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Tilletia laevis Kühn [synonym T. foetida (Wallr.) Liro] can lead to a wheat common bunt,
which is one of the most serious diseases affecting kernels, a serious reduction in
grain yield, and losses can reach up to 80% in favorable environments. To understand
how wheat tassels respond to T. laevis, based on an RNA-Seq technology, we
analyzed a host transcript accumulation on healthy wheat tassels and on tassels
infected by the pathogen. Our results showed that 7,767 out of 15,658 genes were
upregulated and 7,891 out of 15,658 genes were downregulated in wheat tassels.
Subsequent gene ontology (GO) showed that differentially expressed genes (DEGs)
are predominantly involved in biological processes, cellular components, and molecular
functions. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis showed that 20 pathways were expressed significantly during the infection
of wheat with T. laevis, while biosynthesis of amino acids, carbon metabolism, and
starch and sucrose metabolism pathways were more highly expressed. Our findings also
demonstrated that genes involved in defense mechanisms and myeloblastosis (MYB)
transcription factor families were mostly upregulated, and the RNA-seq results were
validated by quantitative real-time polymerase chain reaction (qRT-PCR). This is the first
report on transcriptomics analysis of wheat tassels in response to T. laevis, which will
contribute to understanding the interaction of T. laevis and wheat, and may provide
higher efficiency control strategies, including developing new methods to increase the
resistance of wheat crops to T. laevis-caused wheat common bunt.

Keywords: transcriptomic, wheat tassel, Tilletia foetida, defense response, wheat common bunt

INTRODUCTION

Common bunt of wheat, which may have been caused by Tilletia laevis Kühn (synonym T. foetida
(Wallr.) Liro), which is one of the most serious fungal diseases affecting the wheat crops globally
(Goates, 2012; Bokore et al., 2019). This disease affects wheat crop growth and production via
the infection of roots, vascular bundles of stems, leaves, tassels, and grains by replacing the
grain materials and leads to a marked decline in yield and quality (Goates and Peterson, 1999;
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Lu et al., 2005; Goates, 2012). Common bunt can be controlled
with different fungicides coated with seeds, and incorporating
resistance into cultivars is still important in many wheat
breeder programs worldwide and increases interest in production
(Matanguihan et al., 2011; Din et al., 2021). Therefore, an
extensive breeding research has been carried out to understand
the genetics of disease resistance, as well as the underlying
mechanisms by which new cultivars resistant to the pathogen
can be produced (Dumalasová and Bartoš, 2010). Additionally,
extensive and continuous use of fungicides potentially pollutes
the environment and generates resistance in pathogens (Zhu
et al., 2017). Therefore, an improved understanding of the
defense mechanisms used by wheat crops in response to common
bunt will contribute to the design of new and safer control
strategies and aid in the development of resistant cultivars.

Plants have evolved in a number of strategies to effectively
fight against pathogens, involving a series of morph-physiological
responses, including callose deposition, cell wall modifications,
hypersensitive reactions, and the production of defense-related
proteins, antimicrobial metabolites, and proteins (Cohn et al.,
2001; Muhae-Ud-Din et al., 2020a; Ren et al., 2020; Xu
et al., 2021). These morph-physiological responses are linked
with numerous pathogenesis-related genes and transcription
factors. Thus, with advancement in technology, approaches
in comparative “omics” have effectively donated to the effort
of defining gene functions and our understanding of their
expression and alterations in accumulation during plant
pathogen interactions (Mathioni et al., 2011; Zhu et al., 2017;
Ren et al., 2020). Transcriptome responses provide new insights
into the molecular mechanisms of plant resistance during the
interaction of plants and pathogens. An RNA-Seq has been
evaluated for a series of host-pathogen interactions, including
wheat and T. controversa (Ren et al., 2020), mango and Fusarium
mangiferae (Liu et al., 2016), tomato and Xanthomonas perforans
race T3 (Du et al., 2015), wheat and Puccinia striiformis f.
sp. tritici (Poretti et al., 2021), banana and F. oxysporum f.
sp. cubense (Li et al., 2013), avocado and Rosellinia necatrix
(Zumaquero et al., 2019), wheat and Heterodera avenae (Kong
et al., 2015), pea and Phytophthora pisi (Hosseini et al., 2015),
and soybean and F. oxysporum (Lanubile et al., 2015). Based on
comparative transcriptomic analysis, many mycoblastosis (MYB)
transcription factors and defense-related genes (Thilmony et al.,
2006; Mukherjee et al., 2010; Proietti et al., 2013) were found to be
involved in defense mechanisms and in primary and secondary
resistance-associated signal transduction paths of plants. For
example, defense-related genes were found to be significantly
upregulated in wheat after T. controversa inoculation (Ren et al.,
2020), phytohormone-related genes were upregulated in potato
after Ralstonia solanacearum (Zuluaga et al., 2015), and MYB
transcription factor families were upregulated in wheat after
T. controversa (Chen et al., 2021) and R. cerealis infections
(Shan et al., 2016).

