respectively. A total of 129 genes were annotated in the chloroplast genome,
including 83 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. The accD gene
and the introns of both clpP and rpoC1 genes were missing. In addition, the ycf1, ycf2,
ycf15, and ycf68 were pseudogenes. Although the chloroplast genome structure of C.
subtilis was found to be conserved and stable in general, 26 SSRs and 13 highly variable
loci were detected, these regions have the potential to be developed as important
molecular markers for the subfamily Pooideae. Phylogenetic analysis with species in
Poaceae indicated that Coleanthus and Phippsia were sister groups, and provided new
insights into the relationship between Coleanthus, Zingeria, and Colpodium. This study
presents the initial chloroplast genome report of C. subtilis, which provides an essential
data reference for further research on its origin.
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INTRODUCTION

Coleanthus subtilis (Tratt.) Seidel is a rare grass in the monotypic
genus Coleanthus Seidl, which can be recognized by its rosette-
like arrangement of stems, the wide leaf sheaths and curved leaves
(Richert et al., 2016). It has a wide but disjunctive distribution
area and has been recorded in west-central Europe, southern
Norway, Russia, China, United States, and Canada (Richert et al.,
2014). It occurs mainly on wet and muddy habitats, growing
along streams or rivers (Taran, 1994). Its secondary habitats
are artificial ponds and reservoirs, where changes in water level
expose bare and moist surfaces that give the seeds the opportunity
to germinate (Hejný, 1969; Woike, 1969; Richert et al., 2014). It
is an ephemeral grass whose life cycle lasts only a few weeks and
requires high levels of moisture and nutrients from germination
to reproduction. Moreover, in order to germinate, a diurnal
temperature difference of at least 20◦C is necessary (Hejný, 1969;
Richert et al., 2014). Destruction of favorable habitats in regions
such as Europe have threatened the survival of C. subtilis. With
the development of fisheries and tourism, ponds and reservoirs
are becoming increasingly populated with anglers, which affects
the secondary habitat of C. subtilis. Furthermore, the frequency
and timing of ponds and reservoirs drainage also influence the
reproductive cycle of C. subtilis, as prolonged periods without
drainage may limit seed germination and result in failure to
renew the seed bank (Richert et al., 2014). The strict conditions
for reproduction combined with habitat destruction have led to a
sharp decline in the populations of C. subtilis, hence it is protected
at both national and international levels. For example, it is listed
in Annexes II and IV of the Habitats Directive by the European
Union Organization and is also documented in Appendix I of
the Berne Convention (John et al., 2010). Besides, C. subtilis is
considered a species in need of conservation in other countries,
such as the Czechia (Grulich, 2012) and North America (Catling,
2009). In China, it also has been listed as a second-class national
key protected wild plant1.

Coleanthus subtilis has long been of interest to researchers
due to its special distribution pattern, strict habitat requirements
and unique inflorescence structure (Kurchenko, 2006). C. subtilis
has a remarkable ability to reappear in its previous habitats after
long time intervals, which may be related to the hypothesis that
its seeds can remain viable in the soil for decades (Hejný, 1969;
Richert et al., 2014). For example, it was rediscovered in 2001 at
Volkhov Shoal, where it was mistakenly thought to have been
extinct for 70 years (Yurova, 2001). In 2021, we found it in
Harbin after an interval of nearly 100 years. In addition, C. subtilis
was collected on the banks of the Yangtze River in Wuhan,
where its distribution has never been recorded before. The factors
responsible for this particular distribution pattern are unclear.

Based on morphological studies, C. subtilis was once
considered a member of the tribe Agrostideae because of
its distinctive inflorescence, which has flowers aggregated in
bunches and with staminodes (Gnutikov et al., 2020). In addition,
it has been placed near the genera Alopecurus and Mibora,
although it does not share common features with these two

1https://www.forestry.gov.cn/

(Gnutikov et al., 2020). However, some researchers believe that
there is a close relationship between the genus Coleanthus and
the genus Phippsia because of the similarities in morphology
and ecological preferences (Tzvelev, 1976; Gnutikov et al.,
2020). Soreng et al. (2003) proposed a new subfamily called
Puccinelliinae based on molecular phylogenetic analysis and
more thorough morphological examination of Poaceae, which
are characterized by thin membranous lemmas with hyaline
apex and glabrous margins. Hoffmann et al. (2013) placed
C. subtilis in the Puccinelliinae using DNA sequence data of
the ribosomal internal transcribed spacer (ITS). Subsequently,
the subtribe Puccinelliinae was renamed as Coleanthinae after
the addition of Coleanthus (Soreng et al., 2015). The use of
chloroplast genes or fragments (matK, ndhF, and trnL-trnF) to
explore the phylogenetic position of C. subtilis showed that it
is most closely related to the genus Phippsia and that both are
sister groups to other genera in the subtribe Coleanthinae of
the subfamily Pooideae (Gnutikov et al., 2020), but opinions
differ on the composition of this subtribe (Soreng et al., 2003,
2015; Gnutikov et al., 2020; Tkach et al., 2020). The whole
chloroplast genomes provide more complete genetic information
than single gene fragments to enable better discovery of
interspecific genetic resources and understanding of evolutionary
history (Wariss et al., 2018). However, to date, no studies have
explored the phylogenetic position of C. subtilis with the help of
complete chloroplast genomes, which affects our comprehensive
understanding of its phylogeny.

