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Carbon partitioning in plants may be viewed as a dynamic process composed of the

many interactions between sources and sinks. The accumulation and distribution of fixed

carbon is not dictated simply by the sink strength and number but is dependent upon

the source, pathways, and interactions of the system. As such, the study of carbon

partitioning through perturbations to the system or through focus on individual traits

may fail to produce actionable developments or a comprehensive understanding of the

mechanisms underlying this complex process. Using the recently published sorghum

carbon-partitioning panel, we collected both macroscale phenotypic characteristics

such as plant height, above-ground biomass, and dry weight along with microscale

compositional traits to deconvolute the carbon-partitioning pathways in this multipurpose

crop. Multivariate analyses of traits resulted in the identification of numerous loci

associated with several distinct carbon-partitioning traits, which putatively regulate

sugar content, manganese homeostasis, and nitrate transportation. Using a multivariate

adaptive shrinkage approach, we identified several loci associated with multiple traits

suggesting that pleiotropic and/or interactive effects may positively influence multiple

carbon-partitioning traits, or these overlaps may represent molecular switches mediating

basal carbon allocating or partitioning networks. Conversely, we also identify a carbon

tradeoff where reduced lignin content is associated with increased sugar content. The

results presented here support previous studies demonstrating the convoluted nature

of carbon partitioning in sorghum and emphasize the importance of taking a holistic

approach to the study of carbon partitioning by utilizing multiscale phenotypes.

Keywords: carbon partitioning, linear mixed models, Nested Association Mapping, pleiotropy, source, sink

1. INTRODUCTION

The integration of multi-scale phenotypes and appropriate mathematical models can assist in
the identification of cross-scale interactions leading to emergent properties of dynamic biological
systems (Fischer, 2008; Benes et al., 2020). Indeed, a holistic understanding of complex systems
such as plant above-ground biomass and carbon partitioning requires multiscale phenotypes to
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address changes in anatomical and physiological processes
dictated by underlying genetic networks (Eberius and Lima-
Guerra, 2009). The responsiveness of plant carbon-partitioning
regimes to environmental conditions such as those induced by
a changing climate can significantly affect crop yields and food
security thus requiring attention both regionally (Chipanshi et al.,
2003; Knox et al., 2012; Meki et al., 2013; Druille et al., 2020)
and systemically—particularly under conditions of elevated CO2,
heat, drought, and other severe-weather events (Michener et al.,
1997; Ottman et al., 2001; Pennisi, 2009; Yan et al., 2011). Crops
in the Andropogoneae tribe such as maize [Zea mays (L.)],
miscanthus [Miscanthus x Giganteus (Greef et Deuter)], sorghum
[Sorghum bicolor (L.) Moench], and sugar cane [Saccharum
officinarum (L.)] have been the focus of continued development
to serve as staple and/or energy crops under extreme weather
conditions (Lobell and Field, 2007; Kakani et al., 2011; Zegada-
Lizarazu et al., 2012; van der Weijde et al., 2013; Fischer et al.,
2016) and limit ongoing carbon emissions from fossil fuel use
(Heaton et al., 2008; David and Ragauskas, 2010; Brosse et al.,
2012; Monti, 2012; Olson et al., 2012; Mullet et al., 2014).
These grasses exhibit highly efficient C4 photosynthetic pathways
(Carpita and McCann, 2008; Prasad et al., 2009), leaf-level
nitrogen-use efficiency (Gardner et al., 1994; Byrt et al., 2011),
water-use efficiency (Kakani et al., 2011; Zegada-Lizarazu et al.,
2012; Bhattarai et al., 2019), and high yields (Rooney et al., 2007;
Byrt et al., 2011).

Sorghum, in particular, is capable of rapidly accumulating
significant quantities of carbon and has been designated as
an advanced biofuel feedstock by the U.S. Department of
Energy. The Code of Federal Regulations (7 C. F. R. §4288.102)
states that advanced biofuels may be derived from biomass
in the form of cellulose, hemicellulose, or lignin as well as
from sugar or starch (Boatwright et al., 2021). Sorghum meets
these conditions as it exhibits great diversity in these carbon-
partitioning regimes (Morris et al., 2013), and the sorghum
types are further classified based on these traits as cellulosic,
forage, grain, or sweet (Boatwright et al., 2021). Sorghum not
only meets the requirements as an advanced biofuel feedstock
but is capable of rapidly accumulating significant quantities
of non-structural (Calviño and Messing, 2012) and structural
carbohydrates (Zhao et al., 2009; Mullet et al., 2014; Brenton
et al., 2016) necessary for biofuel (Rooney et al., 2007), forage
(McCormick et al., 2018), and grain production (Peng et al.,
1991). As such, sorghum represents an excellent system for the
study of carbon accumulation and partitioning as well as the
development of climate-resilient sources of biofuel and calories
(Boatwright et al., 2021).