Wheat crops are staple food crops in many countries
(Shewry, 2009). Although extensive research has been done
to date to analyze wheat-pathogen interactions (Zhang et al.,
2012; Haueisen et al., 2019; Ren et al., 2020), very little
literature is known about transcriptome responses between

wheat and T. laevis, which lead to wheat common bunt being
an emerging and serious fungal disease that causes dramatic
quality and quantity losses in wheat. This study is the first
global transcription analysis of wheat tassels in response to
T. laevis. to develop resistance by contributing to the control of
common bunt disease.

MATERIALS AND METHODS

Plant and Fungal Material
Healthy wheat kernels (Cultivar: Dongxuan 3) and T. laevis were
collected from the Institute of Plant Protection, Chinese Academy
of Agricultural Sciences, China. The grains were sterilized and
vernalized, and ten wheat seedlings were transplanted into every
pot. Based on morphological characterization of teliospores of
T. laevis (Supplementary Figure 1) and specific band and
sequence of SCAR marker of T. laevis (Supplementary Figure 2),
we identified the pathogen of T. laevis based on the previous
reports (Xu et al., 2020; Qin et al., 2021). Then, the identified
T. laevis was use in this study. The teliospores of T. laevis were
cultured following the methods of previously published reports
(Muhae-Ud-Din et al., 2020a). Briefly, two to three kernels were
crushed by a centrifuge machine, disinfected with 2 ml of 0.25%
NaClO and cultured at 16◦C and 60% relative humidity for
14 days in an incubator (LT-36VLC8, Percival, United States).
After 16 days of incubation, hyphal growth was checked under
an inverted microscope (IX83, Olympus, Japan). Hyphae were
collected and mixed with ddH2O and used to inoculate wheat
plants at a concentration of 106 spores/ml with an OD600 of 0.15.
One milliliter of obtained mycelium was injected into tassels,
and injection was repeated for 3 times with a 1-day interval.
The tassels injected with ddH2O were used as a control in this
study. Ten pots were used for T. laevis inoculation and for control
separately. The tassels (6 ± 5 cm in length) were detached
from T. laevis-inoculated and control plants, with three biological
replicates for every treatment.

RNA Extraction From Wheat Tassels
Wheat tassel RNA was extracted from each sample using a total
plant RNA extraction kit (Ambion, TX, United States), according
to the manufacturer’s instructions. The quality and integrity
of RNA were determined by using agarose gel electrophoresis,
while the concentration was determined through a NanoDrop
2000 (Denovix, United States), and RNA was stored at −80◦C
for further use.

Transcriptome Sequencing of Purified
RNA
The raw reads were filtered by using the high-throughput
sequencing Illumina HiSeq 4,000 platform. Clean reads were
generated by removing reads with adaptors, reads where the
number of unknown bases was more than 10%, low-quality reads
(those in which more than 50% of bases presented a quality
of ≤ 10) and poly-N (unrecognized bases). Clean reads were then
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aligned to the reference sequence1 using the software hisat2 (Kim
et al., 2015) with the parameters set by the system.

