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Nitrogen (N) deposition significantly affects the growth and the function of invasive clonal

plants. However, the effects of heterogeneous N supply with different frequencies on

the growth and the potential contribution of clonal integration in invasion plants are still

unclear, especially in the complex environment considering ramet damage. To address

this question, apical and basal ramets of the clonal invader Hydrocotyle vulgaris were

connected or disconnected, N was added to the basal ramets with a high frequency,

a low frequency, or no supply, and the total N quantity was the same for the different

frequency. Furthermore, 8 aphids were placed on the apical ramets, and 30% of each leaf

was cut off to cause damage. The connection between ramets significantly increased the

biomass, total carbon (C), and total N of the basal and apical ramets. Higher frequency

N supply significantly increased the biomass, total C, and total N of the basal ramets and

the entire clonal fragment biomass. The damage had no significant effect on the growth

of basal and apical ramets. Especially, under the high N frequency and ramet damage

condition, the connection between ramets more significantly increased the biomass, total

C, and total N of the apical ramets and the entire clonal fragment biomass. In addition,

the uptake rates of 15NH+

4 and 15NO−

3 in H. vulgaris had no significant difference, and N

supply increased the uptake rates of 15NH+

4 and 15NO−

3 of the basal ramets. Our results

suggest that both higher frequency N supply and clonal integration are beneficial to the

growth of H. vulgaris. Moreover, the heterogeneous N supply with high frequency and

ramet damage increases the benefits of clonal integration in H. vulgaris. These findings

improve our understanding of the response of clonal invader H. vulgaris to nitrogen

deposition and ramet damage.
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INTRODUCTION

Alien plants can quickly adapt to new environments, replacing
the local plants and seriously damaging the local ecosystem due to
some specific traits (Richardson et al., 2000; Kleunen et al., 2010).
Studies have shown that clonal integration may be an important
trait for alien plants to quickly adapt and successfully invade
new environments (Liu et al., 2006; Yu et al., 2009; Song et al.,
2013). Besides, due to the influence of fertilization, disturbance,
and soil properties, the distribution of soil nutrients needed
for plant growth is often heterogeneous in habitats (Zhang
et al., 2016; Shen et al., 2019). In clonal plants, heterogeneous
resources and colonization of habitats are moderated through
clonal integration, where water, nutrients, and carbohydrates are
translocated among ramets through a connecting rhizome or
stolon, subsequently promoting their growth (Wei et al., 2019;
Yu et al., 2019; Zhang et al., 2019; Franklin et al., 2020).

Due to human activities, the total amount of atmospheric
nitrogen (N) deposition and the rate keep increasing, which
significantly affects the growth and function of plants (Gutiérrez,
2012; Peñuelas et al., 2012; Valliere and Allen, 2016). Previous
studies showed that N addition can improve the division of labor
of invasive clonal plants and promote their growth (Huang et al.,
2018; Lin et al., 2018). In addition, it has been reported that
the clonal integration benefits of clonal plants in heterogeneous
N environments are more significant (Dong et al., 2015; Liu
et al., 2017a; Ying et al., 2018). However, previous studies on
the N environment and clonal plants were only based on the
supply level of N (Huang et al., 2018; Lin et al., 2018; Dong
et al., 2019). In fact, N deposition in these environments is
a continuous process, and the frequency of deposition also
significantly impacts plant growth (Carreiro et al., 2000; Phoenix
et al., 2004). A single high amount of N addition amplifies
the ecosystem pulse effect in the short term and weakens the
long-term impact of N deposition (Moldan et al., 2018). Thus,
we should consider the potential effects of N supply frequency
when exploring the responses of plant growth to simulated N
deposition (Cao et al., 2020, 2021). This study aims to provide an
experimental test for the effects of heterogeneous N supply with
different frequencies on the growth and the clonal integration of
clonal plants.

Besides heterogeneous N resources, studies have shown that
ramet damage also significantly affects the growth and the clonal
integration of cloned plants (Hellström et al., 2006; Liu et al.,
2007). For clonal plants, under the action of clonal integration,
plants can deal with the ramet damage through overall resource
allocation (Liu et al., 2009; Tewari et al., 2014). For example,
damage can also be transmitted between ramets as a signal so that
normal ramets can deal with damage in advance (Hettenhausen
et al., 2017; Zhuang et al., 2018). In addition, a recent study shows
that the damage of ramets may also induce the negative effects of
clonal integration (Gao et al., 2021). However, less is known about
the interaction effects between N deposition and ramet damage
on the growth of cloned plants and their clonal integration (Dong
et al., 2019).