Compared with nuclear and mitochondrial genome,
chloroplast genomes are characterized by moderate nucleotide
substitution rates, structural simplicity and uniparental
inheritance (Burke et al., 2012; Ruhfel et al., 2014; Yang
et al., 2019), which makes them ideal resources in phylogenetic
studies at different levels and a common tool for species
identification (Chen et al., 2018; Yu et al., 2021). Its structure
is relatively stable and contains a large amount of genetic
information, which is considered a valuable data resource for
solving complex evolutionary relationships (Parks et al., 2009;
Moore et al., 2010; Oldenburg and Bendich, 2016). At the same
time, it has a promising future in molecular marker studies,
as some genes are often used in DNA barcoding for species
identification, such as rbcL and matK (Hollingsworth, 2011).
In addition, chloroplast genomes have been widely used in
plant genetic diversity and conservation studies, since they
can provide more complete genetic information compared
to individual gene fragments, therefore facilitating better
resolution of evolutionary relationships among species (Wariss
et al., 2018). Next-generation sequencing (NGS) technology
provides an efficient and cost-effective method for chloroplast
genome assembly, which greatly enriches chloroplast genome
information and provides sufficient data for plant phylogenetic
studies (Cronn et al., 2008; Tangphatsornruang et al., 2010).
Despite this, the chloroplast genome of C. subtilis has not
been reported to date, which limits its development of genetic
information discovery and phylogenetic studies.

Therefore, the purpose of this study is to (a) provide the first
report on the chloroplast genome of the genus Coleanthus and
conduct a comparative genomic analysis with other species in
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the subfamily Pooideae; (b) make the first attempt to reconstruct
the phylogeny of the subfamily Pooideae based on chloroplast
genome information to explore the phylogenetic position of
C. subtilis; (c) identify highly variable loci to provide useful
information for future development of molecular markers in
C. subtilis.

MATERIALS AND METHODS

Sampling, Extraction, and Genome
Sequencing
The materials of Coleanthus subtilis were collected from
Harbin, China, in June 2021, and subsequently deposited
in the Herbarium of the Wuhan Botanical Garden (HIB),
Chinese Academy of Sciences (China), with herbarium number
ZXX21129. For drying and long-term preservation of molecular
samples, fresh leaves were preserved in silica gel (Chase and Hills,
2019). The complete genomic DNA of C. subtilis chloroplast was
extracted using a modified CTAB procedure (Allen et al., 2006)
and then sequenced at Novogene Co., Ltd. (Beijing, China) with
Illumina paired-end technology platform. Purified high-quality
genomic DNA was broken into short fragments of approximately
350 bp, and paired-end (PE) libraries were constructed by
adding A-tails, PCR amplification and other steps, followed by
sequencing in 150 bp paired-end mode on an Illumina HiSeq
2500 platform. The final number of raw reads obtained was
36,062,743 and that of clean reads after filtering was 35,335,540.
The raw data has been uploaded to the NCBI database (BioProject
ID: PRJNA802068).

Assembly and Annotation of Chloroplast
Genome
Get Organelle v1.7.4 (Jin et al., 2020) was used to assemble
the chloroplast genome with default parameters. The low-
quality reads and adapters were first filtered, then a de novo
assembly performed, and the results were further purified to
generate the complete chloroplast genomes. The results were
visualized with Bandage (Wick et al., 2015). The Plastid Genome
Annotator (PGA) software (Qu et al., 2019) was used to
perform the annotation of the entire chloroplast genome, and
in addition to using Amborella trichopoda as the reference
genome, some Poaceae species were also selected to enhance
the credibility of the annotation results. Furthermore, to ensure
the accuracy of the annotation results, the genome was also
annotated simultaneously with the help of GeSeq online tool2

(Tillich et al., 2017).
The check of annotated genes was implemented in the

software Geneious-v10.2.3 (Kearse et al., 2012), which was used
to further verify and refine the annotation results and to manually
correct errors detected in gene annotation. Special attention was
paid to some genes located at the boundaries and the highly
variable genes, such as ndhF, ndhK, ycf2, accD, etc. The circular
chloroplast genome map of Coleanthus subtilis was drawn and

2https://chlorobox.mpimp-golm.mpg.de/geseq.html

visualized using OGDraw online tool3 (Greiner et al., 2019).
Lastly, the annotated sequence was submitted to GenBank on the
NCBI website, with an accession number OL692806.

Comparative Analysis of the Chloroplast
Genome
The chloroplast genome characteristics of Coleanthus subtilis
were analyzed in Geneious-v10.2.3 software by comparing
chloroplast genomes with those of Poaceae species downloaded
from the NCBI database (Supplementary Table 1). A total of
24 species representing 10 subtribes (5 tribes) were used for
the comparative analysis of chloroplast genomes. Additionally,
to determine genomic divergence among these species, genomic
similarity analysis was performed using the Glocal alignment
program (shuffle-LAGAN mode) in mVISTA (Brudno et al.,
2003; Frazer et al., 2004) with C. subtilis as the reference.
The SC/IR boundary analysis was done using the IRscope
(Amiryousefi et al., 2018) to observe the contraction and/or the
expansion of the genes at the borders. For the codon usage bias
analysis, MEGA 7.0 software (Kumar et al., 2016) was chosen to
calculate relative synonymous codon usage (RSCU) values based
on the coding sequences (CDS regions).

Analysis of Repeats and Nucleotide
Diversity
The REPuter tool4 (Kurtz et al., 2001) was used to identify
repeats including forward, reverse, palindrome, and complement
sequences. When the Hamming distance is equal to 3, the
length and identity of repeats are limited to ≥30 bp and >90%,
respectively. The simple sequence repeats (SSRs) were analyzed
using the MISA (Beier et al., 2017) with the basic repeat
setting: a threshold of 10, 5, 4, 3, 3, and 3 for mono-, di-, tri-,
tetra-, penta-, and hexa-nucleotides, respectively. The DnaSP-
v5.10 software (Librado and Rozas, 2009) was used to calculate
nucleotide variability (Pi) values and variable sites using the
aligned chloroplast genome sequences with a window length of
600 bp and a step size of 200 bp.