Kyoto Encyclopedia of Genes and
Genomes and Gene Ontology
Enrichment Analysis
The Kyoto Encyclopedia of Genes and Genomes (KEGG)2

pathway analysis was performed by using GPSeq, and gene

1http://plants.ensembl.org/Triticum_aestivum/Info/Index
2https://www.kegg.jp/kegg/kegg1.html

ontology (GO) enrichment analysis was performed with
FDR < 0.05, representing the significantly expressed genes
(Kanehisa et al., 2008; Young et al., 2010), NR, EggNOG database,
NT, KOG/COG (Tatusov et al., 2000), Pfam (Bateman et al.,
2002), and SWISS-Prot (Bairoch and Apweiler, 1997).

Verification of Differentially Expressed
Genes by Quantitative Real-Time PCR
First-strand cDNA was synthesized by using 1.5 µg purified RNA
by using the Trans Script One-Step gDNA Removal and cDNA
Synthesis SuperMix Kit (Beijing Quanshijin Biotechnology Co.,

TABLE 1 | Transcriptome analysis of RNA-Seq data.

Sample Raw reads Clean reads Total mapped reads Uniquely mapped Q30 GC

Control,1 49.69 M 48.59 M 42,935,380 (88.36%) 36,301,512 (74.71%) 93.75% 53.35%

Control,2 50.29 M 49.12 M 44,204,310 (89.99%) 37,732,069 (76.81%) 93.96% 52.74%

Control,3 48.64 M 47.46 M 42,391,424 (89.33%) 35,937,004 (75.73%) 93.58% 52.74%

Infected,1 51.69 M 50.69 M 24,042,553 (47.43%) 21,629,400 (42.67%) 94.63% 55.91%

Infected,2 48.75 M 47.82 M 21,748,000 (45.48%) 19,842,072 (41.49%) 94.79% 56.20%

Infected,3 51.52 M 50.30 M 40,159,626 (79.85%) 34,459,566 (68.51%) 94.50% 56.72%

Infected-1 stands for T. laevis infected-1, Infected-2 stands for T. laevis infected-2, and Infected-3 stands for T. laevis infected-3.

FIGURE 1 | Summary of differentially expressed genes (DEGs). Numbers of DEGs between the control and T. laevis infection groups.
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FIGURE 2 | Sample-to-sample clustering analysis for checking batch effects and their similarity.

FIGURE 3 | Principal component analysis (PCA) for gene expression patterns. The first and second PCAs explained 72.7 and 16.62% of the variance, respectively.
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Ltd., China) and stored at -20◦C for further use. A PerfectStart
Green qPCR SuperMix (TransGen Biotech, Beijing, China) kit
was used for quantitative real-time polymerase chain reaction
(qRT-PCR). The 20-µl reaction mixtures contained 1 µl
template, 0.4 of each primer (10 µM), 10 µl SuperMix (Beijing
Quanshijin Biotechnology Co., Ltd., China) and 8.2 µl ddH2O.
The amplification protocol was 94◦C for 30 s, followed by 40
cycles of 94◦C for 5 s, 60◦C for 30 s, and 72◦C for 30 s. All
cDNA and qRT-PCRs were carried out in triplicate. The 2−11Ct

method was used to calculate the relative expression of each
gene (Pfaffl, 2001). The primers used for validation are listed in
Supplementary Table 1.

RESULTS

Transcriptomic Analysis of RNA-Seq
Data
Based on RNA-Seq, we identified the alterations in wheat genes
when the spike was infected by T. laevis. Six cDNA libraries
(three T. laevis-infected and three control) were sequenced.
Approximately 49.69, 50.29, and 48.64 million raw reads were
produced from the control samples control-1, control-2, and