In addition, the translocation of resources among ramets is
not equal, so clonal integration has different effects on different

ramets (Salzman and Parker, 1985; Gao et al., 2014; Wang et al.,
2017). Generally, all ramets will benefit from clonal integration
due to the rational division of labor and resource integration
among ramets (Roiloa and Retuerto, 2007; Zhang et al., 2009).
However, under some conditions, low resource ramets do not
always obtain support from high resource ramets (Klimeš and
Klimešová, 1999; Hay and Kelly, 2008). Besides, the reallocation
of resources from the high- to the low-resource or damaged
ramets may also result in neutral or negative effects on the high
resource ramets (Yu et al., 2002; Pauliukonis and Gough, 2004;
Wang et al., 2009; Chen et al., 2015). Therefore, it is necessary
to quantify the effects of heterogeneous N supply and damage on
ramets located in different environments.

To explore the response mechanism of the growth and the
clonal integration of invasive clonal plants under heterogeneous
N supply with different frequencies and ramet damage
conditions, the clonal invader Hydrocotyle vulgaris was used as
the model plant in a control experiment. Apical and basal ramets
of H. vulgaris were connected or disconnected, N at different
frequencies was added to the basal ramets, 8 aphids were placed
on the apical ramets, and 30% of each leaf was cutoff to cause
damage. We measured the morphological and physiological
indexes of H. vulgaris, including the isotopic identification of
the 15N-NH+

4 and 15N-NO−

3 . Specifically, we addressed the
following two questions: (1) How do the clonal integration
and heterogeneous N supply with different frequencies and
ramet damage affect the growth of H. vulgaris? (2) How
do the heterogeneous N supply with different frequencies
and ramet damage affect the benefits of clonal integration
in H. vulgaris?

MATERIALS AND METHODS

Experimental Materials
Hydrocotyle vulgaris L. is a native perennial herb in the family
Apiaceae, growing in moist to wet habitats across Europe and
northwestern Africa (Dong et al., 2015; Wang et al., 2018, 2020).
It was introduced to China as a garden plant in artificial wetlands
in the 1990s, from which it spread into natural habitats (Liu et al.,
2014). H. vulgaris is a typical clonal plant with high phenotypic
plasticity, strong clonal ability, and wide tolerance to habits. It
can occupy a wider ecological amplitude than the native species
(Wang et al., 2018, 2020). In our study, H. vulgaris was collected
from the Xixi wetlands in Hangzhou, Zhejiang Province, China,
in May 2015. The collected samples were vegetatively propagated
in a greenhouse at the Forest Science Company, Ltd. of Beijing
Forest University, Beijing, China.

The green peach aphid, Myzus persicae Sulzer, is a small,
euryphagic, piercing, and sucking insect of the family Aphididae
that infests the majority of agricultural crops and wild plants
globally (Goggin, 2007). Its piercing-sucking phenomenon
contributes to the rapid spread of plant viruses, such as Potato
virus and Turnip yellows virus (Mondal and Gray, 2017; Congdon
et al., 2019), which significantly affect the productivity of
agricultural and forestry crops (Guerrieri and Digilio, 2008). A
recent study showed that aphids can also cause some damage to
H. vulgaris (Liu et al., 2017a). In our study, aphids were collected
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FIGURE 1 | Experimental design. The ramets in each pot were connected. All treatments were sprayed with 100ml of deionized water every 5 days. In addition,

0.039 g NH4NO3 was added to deionized water every 15 days at low nitrogen (N) frequency, and 0.013 g NH4NO3 was added to deionized water every 5 days at high

N frequency.

from Rosa chinensis Jacq in the greenhouse at the Forest Science
Company, Ltd. of the Beijing Forest University inMay 2015. They
were thenmultiplied usingH. vulgaris as the host plant for 1 year.
Aphids from a singleH. vulgaris clonal fragment were selected in
this study.

Experimental Design
The experiment used a fully factorial design consisting of three
N frequency treatments crossed with two damage treatments
(ramets damage or non-damage) and two connection treatments
(clonal fragment connected or disconnected) (Figure 1). EachH.
vulgaris fragment has 6 nodes, and every 3 nodes were planted
in pots that had 17 cm inner diameter, 19 cm outer diameter, and
13 cmheight. The older and younger ramets represented the basal
and apical ramets, respectively. Since aphids prefer to feed on
young ramets, we addeded aphids to the apical ramets (Gao et al.,
2021). Corresponding to the damage, N was added to the basal
ramets. In addition, connection or disconnected treatments were
carried out in the middle parts of the fragments.

The three N supply frequencies were high frequency, low
frequency, and no N supply on the basal ramets. All treatments
were sprayed with 100ml of deionized water every 5 days. In
addition, 0.013 g NH4NO3 was added to deionized water every
5 days at high N frequency, and 0.039 g NH4NO3 was added
to deionized water every 15 days at low N frequency. The total
N deposition for both the low N frequency and the high N
frequency treatments was 15 g N m−2 a−1. The total amount
and frequency of N in the experiment were set according to the

atmospheric Nwet deposition and the precipitation in the natural
distribution area of H. vulgaris in China (Li et al., 2011; Zhou
et al., 2015).