Substitution Rate Analysis
The EasyCodeML program in PAML package (Gao et al., 2019)
was utilized to identify positive sites in protein-coding genes
to quantify selection pressure. This software provided four site
models (M0 vs. M3, M1a vs. M2a, M7 vs. M8, and M8a vs. M8),
Bayes Empirical Bayes (BEB) analysis (Yang et al., 2005) and
Naive Empirical Bayes (NEB) analysis were performed in each
model to measure the loci with positive selection pressure.

Phylogenetic Analysis
To understand the phylogenetic position of Coleanthus subtilis
in the family Poaceae and its affinities with other species,
a phylogenetic tree was reconstructed using the Maximum
Likelihood (Felsenstein, 1981) and Bayesian Inference analysis
(Huelsenbeck et al., 2001). This was based on 76 shared protein-
coding genes of the Chloroplast genome from a total of 53

3https://chlorobox.mpimp-golm.mpg.de/OGDraw.html
4https://bibiserv.cebitec.uni-bielefeld.de/reputer
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species from 26 genera in Poaceae, with Acidosasa purpurea
as the outgroup (Supplementary Table 1). Each protein-coding
sequence was first aligned in the software MAFFT-v7.409 (Katoh
and Standley, 2013), followed by removing the stop codon
and discarding the bad fragment with the Gblock program
(Talavera and Castresana, 2007) and later concatenated using the
concatenated in-built PhyloSuite program (Zhang et al., 2020).
ML analysis in IQ-tree and BI analysis in MrBayes were used to
infer phylogenetic relationships. The best-fit models for each of
the two analyses were found in Model Finder (Kalyaanamoorthy
et al., 2017) according to the Bayesian Information Criterion
(BIC), and the most suitable model for Bayesian analysis was
detected as GTR + F + I + G4, while GTR + F + R3 was
used for the Maximum Likelihood analysis. Subsequently, the BI
tree was constructed by the software MrBayes-3.2.6 (Ronquist
et al., 2012) for 1,000,000 generations, sampling every 1000
generations, and the software IQ–TREE was implemented to
construct the ML tree with bootstrap replications of 1000 (Lam-
Tung et al., 2015). The phylogenetic trees were visualized in the
software Figtree-v1.4.45. Both phylogenetic trees were combined
manually using AI software based on consistent topological
structures. The results were imported into the software Figtree-
v1.4.4 to view the generated phylogenetic trees and to enhance
their visualization. Considering the consistent topology, the
phylogenetic trees constructed by both methods were manually
combined in the AI software.

RESULTS

Chloroplast Genome Features
The chloroplast genome of Coleanthus subtilis is 135,915 bp
in size and consists of four regions that together form a loop
structure. These four regions are the large single copy region
(LSC) of 80,100 bp, a small single copy region (SSC) of 12,757 bp,
and two inverted repeat regions (IR) of 21,529 bp in length,
respectively. In addition, a pair of inverted repeat regions separate
the two single-copy regions (Figure 1 and Table 1). GC content
varies in different regions of the chloroplast genome. The highest
GC content of 43.9% was found in the IR regions of C. subtilis,
while the two single copy regions had 36.3% (LSC) and 32.4%
(SSC) (Table 1).

A total of 129 genes were annotated in the chloroplast genome
of C. subtilis, with 83 protein-coding genes (PCGs), 38 tRNA
genes, and 8 rRNA genes. In addition, the accD gene was found
missing in the chloroplast genome, while ycf1, ycf2, ycf15, and
ycf68 were pseudogenes (Table 2). These genes were divided into
three groups based on their different functions. Nineteen genes
were observed to replicate in the inverted repeat regions, seven
of which were PCGs (ndhB, rpl2, rpl23, rps7, rps12, rps15, rps19),
eight were tRNA genes (trnA-UGC, trnI-CAU, trnI-GAU, trnH-
GUG, trnL-CAA, trnN-GUU, trnR-ACG, and trnV-GAC) and the
remaining four genes were rRNA (rrn4.5, rrn5, rrn16, and rrn23).
In addition, the largest number of genes in the LSC region was
82, while only 11 genes were located in the SSC region. More

5https://www.figtreeasia.com/

interestingly, all rRNA genes were distributed in the IR regions
(Supplementary Table 2). We identified 15 genes containing
one intron in C. subtilis, with six being tRNAs and nine being
PCGs. It’s important to highlight that trnK-UUU had the longest
intron with 2480 bp, which completely wrapped the MatK gene.
Meanwhile, the ycf3 gene contained two codons with lengths of
774 bp and 726 bp (Supplementary Table 3).

The chloroplast genome of C. subtilis showed high similarities
with other Poaceae species in terms of genome length and
structure, GC content and gene number. The complete genomes
length varied from 133608 bp (Colpodium humile) to 137370 bp
(Stipa purpurea), LSC from 78636 bp (Colpodium humile) to
81252 bp (Brachypodium stacei), SSC from 12390 bp (Zingeria
biebersteiniana) to 12842 bp (Stipa purpurea), and IR from
20831 bp (Melica mutica) to 22917 bp (Briza maxima) (Table 1).
The overall GC content was around 38.5%, and each of the
four regions also differed only insignificantly. In particular, gene
number and composition were almost identical in 24 species,
with only the trnL-UAA gene missing in Bromus vulgaris. In
addition, no structural rearrangements were found in any of
them (Figure 2).