control-3, respectively, and raw reads in T. laevis samples
were 51.69, 48.75, and 51.52 million in infected samples,
respectively. Similarly, 48.59, 49.12, and 47.46 million clean
reads were produced from control samples control-1, control-
2, and control-3, respectively, and clean reads in T. laevis
samples were 50.69, 47.82, and 50.30 million in infected samples,
respectively. Total mapped reads and uniquely mapped reads of
the above-mentioned transcripts ranged from 45.48 to 89.99%
and 41.49 to 76.81%, respectively. Additionally, the Q30 and
GC of these transcripts ranged from 93.58 to 94.79% and
52.74 to 56.72%, respectively (Supplementary Table 1). Next,
the differentially expressed genes (DEGs) were recognized by
comparing the fragments per kilobase of transcript per million
mapped reads (FPKM) value of every gene between control and
T. laevis-infected samples. For control-1 DEGs, 5,402 (FPKM
≥ 10), 28,967 (FPKM 1–10), 9,525 (FPKM 0.5–1), and 64,011
(FPKM 0–0.5) genes were differentially expressed. For T. laevis-
infected DEGs, 6,732 (FPKM ≥ 10), 18,573 (FPKM 1–10),
6,006 (FPKM 0.5–1), and 76,234 (FPKM 0–0.5) genes were
differentially expressed. The DEGs of T. laevis-infected were
showed (Figure 1). In addition, the sample-to-sample cluster
analysis showed that the repeatability between each group of
sequencing samples was high, indicating that the repeatability

FIGURE 4 | Significant differentially expressed genes (DEGs) in T. laevis-infected vs. control samples. Up- or downregulated DEGs in response to T. laevis infection.
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and reliability of the transcriptome sequencing data meet the
needs of further analysis (Figure 2). Furthermore, principal
component analysis (PCA) was performed for both control-
and T. laevis-infected samples. The PCA of the samples of the
infection group and the control group found that the control
group was concentrated in the first and third quadrants, and
the infection group was concentrated mainly in the second and
fourth quadrants, indicating that there were differences and good
repeatability within each group (Figure 3).

Analysis of Differential Gene Expression
Patterns
The differentially expressed genes were recognized in T. laevis-
infected and control libraries. By comparing the tassels infected
with T. laevis and the control, 49.6% genes (7,767 genes out of
15,658 genes) were found to be upregulated and 50.4% genes

(7,891 genes out of 15,658 genes) were found to be downregulated
(Figure 4 and Supplementary Table 2). In further analysis of the
differential expression of T. laevis-infected and control samples
by using cluster expression analysis, the results showed that there
were 0.8% more downregulated genes than upregulated genes in
T. foetida plants (Figure 5).

Gene Ontology Enrichment Analysis of
Differentially Expressed Genes
The GO categories were developed to evaluate potential DEG
functions. The DEGs were classified into 48 functional categories,
including biological process (21), cellular component (13),
and molecular function (14). The results showed that in the
biological process category, GO was associated mainly with
cellular component organization, establishment of localization,
localization, metabolic process, regulation of biological process,

FIGURE 5 | Hierarchical clustering heatmap of DEGs according to changes in expression in response to T. laevis infection. Each column shows a library, and each
row shows a DEG expression. The colors blue, white, and red indicate low, medium, and high expression patterns of genes, respectively.
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response to stimulus, and single organism process. Meanwhile,
in the cellular component category, DEGs were primarily
associated with cells, cell parts, membranes, membrane parts,
and organelles. Similarly, in the molecular function category,
DEGs were associated primarily with binding, catalytic activity,
nucleic acid binding transcription factor activity, and transporter
activity (Figure 6). In addition, KEGG pathway mapping was also
carried out, and the results showed that 200 different pathways
were identified (Supplementary Table 3). Of these pathways, 20
were peroxisome, regulation of autophagy, plant hormone signal
transduction, FoxO signaling pathway, etc. (Figure 7).

Differential Expression of
Defense-Related Myeloblastosis
Transcription Factor After Tilletia laevis
Infection
Our results showed that after T. laevis infection, the expression
of pathogenesis-related (PR) genes changed. The results showed
that 6 pathogenesis-related genes, 3 thaumatin-like protein,
3 chitinase, 86 peroxidase, and 15 glucanase genes, changed
during T. laevis infection, and their expression is shown in
Supplementary Table 4. The expression of MYB transcription
factors was also changed after T. laevis infection. The results
showed that 10 of 14 and 4 of 14 MYB transcription factors were
upregulated and downregulated, respectively (Supplementary
Table 5).