Ramet damage was carried out by aphids throwing and cutting
leaves on the apical ramets. During the experiment, 8 aphids
were released on the apical ramets and checked regularly to keep
the number stable (Liu et al., 2017a). Meanwhile, the container
where apical ramets are growing was covered with gauze cages
(length, 25 cm; width, 25 cm; height, 50 cm) to prevent the spread
of aphids between containers. In addition, considering that the
purpose of our study was to test the response of H. vulgaris
growth and clonal integration to N deposition and ramet damage,
we are not concerned about the effects of aphids on H. vulgaris.
Therefore, we also simulated the leaf damage of the animal and
mechanical injuries to stimulate theH. vulgaris response to ramet
damage. More specifically, we removed 30% of each leaf of all
apical ramets on the 45th day after the start of the experiment
(Portela et al., 2019).

We added 15NH4NO3 and NH15
4 NO3 isotopes 24 h before

harvest. Six replicates were randomly and equally divided into
two groups for the addition of 15NH4NO3 and NH15

4 NO3,
respectively. To detect an appropriate amount of 15N in ramets
after 24 h, we checked the 15N abundances in 15NH4NO3 and
NH15

4 NO3, which were 99.11 and 99.23%, respectively, and
the added total amount in each pot was 12.5 15NH4NO3 or
NH15

4 NO3 mg·m−2 (Gao et al., 2021). The applied isotope was
dissolved into 100ml distilled water and applied on the soil
surface evenly using a needle tube.
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TABLE 1 | Effects of connected treatment, nitrogen (N) frequency, damage, and their interaction on the biomass, root mass, stem mass, and leaf mass of the entire clonal

fragment (A), basal ramets (B), and apical ramets (C) of Hydrocotyle vulgaris.

Connection

(C)

Nitrogen frequency

(NF)

Damage

(D)

C × NF C × D NF × D C × NF × D

F1,60 F2,60 F1,60 F2,60 F1,60 F2,60 F2,60

(A) Entire clonal fragment

Biomass 8.99** 10.49*** 1.04ns 0.04ns 1.83ns 0.80ns 0.29ns

Root mass 9.45** 10.62*** 0.89ns 0.01ns 0.36ns 2.70ns 1.27ns

Stem mass 8.38** 6.40** 0.97ns 0.03ns 1.65ns 0.76ns 0.31ns

Leaf mass 9.39** 29.00*** 1.18ns 0.35ns 3.00ns 0.44ns 0.11ns

(B) Basal ramets

Biomass 4.52* 15.62*** 1.49ns 0.91ns 0.30ns 1.50ns 0.56ns

Root mass 3.95ns 12.80*** 1.29ns 0.41ns 0.23ns 2.30ns 2.60ns

Stem mass 5.25* 9.97*** 1.10ns 0.91ns 0.38ns 1.21ns 0.47ns

Leaf mass 2.22ns 36.87*** 2.66ns 0.94ns 0.48ns 1.85ns 0.59ns

(C) Apical ramets

Biomass 5.89* 0.68ns 0.05ns 1.96ns 2.54ns 0.36ns 0.61ns

Root mass 7.46** 0.84ns 0.01ns 0.99ns 2.94ns 0.99ns 0.78ns

Stem mass 4.77* 0.64ns 0.16ns 1.46ns 2.17ns 0.50ns 0.46ns

Leaf massa 11.28** 1.15ns 0.00ns 2.64ns 3.05ns 0.08ns 0.94ns

Numbers are ANOVA F-values. ns, P > 0.05; *P = 0.01–0.05; **P = 0.001–0.01; and ***P < 0.001. a indicaes that the data have undergone square transformation.

The experiment started on 11 July 2016 in the same
greenhouse where H. vulgaris was cultivated. There were
12 treatments in total, and there were 6 repetitions for
each treatment. There were two pots in line together for
each treatment to ensure that the basal and apical ramets
are placed separately to facilitate the observation of clonal
integration. The pots were filled with a 1:1:1 (v:v:v) mixture of
peat:vermiculite:quartz sand, and some ceramsite were placed at
the bottom of the pots to prevent soil loss. There were 144 pots in
total for the experiment.

During the experiment, the mean temperature was 28.4 ±

0.3◦C, and relative humidity was 64.4 ± 0.8%, as measured
by I Buttons (DS1923; Maxim Integrated Products, Sunnyvale,
CA, USA).

Morphological Measurements
Plants of H. vulgaris were harvested on 15 October 2016. The
clonal fragments in each combination pot were separated into
two portions. The basal and apical ramet portions consisted of the
original ramet and any new stems and ramets it had produced.

Within each portion of ramets, the numbers of leaves and
nodes were counted, and the total stem length was measured. In
addition, the total leaf area was measured using a Win FOLIA
Pro 2004a (Regent Instruments, Inc., Canada). Plants were then
divided into roots, stems, and leaves, dried at 75◦C for 72 h,
and weighed.

Physiological Measurements
Recent studies have shown that N deposition and ramet damage
not only affect plant morphological traits but also significantly
affect plant physiological traits (Cao et al., 2021; Gao et al., 2021).
Therefore, we measured the total carbon (C) and N of the basal

and apical ramets to improve our understanding of the response
of H. vulgaris to N deposition and ramet damage.