Junction Characteristics
To observe the variation of IR boundaries, we did a comparative
analysis of the junction structure based on the chloroplast
genomes of Coleanthus subtilis and 23 other Poaceae species
(Figure 3). The results showed that their boundary features were
similar, the genes found at the nodes were mainly rpl22, rps19,
rps15, ndhF, ndhH, and psbA. The rps19 and rps15 genes were
replicated and fully embedded in the IR region, with lengths
of 13–46 bp and 293–479 bp from the two IR/LSC boundaries,
respectively. The ndhF genes were located entirely on the left
of the IRb/SSC and were 27 to 122 bp from this boundary.
Also, the ndhH gene occupied the IRa/SSC junction and was
overwhelmingly located within the SSC region, with only a small
portion of 156 to 316 bp extending into the IRa region. It should
be noted that the ndhH gene of Colpodium humile was slightly
shorter in length and was therefore completely encapsulated in
the SSC. In addition, Brachypodium stacei and Briza maxima
showed significant differences in boundary characteristics from
the other species. It was clearly observed that the IR regions of
Brachypodium stacei were contracted, resulting in the distribution
of the rps19 gene originally located in this region to the LSC.
However, the IR region of Briza maxima expanded, wrapping the
rpl22 that should have been located in the LSC.

Similarity Analysis of Chloroplast
Genomes
Whole sequence alignment of the chloroplast genomes of 24
Pooideae species was performed to detect the differences that
exist in their structures (Figure 4). The annotation of Coleanthus
subtilis were used as a reference. The chloroplast genomes of
these species were largely identical in terms of the number
and arrangement of genes. However, some highly variable
regions were still detected, such as rbcL-psaI, psbE-petL, trnD-
GUC-psbM, trnG-UCC-trnT-GGU, rpl32-trnL-UAG and other
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FIGURE 1 | Chloroplast genome map of C. subtilis. The genes located inside the circles are transcribed in a clockwise direction, while those outside the circle are
transcribed counterclockwise. Different colored genes represent different functions, as shown in the legend at the bottom left. The inverted boundaries and GC
content are drawn in the inner circle.

intergenic regions. Overall, the non-coding regions showed a
higher potential for variation compared to the coding regions.
Although the protein-coding regions were relatively conserved,
larger variants were observed in the rpoC2, infA, cemA and matK
genes. Besides, variations were also presented in some genes
located at the IR/SC boundary, such as rps19 and ndhF. However,
the rRNA and tRNA sequences were highly conserved, where
genes such as rrn16, rrn23, trnV-GAC, and trnR-ACG were almost
unchanged. At the same time, IR regions of these species were
minimally altered and significantly more conserved than the two
single-copy regions.

Codon Usage Analysis
There were 19838 codons eventually found in chloroplast genome
of Coleanthus subtilis. Methionine and Tryptophan amino acids

were encoded by a single codon, AUG and CGG, respectively.
However, the remaining amino acids were encoded by two to
six codons and showed a clear preference for codon usage
(Figure 5). The most abundant amino acid in the C. subtilis
was leucine 2135 (10.76%). Conversely, the least abundant amino
acid was cysteine 218, which accounted for only 1.10% of
the total. Meanwhile, among the six codons encoding leucine,
UUA had the highest RSCU value of 2.10, which indicated that
it had a high preference and was the most commonly used
codon. Interestingly, most of the codons with RSCU values
greater than 1 had A/U as the terminal codon, while those
with C/G as the terminal codon usually had RSCU values less
than 1.

The RSCU values of the five species were compared in
order to understand the differences in their codon usage
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TABLE 1 | Features of the chloroplast genomes of C. subtilis and other Poaceae species.

Species Genome length (bp) GC content (%) Gene number

Total LSC SSC IR Total LSC SSC IR Total PCG tRNA rRNA

Coleanthus subtilis 135915 80100 12757 21529 38.3 36.3 32.4 43.9 129 83 38 8(4)

Phippsia algida 135613 79805 12750 21529 38.3 36.3 32.4 43.9 129 83 38 8(4)

Puccinellia nuttalliana 135353 79594 12727 21516 38.3 36.3 32.6 43.9 129 83 38 8(4)

Sclerochloa dura 135086 79683 12609 21397 38.3 36.2 32.6 43.9 129 83 38 8(4)

Zingeria biebersteiniana 135943 80121 12390 21491 38.3 36.2 32.7 43.9 129 83 38 8(4)

Agrostis gigantea 136705 80604 12769 21666 38.5 36.4 32.8 44.0 129 83 38 8(4)

Alopecurus japonicus 136408 80511 12835 21531 38.3 36.2 32.4 43.9 129 83 38 8(4)

Ammophila breviligulata 136726 80711 12701 21657 38.6 36.5 32.9 44.1 129 83 38 8(4)

Anthoxanthum odoratum 135551 79626 12671 21627 38.2 36.1 32.5 43.9 129 83 38 8(4)

Avena barbata 135946 80111 12625 21605 38.5 36.4 32.6 44.0 129 83 38 8(4)

Brachypodium stacei 136330 81252 12666 21206 38.6 36.6 32.7 44.1 129 83 38 8(4)

Briza maxima 136823 79707 12722 22917 38.3 36.2 32.6 43.7 129 83 38 8(4)

Bromus vulgaris 136934 80964 12566 21702 38.3 36.3 32.3 43.9 128 83 37 8(4)

Calamagrostis pickeringii 136682 80660 12688 21667 38.6 36.5 32.9 44.0 129 83 38 8(4)

Castellia tuberculosa 133798 78819 12497 21241 38.4 36.3 32.6 43.9 129 83 38 8(4)