Validation of RNA Sequencing Results by
Quantitative Real-Time PCR
To verify the reliability of the obtained transcriptome data, we
screened out some of the differentially expressed genes for qRT-
PCR verification. Taking the stress resistance of tassels infected
by T. laevis as the screening standard, 9 differential genes
were selected for quantitative verification. The expression trends
in the qRT-PCR results validated the transcription sequencing
results, which indicated a high degree of reproducibility
between transcript abundances assayed using RNA-Seq and the
expression profiles revealed by qRT-PCR data (Figure 8 and
Supplementary Table 6).

DISCUSSION

Common bunt is one of the most serious diseases of wheat caused
by T. laevis, and common grains are partly or totally replaced by
fugus gulls, leading to 80% of wheat yield loss. To date, due to
a lack of information on interactions between wheat tassels and
T. laevis at the transcript level, therefore, it is essential to explore
plant-pathogen interactions in the reproductive organs (tassels)
of wheat. To determine plant responses to abiotic and biotic
stresses, a large-scale gene expression analysis was performed
(Desmond et al., 2008). Gene expression levels upon infection
by pathogens have been broadly investigated in various crops
using RNA-Seq, such as in wheat crops against T. controversa

FIGURE 6 | Gene ontology (GO) enrichment analysis of significant DEGs of T. laevis-infected and control samples. Annotations are grouped by biological process,
cellular component, and molecular function.
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FIGURE 7 | KEGG enrichment analysis scatter plot representing pathways of DEGs in response to T. laevis infection. The colors blue, white and red indicate low,
medium, and high expression patterns of genes, respectively.

(Ren et al., 2020), F. graminearum (Erayman et al., 2015) and
obligate pathogens (Poretti et al., 2021). In this study, based on
RNA-Seq, we used the highly susceptible cultivar “Dongxuan 3”
with T. laevis to analyze the response of the gene expression levels
in fungal infected plants. Our findings showed that a different set
of defense genes was differentially and specifically expressed and
that a series of signaling molecules in wheat tassels were triggered
by T. laevis.

Pathogenesis-related genes have key roles in the plant
defense system against fungal pathogen infection (Sels et al.,
2008). Based on the literature, thaumatin, chitinase, peroxidase,
glucanase, and PR-10 enhance resistance to T. controversa and
F. pseudograminearum in wheat (Desmond et al., 2008; Muhae-
Ud-Din et al., 2020b; Chen et al., 2021), and Ustilaginoidea
virens in rice (Han et al., 2015). Consistent with our findings,
PR genes in wheat have been induced by T. controversa
(Ren et al., 2020). We compared the transcript levels between
T. laevis-inoculated and control plants in the tassels. The

expression of 113 defense-related genes was changed after
T. laevis inoculation (Supplementary Table 5), including 6
PRs, 3 thaumatin, 3 chitinase, 86 peroxidase, and 15 glucanase.
Myeloblastosis (MYB) transcription factors form one of the
largest protein superfamilies in plants and are involved in
diverse biological processes, including cell wall biosynthesis,
cell cycle regulation, reproduction and development, and play
a significant role in controlling the transcription of defense-
related genes (Millar and Gubler, 2005; Dubos et al., 2010;
Zhang et al., 2015; Shan et al., 2016). For example, the R2R3-MYB
transcription factor has increased the resistance in Arabidopsis
against Alternaria brassicicola and Botrytis cinerea and was also
involved in the tolerance of oxidative and osmotic stresses
(Mengiste et al., 2003). The HvMYB6 improves the immunity
level in barley against Blumeria graminis (Chang et al., 2013).
Overexpression of the MYB gene TaPIMP1 induced a resistance
in wheat against Bipolaris sorokiniana (Zhang et al., 2012). Our
results were consistent with the above studies and showed that 14
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FIGURE 8 | Validation of RNA-Seq data by quantitative real-time PCR (qRT-PCR).