The total C and total N contents were determined with a
total organic carbon (TOC) (multi N/C 3100, Analytik Jena,
Germany) analyzer and a continuous flow analyzer (SEAL AA3,
SEAL, Germany).

The 15N-NH+

4 and 15N-NO−

3 isotopes of apical and basal
ramets were determined using the DELTAV Advantage Isotope
Ratio Mass Spectrometer and the Flash 2000 HT Element
Analyzer. Considering that there is no resource transfer between
ramets when they are not connected (Gao et al., 2021), we did
not measure the isotopes of apical ramets when they are not
connected. The samples were burned at high temperatures in an
elemental analyzer to generate N2. Then, the mass spectrometer
calculated the δ

15N values of the samples after detecting the
15N to 14N ratio of N2 and comparing it with the international
standard (atmospheric N2). The determination accuracy was
δ
15N:± <0.2‰.

Statistical Analyses
A three-way ANOVA was used to test the effects of N frequency,
connection, and damage (all factors were treated as fixed
and categorical) on each measure of indexes of the entire
clonal fragment and basal and apical ramets of H. vulgaris
(Tables 1–4). Linear contrasts based on ANOVA were used to
compare whether the effect of connection on various indexes
of H. vulgaris was significant under each N frequency and
damage treatment combination (Wang et al., 2020) (Figures 2–
5). A one-way ANOVA was used to test the differences in
the uptake rates of 15N-NH+

4 and 15N-NO−

3 of H. vulgaris
(Supplementary Figure 1). The leaf mass and area of the entire
clonal fragment, stem length, number of leaves, and total C and
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TABLE 2 | Effects of connected treatment, N frequency, damage, and their interaction on the stem length, number of nodes, number of leaves, and leaf area of the entire

clonal fragment (A), basal ramets (B), and apical ramets (C) of H. vulgaris.

Connection

(C)

Nitrogen frequency

(NF)

Damage

(D)

C × NF C × D NF × D C × NF × D

F1,60 F2,60 F1,60 F2,60 F1,60 F2,60 F2,60

(A) Entire clonal fragment

Stem length 10.18** 11.30*** 0.06ns 0.18ns 1.44ns 0.52ns 0.13ns

Number of ramets 8.34** 6.40** 0.05ns 0.16ns 0.34ns 1.13ns 0.69ns

Number of leaves 4.61* 17.75*** 0.25ns 0.45ns 1.04ns 0.70ns 0.63ns

Leaf areab 16.10*** 53.91*** 0.69ns 3.38* 2.23ns 0.29ns 0.12ns

(B) Basal ramets

Stem length b 6.71* 21.77*** 1.63ns 1.69ns 1.01ns 0.32ns 1.80ns

Number of nodes 4.33* 11.39*** 0.11ns 0.42ns 0.08ns 0.99ns 1.47ns

Number of leaves a 0.97ns 34.79*** 0.71ns 0.96ns 0.10ns 0.97ns 2.34ns

Leaf area 0.52ns 39.95*** 1.20ns 0.93ns 0.06ns 2.28ns 0.52ns

(C) Apical ramets

Stem length 5.52* 0.51ns 0.15ns 2.04ns 3.00ns 0.33ns 0.61ns

Number of nodes 3.85ns 0.26ns 0.56ns 1.96ns 1.53ns 0.42ns 0.41ns

Number of leaves a 5.94* 0.14ns 3.10ns 2.17ns 3.19ns 0.14ns 0.86ns

Leaf area b 27.85*** 2.54* 0.05ns 0.22ns 3.19ns 0.05ns 1.57ns

Numbers are ANOVA F-values. ns, P > 0.05; *P = 0.01–0.05; **P = 0.001–0.01; and ***P < 0.001. a indicaes that the data have undergone square transformation, and b indicaes that

the data have undergone logarithmic transformation.

TABLE 3 | Effects of connected treatment, N frequency, and damage and their interaction on the total carbon and total N of the basal (A) and apical (B) ramets of H.

vulgaris.

Connection

(C)

Nitrogen frequency

(NF)

Damage

(D)

C × NF C × D NF × D C × NF × D

F1,60 F2,60 F1,60 F2,60 F1,60 F2,60 F2,60

(A) Basal ramets

Total carbonb 6.13* 26.76*** 3.78ns 2.54ns 2.10ns 0.615ns 1.24ns

Total nitrogena 3.56ns 14.85*** 1.33ns 4.15* 1.26ns 1.33ns 1.66*

(B) Apical ramets

Total carbon 0.632ns 5.91** 0.03ns 2.05ns 2.53ns 0.30ns 0.52ns

Total nitrogena 1.29ns 3.77* 0.13ns 0.34ns 3.63ns 0.47ns 0.67ns

Numbers are ANOVA F-values. ns, P > 0.05; *P = 0.01–0.05; **P = 0.001–0.01; and ***P < 0.001. a indicaes that the data have undergone square transformation, and b indicaes that

the data have undergone logarithmic transformation.