Colpodium humile 133608 78636 12474 21249 38.3 36.2 32.7 43.9 129 83 38 8(4)

Festuca altissima 135272 79826 12598 21424 38.4 36.4 32.8 43.9 129 83 38 8(4)

Hierochloe odorata 136395 80645 12466 21642 38.5 36.4 33.0 44.0 129 83 38 8(4)

Lolium multiflorum 135175 79848 12485 21421 38.3 36.1 32.4 43.9 129 83 38 8(4)

Melica mutica 134710 80478 12570 20831 38.5 36.5 32.8 44.0 129 83 38 8(4)

Phalaris coerulescens 135794 79728 12760 21653 38.5 36.4 32.9 44.0 129 83 38 8(4)

Phleum alpinum 135568 80009 12823 21368 38.4 36.3 32.6 44.0 129 83 38 8(4)

Poa diaphora 135466 79629 12685 21576 38.3 36.2 32.4 43.8 129 83 38 8(4)

Stipa purpurea 137370 81202 12842 21663 38.8 36.9 32.9 44.0 129 83 38 8(4)

TABLE 2 | List of the annotated genes in the chloroplast genomes of C. subtilis.

Category Groups of genes Name of genes

Self-replication Ribosomal RNA rrn4.5 c, rrn5 c, rrn16 c, rrn23 c

Transfer RNA trnA-UGC a,c, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU, trnG-GCC, trnG-UCCa,
trnH-GUG c, trnI-CAUc, trnI-GAU a,c, trnK-UUU a, trnL-CAA c, trnL-UAA a, trnL-UAG, trnM-CAU,
trnN-GUU c, trnP-UGG, trnQ-UUG, trnR-UCU, trnR-ACG c, trnS-UGA, trnS-GCU, trnS-GGA,
trnT-GGU, trnT-UGU, trnV-UAC a, trnV-GACc, trnW-CCA, trnY-GUA

Small subunit of ribosome rps2, rps3, rps4, rps7 c, rps8, rps11, rps12 a,c, rps14, rps15 c, rps16 a, rps18, rps19 c

Large subunit of ribosome rpl2 a,c, rpl14, rpl16 a, rpl20, rpl22, rpl23c, rpl32, rpl33, rpl36

RNA polymerase subunits rpoA, rpoB, rpoC1, rpoC2

Photosynthesis Photosystem I psaA, psaB, psaC, psaI, psaJ, ycf3 b, ycf4

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ

Subunits of cytochrome petA, petB a, petDa, petG, petL, petN

ATP synthase atpA, atpB, atpE, atpF a, atpH, atpI

NADH-dehydrogenase ndhA a, ndhB a,c, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

Other genes Rubisco large subunit rbcL

Translational initiation factor infA

Maturase K matK

Envelope membrane protein cemA

Proteolysis clpP

Cytochrome c biogenesis ccsA

aGenes with one intron. bGenes with two introns. cTwo gene copied in IR regions.

(Figure 6). For one amino acid, the sum of the RSCU values
of all codons involved in its encoding was almost equal.
Also, the RSCU values of the same codons were almost

identical in these species, indicating that their codon usage
habits were more stable and hardly change (Figure 6 and
Supplementary Tables 4, 5).
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FIGURE 2 | Comparison of the chloroplast genome structures among 24 Poaceae species. The different colored squares represent different types of genes. Black
represents transfer RNA (tRNA), or green if the tRNA has introns (rRNA). Red represents ribosomal RNA, while white represents protein coding genes (PCGs).

Repeat Analysis
We detected only palindromic and forward repeats in
chloroplast genomes of Coleanthus subtilis and its related
species, where the proportion of forward repeats was

higher than that of palindromic repeats (Figure 7A and
Supplementary Table 6). Most of repeats were 30–34 bp
in length and were mainly distributed in the LSC region
(Figures 7B,D and Supplementary Tables 7, 8). Also, the CDS
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FIGURE 3 | A plot of comparative analysis of the boundary features of the 24
Poaceae species. The comparative regions are the boundaries of large single
copy (LSC), small single copy (SSC) and inverted repeat (IR) regions.

regions contained most of the repeats, followed by the IGS
regions (Figure 7C and Supplementary Table 9). Some repeats
were also shared between IGS, CDS, tRNA, and intron regions.

A total of 26 SSRs were detected in C. subtilis, while 28, 28, 30,
and 33 microsatellites were found in Phippsia algida, Puccinellia
nuttalliana, Sclerochloa dura, and Zingeria biebersteiniana,

respectively (Figure 8A and Supplementary Table 10). These
SSRs were classified into five types, namely Mono-, di-, tri-, tetra-,
and penta-nucleotides repeats. The mono-nucleotide repeats
accounted for 50.34% of the 145 microsatellites and were the
most abundant SSR types in the five species, followed by tetra-
nucleotide repeats (26.21%). Most of the microsatellites were
distributed in the LSC region and consisted of A/T motifs
(Figures 8B,C and Supplementary Tables 11, 12).

Nucleotide Diversity (Pi) and Selection
Pressure Analysis
To comprehensively understand the sequence divergence of
the chloroplast genomes of Coleanthus subtilis and its related
species, we calculated Pi values for nucleotide diversity. Pi
values fluctuated between 0 and 0.0697, with a mean value of
0.02172 (Figure 9). We identified 13 polymorphic regions (matK,
trnK-UUU/rps16, rps16/trnQ-UUG, trnG-UCC/trnT-GGU, trnT-
GGU/trnE-UUC, petN/trnC-GCA, trnC-GCA/rpoB, rps4/trnL-
UAA, trnL-UAA/ndhJ, ndhC/trnV-UAC, ndhF, ndhF/rpl32, and
ndhA) with nucleotide diversity >0.05, 10 of which were
intergenic spacer regions and the remaining three were protein-
coding regions. Meanwhile, no highly variable loci were detected
in the IR regions and the nucleotide diversity values were
significantly lower than those in the single copy regions (Figure 9
and Supplementary Table 13).