MYB transcription factors were altered after T. laevis inoculation:
10 were upregulated and 4 were downregulated (Supplementary
Table 5). The above changes in the transcription levels of
different gene families might play a role in disease suppression
against T. laevis.

Upon plant pathogen infection, plant defense responses
contain transcriptional regulation of a large number of plant
host genes. An RNA-Seq profiling suggests that plants activate
different sets of defense-related genes to overcome severity
of the disease in various crops (Conrath, 2011; Ren et al.,
2020). Some defense-related proteins, such as thaumatin, PR
proteins, chitinase, peroxidase, and glucanase, are capable of
destroying the cell wall components of fungal pathogens and
boosting the defense response of plants (Chen and Chen, 2002).
In Tilletia species-infected wheat crops, the genes encoding
chitinase, lipase, PR1.1, PR1.2, defensins and PR-10 were
previously reported to be highly expressed in fungi-infected
plants compared to control plants at different time intervals
(Muhae-Ud-Din et al., 2020a). Desmond et al. (2008) reported
that the expression of PR-1, β-1,3-glucanase, thaumatin-like
proteins, and PR-10 was induced significantly in wheat crops
after F. pseudograminearum infection. Similarly, the expression
of peroxidase involved in reactive oxygen species (ROS) was
induced after F. pseudograminearum infection (Kawano, 2003;
Desmond et al., 2008). Transcription factors play roles in
activating primary response genes after pathogen infection
(Herschman, 1991; Li et al., 2016). Therefore, transcriptional
regulation of plant genes is a part of the plant defense
mechanism and plays an important role in inducing plant disease

resistance (Chen and Chen, 2002). Similarly, in plant–pathogen
interactions, pathogens take nutrients from plants, and plant cells
try to stop nutrient movements by altering carbon metabolism
and transport (Chen et al., 2011; Kretschmer et al., 2017; Kanwar
and Jha, 2019). Some genes regulated the phytosynthetic activity
repressed by affecting the photosynthetic activity (Rolfe and
Scholes, 2010; Windram et al., 2012; Smith et al., 2014). In
the present study, the transcription levels of 113 defense-related
genes were changed after the T. laevis infection, including 6 PR
genes, 3 thaumatin-like proteins, 3 chitinases, 86 peroxidases, and
15 glucanases (Supplementary Table 4). The 44 PRS genes were
upregulated, and 69 PRs were downregulated. The above changes
in the transcription levels of different gene families might play a
role in the suppression of disease against T. laevis.

The GO enrichment analysis revealed that in the “biological
process” category, cellular process, metabolic process, and single-
organism process; in the “cellular component” category, cell, cell
part, membrane, and membrane part; and in the “molecular
function” category, binding and catalytic activity had the
highest number of DEGs during plant pathogen interactions
(Figure 6). These results indicated that the pathogens mobilized
the primary and secondary metabolisms and finally regulated
the expression of related genes through signal transduction
and ion transport, which clearly induced the immune defense
responses and may have a role in disease suppression. After
pathogen infection, plants spend more energy in signaling
and transportation processes to defend themselves than morph
physiological and reproductive processes (Siemens et al., 2006;
Berger et al., 2007). Furthermore, KEGG pathway analysis
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showed that most DEGs were characterized by biosynthesis
of amino acids, carbon metabolism, and starch and
sucrose metabolism (Figure 7). Amino acids have key
roles in plant species, such as nitrogen sources, stress-
reducing agents, hormone precursors (Zhao, 2010; Maeda
and Dudareva, 2012) and as signaling factors of various
physiological processes in plant species (Teixeira et al.,
2018). Sucrose is an important element of assimilated
carbon, which is a by-product during photosynthesis
and then transported from source to sink tissues
via the vascular system (Tauzin and Giardina, 2014).
Overall, our findings showed that defense-related genes,
including PR genes and MYB transcription, were mostly
upregulated after T. laevis infection, suggesting that
these gene families play important roles in common
bunt resistance in wheat and may contribute to the
control of wheat common bunt by regulating the over-
expression defense genes.
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