TABLE 4 | Effects of connected treatment, N frequency, and damage and their interaction on the 15N-NH+

4 and 15N-NO−

3 uptake rates of the apical (A) and basal (B)

ramets of H. vulgaris.

Connection

(C)

Nitrogen frequency

(NF)

Damage

(D)

C×NF C×D NF×D C×NF×D

F1,60 F2,60 F1,60 F2,60 F1,60 F2,60 F2,60

(A) Basal ramets

15N-NH+

4 uptake rate 3.24ns 29.26*** 0.14ns 0.12ns 0.27ns 0.60ns 2.20ns

15N-NO−

3 uptake rate 2.75ns 8.82** 2.40ns 0.14ns 3.33ns 2.03ns 0.13ns

(B) Apical ramets

15N-NH+

4 uptake rate 1.57ns 3.14ns 1.84ns

15N-NO−

3 uptake rate 1.84ns 0.62ns 0.13ns

Numbers are ANOVA F-values. ns, P > 0.05; **P = 0.001–0.01; and ***P < 0.001.
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FIGURE 2 | Effects of connection among ramets, N supply frequency, and damage on the biomass, root mass, stem mass, and leaf mass of the entire clonal

fragment (A–D), basal ramets (E–H), and apical ramets (I–L) of Hydrocotyle vulgaris. Bars represent the mean ± SE. The p-values with significant difference between

disconnected and connected treatments under each N frequency and damage combination (linear contrast based on ANOVA) were marked above the connected

treatment. *P < 0.05; **P < 0.01. Refer to Table 1 for ANOVAs.

total N of the basal ramets, as well as the number of leaves, leaf
area, total N, and the 15N uptake rates of the apical ramets were
transformed to the natural logarithm or the square root before
analysis as needed to improve homoscedasticity. Figures show
untransformed data. All analyses were conducted using SPSS 22.0
(SPSS, Chicago, Illinois, USA).

RESULTS

Morphological Traits of the Entire Clonal
Fragment of H. vulgaris
The connection between ramets and a higher N frequency
had significantly increased the biomass, root mass, stem

mass, leaf mass, stem length, number of nodes, number of
leaves, and leaf area of the entire clonal fragment (P <

0.05; Figures 2A–D, 3A–D; Tables 1A, 2A). However, damage
insignificantly decreased all growth traits of the entire clonal
fragment (P > 0.05; Figures 2A–D, 3A–D; Tables 1A, 2A).
Besides, the connection and N frequency interactive effect
significantly increased the leaf area of the entire clonal fragment
(P < 0.05; Figure 3D; Table 2A).

A linear contrast analysis revealed that, under the treatment
of high N frequency at the basal ramet and apical ramet damage,
the connection between ramets significantly increased the total
biomass, leaf mass, and leaf area of the entire clonal fragment
(P < 0.05; Figures 2A,D, 3D). Moreover, under the treatment
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FIGURE 3 | Effects of connection among ramets, N supply frequency, and damage on the stem length, number of nodes, number of leaves, and leaf area of the entire

clonal fragment (A–D), basal ramets (E–H), and apical ramets (I–L) of H. vulgaris. Bars represent the mean ± SE. The p-values with significant differences between

disconnected and connected treatments under each N frequency and damage combination (linear contrast based on ANOVA) were marked above the connected

treatment. *P < 0.05; **P < 0.01. Refer to Table 2 for ANOVAs.

of no N supply at the basal ramet and apical ramet damage, the
connection between ramets significantly increased the root mass,
stem mass, and leaf area of the entire clonal fragment (P < 0.05;
Figures 2B,C, 3D).

In addition, the basal and apical ramets of H. vulgaris had
different responses to each treatment (Figures 2, 3; Tables 1, 2).

Morphological Traits of the Basal Ramets
of H. vulgaris
The connection between ramets significantly increased the total
biomass, stem mass, stem length, and number of nodes of the

basal ramets (P < 0.05; Figures 2E,G, 3E,F; Tables 1B, 2B). At
the same time, a higher N frequency significantly increased the
biomass, root mass, stemmass, leaf mass, stem length, number of
nodes, number of leaves, and leaf area of the basal ramets (P <

0.05; Figures 2E–H, 3E–H; Tables 1B, 2B). However, damage to
the basal ramets had no significant effect on all growth traits of
the basal ramets (P > 0.05; Figures 2E–H, 3E–H; Tables 1B, 2B).

A linear contrast analysis revealed that, under the treatment
of no N supply at the basal ramet and apical ramet damage,
the connection between ramets significantly increased the total
biomass, root mass, stem mass, leaf mass, stem length, and
number of nodes in the basal ramets (Figures 2E–H, 3E,F).
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FIGURE 4 | Effects of connection among ramets, N supply frequency, and damage on the total carbon and total N of the basal (A,B) and apical (C,D) ramets of H.

vulgaris. Bars represent the mean ± SE. The p-values with significant differences between disconnected and connected under each N frequency and damage

combination (linear contrast based on ANOVA) were marked above the connected treatment. *P < 0.05; **P < 0.01. Refer to Table 3 for ANOVAs.