In this study, dN/dS values were calculated based on 76 CDS
regions with site models in EasyCodeML. According to the M8
model, only the atpF gene possessed a significant positive site
in the BEB approach (Table 3). Meanwhile, a total of 45 loci
corresponding to 21 genes were identified in the NEB method, of
which 13 genes (atpA, atpF, atpI, ccsA, clpP, infA, ndhA, ndhD,
ndhK, rbcL, rpoA, rps16, and rps3) had a significant positive
site. In addition, the ndhF, psaA, psaB, psbC, and rpoC1 genes
contained two significant positive selection loci, while the cemA
and matK genes were detected with three and eight loci under
positive selection, respectively. Moreover, the rpoC2 gene was
found to have the highest number of positive selection sites,
including 11 significant positive sites.

Phylogenetic Analysis
In the current study, we utilized the protein-coding regions of
chloroplast genomes for the first time to explore the phylogenetic
position of Coleanthus subtilis. The topologies of the phylogenetic
trees generated with maximum likelihood (ML) and Bayesian
analysis (BI) were identical, with generally high branch bootstrap
values and posterior probabilities. Based on consistent topologies,
we showed the phylogenetic tree represented by the ML method
(Figure 10). The 53 species representing 26 genera were divided
into ten subtribes and six tribes. Among them, Coleanthus
was placed in the big clade containing Phippsia, Puccinellia,
Sclerochloa, and Zingeria, which were components of the subtribe
Coleanthinae. In addition, C. subtilis formed a sister branch with
the genus Phippsia, while this branch was also sister to other taxa
of this subtribe (BS = 100, PP = 1). The genus Colpodium was
nested in the subclade Loliinae and had a sister relationship with
the genus Castellia (BS = 100, PP = 1).
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FIGURE 4 | The Shuffle-LAGAN alignment was used in mVISTA to compare the contiguity of the chloroplast genomes of 24 species, with C. subtilis as the
reference. The vertical scale in the figure indicates the degree of identity between 50% and 100%, while the horizontal scale shows the sequence information of the
chloroplast genomes. Gray lines indicate gene direction, order and position.
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FIGURE 5 | Relative synonymous codon usage (RSCU) values for amino acids and stop codons of the 76 protein-coding regions of C. subtilis. The colors of the
histograms correspond to the colors of the codons.

FIGURE 6 | Comparative analysis plots of RSCU values for the five species. Each amino acid corresponds to five histograms, and their heights represent the RSCU
value. The histogram from left to right is Coleanthus subtilis, Phippsia algida, Puccinellia nuttalliana, Sclerochloa dura, and Zingeria biebersteiniana.

DISCUSSION

Plastome Comparison of Coleanthus
subtilis and Other Species Within
Pooideae
The chloroplast genome of Coleanthus subtilis exhibited a tetrad
structure of 135915 bp in length, which is similar to the length
and structural characteristics of cp genomes of other higher
plants (Jansen et al., 2005; Daniell et al., 2016). We found

that the GC content in the cp genome of Pooideae species
was unevenly distributed, with the IR regions having a higher
GC content than the two single copy regions. This may be
attributed to the fact that four rRNA genes with high GC content
were located in the IR regions, which supported the speculation
of previous studies (Mardanov et al., 2008; Gao et al., 2009;
Wanga et al., 2021). The accD gene has been lost within the cp
genomes of Pooideae species, while ycf1, ycf2, ycf15, and ycf68
were pseudogenes, which is a relatively common phenomenon
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FIGURE 7 | (A) Type of repeats in the whole chloroplast genomes of C. subtilis and its related species. (B) Size of repeats in the chloroplast genome of C. subtilis
and its related species. (C) Distribution of repeats in functional regions of the plastid genome. (D) Distribution of repeats in regions of the chloroplast genomes. IR,
inverted repeat; LSC, large single copy; SSC, small single copy; LSC/IR show those repeats for which one copy of the repeat exists in one region and a second copy
exists in another region. CDS, protein-coding sequence; IGS, intergenic spacer region.

in Poaceae (Huang et al., 2017). There is a correlation between
gene loss and evolution, and some studies suggest that it may
be an adaptive strategy with positive effects on survival and
reproduction (Xu and Guo, 2020). In addition, we also found
trnL-UAA gene loss in Bromus vulgaris. Pseudogenization of
tRNA (trnT-GGU) has also been observed in the Asteraceae
family (Abdullah et al., 2021a). Sixteen intron-containing genes
were detected in 24 species in which introns of rpoC1 and clpP
genes were lost. Besides, the trnK-UUU has the longest intron
that completely wraps the matK gene, a result that has been
reported in other studies (Li X. et al., 2019; Souza et al., 2020).
The rpoC1 gene has been reported to contain introns in most
land plants (Ohyama et al., 1986; Kugita et al., 2003). However,
deletion of the rpoC1 intron was observed in some angiosperm
lineages, such as most Poaceae and some species of the families
Fabaceae, Cactaceae, and Aizoaceae (Downie et al., 1996; Wallace
and Cota, 1996; Huang et al., 2017). Our study on the subfamily
Pooideae further confirm that the absence of the rpoC1 intron
is universal in the Poaceae. Similarly, the clpP gene usually
contained two introns. Nevertheless, both introns have been lost
in Pinus and some species from the genera Oenothera, Silene,
and Menodora (Lee et al., 2007; Huang et al., 2017). Also, it was
demonstrated that the loss of clpP introns were present in all

Poaceae species (Guisinger et al., 2010), which was supported
by our findings. This study revealed that genomic structure,
gene content and total GC content were significantly similar or
identical within 24 genera from Pooideae, which were consistent
with the genus Blumea and the families Solanaceae, Malvaceae,
and Araceae (Abdullah et al., 2020b,c, 2021b).