Sucrose is the primary source of energy and carbon in plant
sink tissues (Qazi et al., 2012) as well as the primary target for
ethanol-based, renewable biofuel production (Rooney et al., 2007;
Brenton et al., 2020). Synthesis of sucrose occurs in the leaf
cytosol after which it is transported to various sinks including
both storage sinks (i.e., stems) in addition to structural vegetative
and reproductive organs, which function as growth sinks (Milne
et al., 2013; Cooper et al., 2019; Brenton et al., 2020). However,
changes in the quantities of structural and non-structural
carbohydrates do not occur in a one-to-one manner nor are

they independent (Vietor and Miller, 1990; Billings, 2015).
Reduced shoot biomass associated with dw3 has been shown
to decrease grain yield via reduced grain size (George-Jaeggli
et al., 2011), and differences in carbon partitioning in the stem
contribute to tradeoffs between structural and non-structural
carbohydrate content (Calviño and Messing, 2012). Carbon
partitioning is also subject to environmental conditions such as
those that transition plants between growth and reproductive
phases as seen under drought conditions (Kakani et al., 2011).
A comprehensive examination of the carbon partitioning sinks is
necessary to understand the correlations and tradeoffs between
these traits in the form of macroscale phenotyping of traits, such
as above-ground biomass and plant height, to the microscale
assessment of compositional traits using tools such as near
infrared spectroscopy (NIR) (Murray et al., 2008; Brenton et al.,
2016, 2020).

The sorghum Carbon-Partitioning Nested Association
Mapping (CP-NAM) panel (Boatwright et al., 2021) contains 11
subpopulations generated using diverse parental accessions from
the sorghum Bioenergy Association Panel (BAP) (Brenton et al.,
2016) and the recurrent parent, Grassl—an accession capable of
accumulating significant biomass and fermentable carbohydrates
per unit time and area (Kresovich et al., 1988). NAM populations
contain sets of RIL families generated from the diverse founders,
and as such, benefit from recombination of the founder
genotypes, high allele richness, higher statistical power, and are
less sensitive to genetic heterogeneity (Yu and Buckler, 2006;
Boatwright et al., 2021). As the CP-NAM covers the diversity of
sorghum types and carbon-partitioning regimes, it represents
an excellent source of genotypic and phenotypic diversity to
elucidate the genetic architecture underlying carbon fixation,
translocation, and utilization so that source/sink dynamics
and compositional traits may be understood holistically while
simultaneously meeting the demands dictated by a changing
environment (Boatwright et al., 2021). Here, we employ
quantitative trait locus (QTL) mapping, univariate linear-mixed
models (LMMs), and multivariate-response linear-mixed models
(MV-LMMs) to identify loci associated with the primary carbon
sinks represented by structural and non-structural carbohydrate
content in sorghum. Associated loci are then further examined
for pleiotropic and interactive effects across these sink-dependent
traits as a means of addressing the genetic interplay across the
different carbon-partitioning accessions. Using publicly available
genomic resources from the sorghum CP-NAM (Boatwright
et al., 2021), we identify numerous putative loci involved in
carbon partitioning, both known and novel, as well as the
extent of pleiotropic effects across these traits. Identification of
such hub genes responsible for increased carbon assimilation
and partitioning lay the foundation for future network-based
approaches to build optimized carbon pathways.

2. MATERIALS AND METHODS

2.1. Plant Materials and Phenotyping
CP-NAM seeds were accessed from the Clemson University
sorghum germplasm collection and planted at the Simpson
Research Farm (34.64737384683981, -82.74780269784793),

Frontiers in Plant Science | www.frontiersin.org 2 May 2022 | Volume 13 | Article 790005

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Boatwright et al. Sorghum Multiscale Carbon Partitioning

South Carolina in May of 2020. While the original CP-NAM
panel contained 2,489 accessions, a subset of 110 individuals
were selected from each RIL family using the Partitioning
Around Medoids (PAM) function in the R package cluster
(Schubert and Rousseeuw, 2019) to reduce the field size and
manual labor necessary to manage the CP-NAM field while
representing most of the genetic diversity within the RIL
populations (Guo et al., 2010). A total of 110 sample clusters
were identified based on the genomic data from each RIL family
with a medoid sample centrally located in each cluster, visualized
here using multidimensional scaling (Figure 1). The medoid is
the individual within each cluster that best represents the genetic
diversity of that sample cluster. The 110 accessions representing
the medoids for each population were selected as representatives
of each cluster, resulting in 1,210 accessions across the CP-NAM,
and planted for phenotyping in 2020.