Morphological Traits of the Apical Ramets
of H. vulgaris
The connection between ramets significantly increased the total
biomass, root mass, stem mass, leaf mass, stem length, number
of leaves, and leaf area of the H. vulgaris apical ramets (P <

0.05; Figures 2I–L, 3I,K,L; Tables 1C, 2C). A higher N frequency
significantly increased the leaf area in apical ramets (P < 0.05;
Figure 3L; Table 2C). However, damage to the apical ramets had
no significant effect on all growth traits (P > 0.05; Figures 2I–L,
3I–L; Tables 1C, 2C).

Based on the linear contrast analysis, under the treatment of
high N frequency at the basal ramet and apical ramet damage,
connected ramets significantly increased all the growth traits of
the H. vulgaris apical ramets (P < 0.05; Figures 2I–L, 3I–L).

Physiological Traits of the Basal Ramets of
H. vulgaris
The growth and physiological indexes of H. vulgaris had a
similar trend in all the treatments (Figures 2–5). The connection
between ramets significantly increased the total C of basal ramets
(P < 0.05; Figure 4A; Table 3A), but there was no significant
effect on the total N (P > 0.05; Figure 4B; Table 3A). However,
the high N frequency significantly increased the total C and N

of the basal ramets (P < 0.05; Figures 4A,B; Table 3A). At the
same time, damage to the ramets had no significant effect on the
total C and N ofH. vulgaris basal ramets (P> 0.05; Figures 4A,B;
Table 3A). In addition, the interactive effect between connection
and N frequency and damage, connection, and N frequency
significantly affected the total C of the H. vulgaris basal ramets
(P < 0.05; Figure 4A; Table 3A).

Based on the linear contrast analysis, under the treatment
of no N supply at the basal ramet and apical ramet damage,
connected ramets significantly increased total C and N of the
basal ramets (P < 0.05; Figures 4A,B).

Physiological Traits of the Apical Ramets
of H. vulgaris
The connection between ramets slightly increased the total C of
apical ramets (P > 0.05; Figures 4C,D; Table 3B). In addition,
the N frequency significantly increased the total C (P < 0.05;
Figure 4C; Table 3B) and decreased the total N of theH. vulgaris
apical ramets (P < 0.05; Figure 4D; Table 3B). In contrast,
damage to ramets had no significant effect on the total C and N
of the apical ramets (P > 0.05; Figures 4C,D; Table 3B).

The linear contrast analysis revealed that, under the treatment
of high N frequency at the basal ramets and apical ramet damage,
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FIGURE 5 | Effects of connection among ramets, N supply frequency, and damage on the 15N-NH+

4 uptake rate and 15N-NO−

3 uptake rate of the basal (A,B) and

apical (C,D) ramets of H. vulgaris. Considering that there is no resource transfer when there is no connection between ramets, the isotope of apical ramets was not

measured when there is no connection between ramets. Bars show the mean ± SE. The p-values with significant difference between disconnected and connected

treatments under each N frequency and damage combination (linear contrast based on ANOVA) were marked above the connected treatment. *P = 0.01–0.05. Refer

to Table 4 for ANOVAs.

connected ramets significantly increased the total C and N of the
apical ramets (P < 0.05; Figures 4C,D).

The 15N-NH+

4 and 15N-NO–
3 Uptake Rates of

the Basal and Apical Ramets of H. vulgaris
The 15N-NH+

4 and 15N-NO−

3 uptake rates of H. vulgaris had
no significant difference (Supplementary Figure 1), and the
response trend to each treatment was also consistent (Figure 5;
Table 4). The connection between ramets had no significant
effect on the 15N-NH+

4 and 15N-NO−

3 uptake rates of the basal
ramets (P > 0.05; Figures 5A,B; Table 4A). Besides, the high N
frequency significantly increased the 15N-NH+

4 and 15N-NO−

3
uptake rates of the basal ramets, while the low N frequency
had no significant effect (P < 0.05; Figures 5A,B; Table 4A).
Similarly, the damage had no significant effect on the 15N-
NH+

4 and 15N-NO−

3 uptake rates of the basal ramets (P >

0.05; Figures 5A,B; Table 4A). Moreover, the linear contrast
analysis revealed that, under a high N frequency and no damage
treatment, the connection between ramets significantly decreased
the 15N-NH+

4 and 15N-NO−

3 uptake rates of the basal ramets (P
< 0.05; Figures 5A,B). In addition, N frequency and damage had

no significant effect on 15N-NH+

4 and 15N-NO−

3 uptake rates of
the apical ramets (P > 0.05; Figures 5C,D; Table 4B).