Length variation in the IR region of the chloroplast genome
was a common phenomenon during the evolution of land plants,
which has led to the formation of diverse boundary features
(Yang et al., 2010; Wang et al., 2017; Ding et al., 2021). The
study demonstrated that boundary genes in the species of the
subfamily Pooideae were mainly rpl22, rps19, rps15, ndhF, ndhH,
and psbA, which differ from the boundaries of Clethra and
Blumea species (Abdullah et al., 2021b; Ding et al., 2021). In
general, the subfamily Pooideae shared many similarities at
the nodes, which further endorsed the idea that the boundary
features were relatively stable among closely related species (Liu
et al., 2018). This phenomenon has also been observed in the
subfamily Asteroideae (Abdullah et al., 2021b). However, distinct
junction characteristics also existed in related species, such as
Brachypodium stacei and Briza maxima. The present study found
that although both were species of the subfamily Pooideae,
they formed different boundary features due to noticeable
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FIGURE 8 | (A) The type of SSRs in the cp genome of C. subtilis and its related species. (B) The region of SSRs in the cp genome of C. subtilis and its related
species. (C) The unit of SSRs in the cp genome of C. subtilis and its related species. IR, inverted repeat; LSC, large single copy; SSC, small single copy.

contraction or expansion of the IR Regions, respectively. The
same findings were also noted in the genera Pelargonium and
Psilotum (Chumley et al., 2006; Grewe et al., 2013; Sun et al.,
2013).

The results of the mVISTA analysis showed that the coding
regions were more conserved than the non-coding regions in the
cp genomes of the subfamily Pooideae, and the two single copy
regions showed higher variation potential than the IR regions.
These two findings agreed with previous studies in other plant
taxa (Gu et al., 2016; Xu et al., 2017; Alzahrani et al., 2020). We
detected some highly variable non-coding regions, such as rbcL-
psaI, psbE-petL, trnD-GUC-psbM, and rpl32-trnL-UAG. Despite
the relative conservation of the protein-coding regions, variations
were also observed in rpoC2, infA, cemA, and matK genes. The
highly variable regions detected in this study were promising
to be developed as specific DNA barcodes for the subfamily
Pooideae, which has positive implications for the identification
of species. In addition, the high GC content might be one of
the reasons for less variation in tRNA sequences and IR regions,
which further demonstrates the significance of GC content in
maintaining sequence stability (Necsulea and Lobry, 2007; Kim
et al., 2019).

The codon usage preference is closely related to gene
expression and affects protein and mRNA levels in the genome
(Zhou et al., 2013; Lyu and Liu, 2020). The most abundant amino
acid in the C. subtilis was leucine 2135 (10.76%), which has also

been frequently reported in the chloroplast genomes of other
angiosperms (Jian et al., 2018; Somaratne et al., 2019). More
interestingly, most codons ending in A/U have RSCU values
greater than 1, while those ending in C/G are less than 1. This
pattern also applies to the preference of codon usage in other
plants (Wang et al., 2018; Liu X.Y. et al., 2020).

Oligonucleotide repeats are very common in plastid genome
and are thought to be a proxy for identifying mutational hotspots
(Ahmed et al., 2012; Lee et al., 2014; Abdullah et al., 2020a,d; Liu
Q. et al., 2020). In the present study, we detected both forward
and palindromic repeats, mostly distributed in the LSC region.
Additionally, most of the repeats were 30–40 bp in length, which
was similar to those found in other species (Chen et al., 2018; Li
D.M. et al., 2019; Wu et al., 2020). Simple sequence repeats (SSRs)
were often used as a molecular marker to explore population
relationships and evolutionary history due to its polymorphism,
co-dominance and reliability (Oliveira et al., 2006; Sonah et al.,
2011; Gao et al., 2018). A total of five types of SSRs were detected
in the cp genomes of C. subtilis and its related species, of which
mono-nucleotide repeats were the most common. Similarly,
the most abundant SSR type in the genus Quercus was also
mono-nucleotide repeats (Yang et al., 2016). However, there
are other possibilities, such as tri-nucleotide repeats occurring
most frequently in Urophysa (Xie et al., 2018). Furthermore, this
study not only found that most SSR types were mono-nucleotide
repeats, but they had A/T preference. This phenomenon can
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FIGURE 9 | Nucleotide diversity of the chloroplast genomes of C. subtilis and its related species.

TABLE 3 | dN/dS ratios of the chloroplast genomes of C. subtilis and its related species.