DISCUSSION

Effects of the Clonal Integration on H.

vulgaris Traits
The connection among ramets significantly increased the
biomass, stem mass, and total C of the basal ramets as
well as the biomass, root mass, stem mass, leaf mass, stem
length, leaf number, leaf area, and total C of the apical
ramets (Figures 2–4). This implies that clonal integration
significantly promoted the growth of H. vulgaris basal and
apical ramet, with greater growth by the apical ramets. With
clonal integration, the basal and apical ramets in clonal plants
reallocate resources and reasonable division of labor that
promote the growth of apical and basal ramets (Hartnett
and Bazzaz, 1983; Roiloa and Retuerto, 2007; Zhang et al.,
2009). Moreover, with clonal integration, ramets located in a
high-resource habitat act as donor ramets, transferring some
resources to those in low-resource habitats (Song et al., 2013;
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Wang et al., 2020). Therefore, clonal integration promoted the
growth of the entire clonal fragment and basal and apical
ramets of H. vulgaris, especially promoting the apical ramets
more significantly.

Effects of the N Supply With Different
Frequencies on H. vulgaris Traits
Our results showed that the increase of N frequency promoted
the growth of the entire clonal fragment ofH. vulgaris (Figures 2,
3). N is an important nutrient to maintain plant growth
(Gutiérrez, 2012; Song et al., 2012). Moreover, under small
amounts of multiple applications of N, plants can absorb and
use more N so as to grow better (Chang et al., 2014; Wu et al.,
2019). Therefore, a higher N frequency can better promote the
growth of H. vulgaris. In addition, the increase of N frequency
significantly promoted the growth of basal ramets but had
no significant effect on the apical ramets (Figures 2–4). This
may be because the increase of N frequency increases the
resources of the basal ramet environment. Since the resources
captured by clonal ramets can be transferred between ramets
(Roiloa and Retuerto, 2007; Zhang et al., 2009), allocating more
resources to high resource ramets can make more full use of
resources and improve the performance of the whole clonal
plants (Ikegami et al., 2008; Huang et al., 2018). For example,
under heterogeneous nutrient conditions, clonal integration
generally increased biomass allocation to roots in the high
resource ramets but decreased it in the low recourse ramets
(Wang et al., 2021). Thus, the increase of N frequency only
enhanced the growth of the basal ramets and had no significant
effect on the apical ramets.

Effects of the Ramet Damage on H.

vulgaris Traits
The induction of damage on ramets had no significant effect on
theH. vulgaris growth (Figures 2–4). Most plants have the ability
to resist damage (Nguyen et al., 2016; Hakim et al., 2018; Lu
et al., 2020; Qi et al., 2020). Besides, a meta-analysis of 32 invasive
species found that invasive plants had stronger tolerance and
compensation for damage (Zhang et al., 2018). In addition, more
than one study shows that clonal plants can counter the local
adverse conditions through reasonable resource allocation and
division of labor among ramets, which also supports our results
(Schmid et al., 1988; Alpert, 1999; You et al., 2014; Lyu et al., 2016;
Liu et al., 2017a; Wang et al., 2017). Therefore, H. vulgaris, as
an invasive clonal plant, has the ability to resist a certain degree
of damage.

Effects of the N Supply With Different
Frequencies and Ramet Damage on H.

vulgaris Clonal Integration
Under the treatment of high N frequency at the basal ramet
and apical ramet damage, the connection between ramets more
significantly improved the growth of the apical and entire
clonal fragment (Figures 2–4). Most studies suggest that when
resources are heterogeneous, clonal integration is beneficial to
ramets in low-resource habitats (Friedman and Alpert, 1991;

Song et al., 2013; Wang et al., 2017; Lin et al., 2018). Through
clonal integration, the increase of available resources in the
high resource ramets increases the resource availability in the
low resource ramets and also improves the benefits of clonal
integration to low resource ramets (Lin et al., 2018). Besides, in
clonal plants, damage also stimulates the allocation of resources
to damaged ramets to maintain their growth (Schmid et al., 1988;
You et al., 2014; Lyu et al., 2016; Wang et al., 2020). Thus,
under the treatment of high N frequency at the basal ramet and
apical ramet damage, clonal integration significantly promoted
the apical ramet growth. Moreover, the surplus resources of basal
ramets are more fully utilized, and the ability of apical ramets to
resist damage is also improved (Gao et al., 2014; Liu et al., 2017a).
Therefore, clonal integration also provides more benefits to the
entire clonal fragment.

It is worth noting that the low-frequency N supply and
clonal integration had no significant impact on the apical ramet
growth (Figures 2–4). This may be because, although low N
frequency provides resources, it is limited. In previous studies,
heterogeneous environments were often designed with high
contrast, and the resources in high resource environments are
often surplus, so the effect on the ramets located in low resource
environments is significant (Guo et al., 2011; Wang et al., 2017).
However, when resources are limited, clonal plants allocate the
limited resources to ramets in the higher resource environment
to capture more resources (Ikegami et al., 2008). Therefore, low-
frequency N supply has no significant effect on the growth of
apical ramets.