M8 Gene Region Selected sites Pr(w > 1) Number of sites

Naive Empirical Bayes (NEB) atpA LSC 133 A 0.958* 1

atpF LSC 1247 A 1.000** 1

atpI LSC 1646 L 0.998** 1

ccsA SSC 1824 F 0.963* 1

cemA LSC 1989 L/2043 R/2092 F 0.969*/0.958*/0.986* 3

clpP LSC 2370 E 0.964* 1

infA LSC 2521 H 0.966* 1

matK LSC 2558 C/2599 S/2711 I/2713
I/2805 L/2807 L/2882 V/2937 Q

0.958*/0.954*/0.951*/0.956*/
0.956*/0.965*/0.953*/0.970*

8

ndhA SSC 3322 G 0.954* 1

ndhD SSC 4425 I 0.995** 1

ndhF SSC 5107 S/5119 I 0.952*/0.951* 2

ndhK LSC 6446 K 0.959* 1

psaA LSC 7436 L/7917 V 0.954*/0.960* 2

psaB LSC 8195 S/8372 L 0.954*/0.950* 2

psbC LSC 10060 F/10233 F 0.951*/0.953* 2

rbcL LSC 11311 V 0.955* 1

rpoA LSC 12867 G 0.959* 1

rpoC1 LSC 14684 G/14758 R 0.967*/0.959* 2

rpoC2 LSC 15415 N/15426 I/15775 A/15836
F/15841 S/15860 K/15891 K/15907

F/16026 E/16204 Q/16260 A

0.965*/0.968*/0.998**/0.958*/0.953*/
0.962*/0.962*/0.964*/0.964*/

0.961*/0.965*

11

rps16 LSC 16812 T 0.967* 1

rps3 LSC 17399 E 0.955* 1

Bayes Empirical Bayes (BEB) atpF LSC 1247 A 0.974* 1

The level of significance is indicated by the number of “*”, where “*” represents significant, and “**” indicates highly significant.
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FIGURE 10 | Phylogenetic trees were generated based on the 76 shared protein-coding sequences of 53 species using maximum likelihood (ML) and Bayesian (BI)
methods. The ML tree and BI tree have a consistent topology. The ML bootstrap values/Bayesian posterior probabilities are displayed on the nodes. To make
Coleanthus subtilis more visible, it was marked with a star.

also be observed in numerous other taxa (Wheeler et al., 2014;
Munyao et al., 2020).

We identified 13 polymorphic regions (matK, trnK-
UUU/rps16, rps16/trnQ-UUG, trnG-UCC/trnT-GGU,

trnT-GGU/trnE-UUC, petN/trnC-GCA, trnC-GCA/rpoB,
rps4/trnL-UAA, trnL-UAA/ndhJ, ndhC/trnV-UAC, ndhF,
ndhF/rpl32, and ndhA) with nucleotide diversity >0.05, mainly
located in the LSC region. In addition, the nucleotide diversity
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values within the IR regions were significantly lower than those
in the single copy regions, which is consistent with the pattern
found in previous studies (Li D.M. et al., 2019; Ding et al.,
2021). The dN/dS analysis was regarded as one of the most
popular and reliable measures to quantify selective pressure
(Kryazhimskiy and Plotkin, 2008; Mugal et al., 2014). We
performed a selection pressure analysis on different genera of
the subfamily Pooideae, and the result indicated that there are
some genes under positive selective pressure, which was crucial
for understanding the evolutionary history of these genera. The
positively selected genes identified were nearly identical to those
previously reported for other species in the family Poaceae,
and our findings further support the plausibility of these loci
(Piot et al., 2018). Furthermore, these genes are associated with
photosynthesis, self-expression and regulatory activity (Piot
et al., 2018), which has a positive effect on understanding the
mechanisms of selection pressure generation.

Phylogenetic Analysis
In the current study, the 76 protein-coding regions of the
chloroplast genome were used for the first time to explore the
phylogenetic position of Coleanthus subtilis. The reconstructed
phylogenetic tree divided the 53 species into ten subtribes and
six tribes, which coincided with the broad framework of the
Poaceae phylogeny (Soreng et al., 2017; Saarela et al., 2018;
Tkach et al., 2020). Phylogenetic analysis strongly demonstrated
that C. subtilis formed a sister branch with the genus Phippsia
(BS = 100, PP = 1), which further justified the results of
previous morphological treatments and phylogenetic studies
based on chloroplast fragments (Tzvelev, 1976; Soreng et al.,
2015; Gnutikov et al., 2020). Moreover, our data revealed
that Colpodium was nested in the subtribe Loliinae and was
particularly closely related to the genus Castellia, while Zingeria
was located in the subtribe Coleanthinae (BS = 100, PP = 1). This
finding differed from that of earlier studies and provided a new
perspective on the relationships between Colpodium, Zingeria
and Coleanthinae. Some previous studies suggested that the
genera Zingeria and Colpodium are sister groups and rather
distantly related to the subtribe Coleanthinae, forming a branch
known as the two-chromosome grasses (Rodionov et al., 2008;
Kim et al., 2009). At the same time, these two genera were
considered as constituent members of Coleanthinae (Soreng
et al., 2015). However, apart from the fact that Zingeria belongs
to the subtribe Coleanthinae, our results do not support the
previously reported relationship between Colpodium, Zingeria
and Coleanthinae. This work will not only contribute to further
insight into the phylogenetic position of C. subtilis and the
composition of the subtribe Coleanthinae, but also provide
valuable chloroplast genomic information for future exploration
of the origin and differentiation between C. subtilis and its related
species at the cp genome level.

CONCLUSION

In this study, the complete chloroplast genome of Coleanthus
subtilis was reported and comparative and phylogenetic analyses

with its closely related species revealed, as well as differences
in their genomic structure and composition. Although the
chloroplast genome of C. subtilis is relatively conserved, 26
SSRs and 13 highly variable loci were detected, which could
be developed as important genetic markers. The reconstructed
phylogenetic tree further confirmed the sister relationship
between Coleanthus and Phippsia, and also provided new
insights into the relationship between Coleanthus, Zingeria and
Colpodium. In addition, since C. subtilis is rare and legally
protected, the genetic information is important for its breeding
and conservation. Equally important, the mechanisms that lead
to the unique distribution pattern of C. subtilis are unknown,
which makes the species of great research value. Our results will
enrich data and provide a useful reference for further research on
the origin and distribution of C. subtilis.
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