In addition, we found no N supply to the basal ramets and
damage on the apical ramets, and the connection between ramets
significantly increased the basal ramet growth, increasing the
benefits of clonal integration on the basal ramets (Figures 2–4).
This may be because the damage to the apical ramets serves as a
signal that stimulates resource utilization at the basal ramets and
makes an earlier stress response (Lyu et al., 2016; Wang et al.,
2017). Another explanation is that clonal plants can enhance the
ability to compensate for damage by concentrating ramets in
less stressed patches in heterogeneous environments (Wise and
Abrahamson, 2007; Sun et al., 2010).

Moreover, as we discussed earlier, when the basal ramet
resources are limited, the resources will not be allocated to
the apical ramets (Ikegami et al., 2008). However, when the
resource availability of the basal ramets is high, some resources
will be allocated to the apical ramets, which will reduce the
benefits of clonal integration to the basal ramets (Wang et al.,
2009; Song et al., 2013; Chen et al., 2015). Therefore, the effect
of clonal integration on the basal ramets was significant only
when there was no N addition at the base and the apical
was damaged. In addition, a recent study showed that apical
ramet damage inhibits the growth of basal ramets through
clonal integration and reduces overall growth (Gao et al.,
2021). Additionally, the treatment in this study is caused by
parasitism of Cuscuta australis with a length of 15 cm (Gao
et al., 2021). It may require more nutrients for growth, which
caused greater damage to the clonal plants, exceeding the clonal
ramets’ resistance to damage, subsequently offsetting the clonal
integration benefits.
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Effects of the Clonal Integration, N Supply
Frequency, and Ramet Damage on the
15N-NH+

4 and 15N-NO–
3 Uptake Rates of H.

vulgaris
Compared with no N supply, N supply increases the 15N-
NH+

4 and 15N-NO−

3 uptake rates. N deposition increases the N
uptake rate of clonal plant Leymus chinensis, and L. chinensis
shows better advantages than Stipa grandis and Cleistogenes
squarrosa in N deposition, which are similar to the study
results by Cao et al. (2021). This suggests that the positive
response in N absorption rate following N deposition may be
an important factor supporting the diffusion and invasion of
H. vulgaris (Liu et al., 2017b; Valliere et al., 2017; Wang and
Chen, 2019). Besides, this study shows no significant difference
in N absorption rate between the low- and high-frequency N
supply, implying that the positive response in N absorption rate
following N deposition was limited. This explains why frequent
applications of small amounts of N significantly improved H.
vulgaris growth.

In addition, under the conditions of no damage and high-
frequency N supply, clonal integration significantly reduced the
15N-NH+

4 and 15N-NO−

3 uptake rates of the basal ramets and
increased the uptake rates of the apical ramets. This is because
15N-NH+

4 and 15N-NO−

3 were applied 24 h before harvest, and
the basal ramets accumulated a large amount of N in treatments
with a high-frequency N supply and no damage. Some studies
have shown that ramets growing in high resource patches usually
transfer resources to low resource ramets to maintain the growth
of low resource ramets (Guo et al., 2011; Wang et al., 2017).

A few potential limitations should be considered within the
context of this study. First, the experiment is a pot control
experiment. The response of H. vulgaris to N deposition
and ramet damage in the field may be more complex than
our research. Second, N was added to the basal ramets, and
the damage was in the apical ramets in the experiment.
In the field, the heterogeneity of N content and ramet
damage is usually random. Whether basal ramet damage
and N addition to apical ramets will significantly affect the
results is uncertain. Finally, this research mainly focuses on
the response of H. vulgaris to N deposition, and only one
degree of ramet damage treatment is designed. How H.
vulgaris responds to more severe damage is unclear. Future
studies are encouraged to design more damage levels. In
addition, the basal and apical ramets should be treated with
N addition and damage, respectively, to gain a comprehensive
understanding of the response ofH. vulgaris to N deposition and
ramet damage.

CONCLUSION

Both clonal integration and higher frequency N supply promoted
the growth of the entire clonal fragment of H. vulgaris, and
clonal integration more significantly promoted the growth
of apical ramets. However, higher frequency N supply more

significantly promoted the growth of basal ramets. Ramet
damage had no significant effect on the growth of H. vulgaris.
Besides, the heterogeneous N supply with high frequency
and ramet damage increased the clonal integration benefits
in ramets in a given environment, subsequently benefiting
the entire H. vulgaris clonal plant. Moreover, the size of
differences in heterogeneous resources affected the resource
allocation among ramets. In addition, the uptake rates of
NH+

4 and NO−

3 of H. vulgaris had no significant difference,
and N supply increased the uptake rates of NH+

4 and NO−

3
of the basal ramets. Taken together, our study increases the
understanding of the growth of invasive clonal plants and
their clonal integration in response to N deposition and
ramet damage.
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