The NAM RILs were planted in single-row plots that were
3.04 m in length with 0.762 m between-row spacing in a
randomized complete block design with two replicates per line.
Randomization was done within blocks containing RILs from
a given family, and families were planted together to avoid
large field effects within families. Plants were irrigated on an
as-needed basis but did not occur past 90 days after planting
due to plants exceeding the irrigation pivot height. Harvesting
started September 14th and continued through October 19th.
Due to the range in harvesting days, the maturity stage and days

FIGURE 1 | A multidimensional scaling plot using the genotypic data of

PI229841 RIL accessions where the 110 medoid samples are colored red and

the remaining samples are black. The x-axis represents the first principal

component of the genotypic data, and the y-axis represents the second

principal component, with variance explained by each component in

parentheses. The proximity of accessions to each other indicates the

approximate degree of similarity—with shorter distances indicating higher

similarity. The MDS distribution represents a two-dimensional projection of the

genetic diversity used for clustering.

to harvest were recorded for each plot to use as covariates for
phenotypic and genomic analysis to avoid the confounding effect
of varying maturity groups across the RIL families. Phenotypes
collected included above-ground biomass, stand count, maturity
at harvest, days to harvest (DTH), plant height, and dry and
wet weights. Stand count was measured as the total number of
emerged seedlings between 15 and 30 days after planting. Plant
height was measured at harvest from the base of the stalk to the
apex of the panicle, or, if no panicle was present, to the apex of
the shoot apical meristem.

A representative meter was selected for each plot, and all
plants were cut at the base within that meter and weighed
(in kilograms). To remove the confounding effects of tillering
on a per area basis, three representative plants were selected
for subsequent phenotyping including above-ground biomass
(including panicles and leaves), wet weight, and dry weight,
where biomass represents a per area measure of above-ground
plant weight, i.e., scaled meter weight. Based on planting density,
this represents approximately 0.5 m of row length. Any panicles
or partially formed panicles were removed along with all leaf
matter before collecting wet weight. The stalks were then cut
into billets for collection into mesh drying bags and placed into
drying bins at 40◦C until stalks were dried to a constant moisture
content. Dried stalks were removed from the drying bins, and dry
weights were taken. Stalks were then ground with a Retsch SM
300 cutting mill so that compositional traits could be measured
using a PerkinElmer DA7250TM NIR instrument (https://www.
perkinelmer.com), which uses calibration curves for spectral
measurements built using wet chemistry values generated by
Dairyland Laboratories, Inc. (Arcadia, WI, USA) as described in
Brenton et al. (2016). These wet chemistry values were generated
on accessions from the BAP grown in South Carolina from which
the founders of this population were selected. Wet chemistry
estimates were strongly associated with NIR estimates for the
compositional traits examined here (Supplementary Table 1).
Compositional traits include acid detergent fiber (ADF), adjusted
crude protein (Adj. CP), neutral detergent fiber (NDF), ash-free
NDF (aNDFom), ash, calcium, chloride, dietary cation-anion
difference (DCAD), dry matter, potassium, lignin, magnesium,
moisture, net energy growth (NEG), net energy lactation (NEL),
relative feed value (RFV), non-fiber carbohydrates (NFC), and
water-soluble carbohydrates (WSC) where all traits are expressed
as a percent of dry matter. NEG, NEL, NEM, and TDN were also
estimated using an Ohio Agricultural Research & Development
Center (OARDC) summative energy equation and may appear
conjugated with the OARDC abbreviation (Figure 2).

2.2. Descriptive Statistics and QTL
Mapping
The repeatability was estimated for all traits using the package
heritability in the R programming language (R Core Team, 2019;
Kruijer et al., 2015). The best linear unbiased predictors (BLUPs)
were calculated for each trait with the R package lme4 (Bates et al.,
2015) using the lmer function with genotype as random effects.
The resulting BLUPs were used as adjusted phenotypic values for
all mapping and association analyses. Heatmaps and correlation
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FIGURE 2 | Diagram of the relationship among several compositional traits collected via NIR. NDF, neutral detergent fiber; ADF, acid detergent fiber; ADL, acid

detergent lignin; WSC, water-soluble carbohydrates. The Van Soest method permits the distinction of soluble cell contents from the less digestible cellular

components such as lignin, cellulose, and hemicellulose. Figure adapted from Viel et al. (2019).

metrics were measured using the seaborn (Waskom, 2021) and
pandas (McKinney, 2010) packages in CPython (Van Rossum and
Drake, 2009), respectively.

Genotypic data from Boatwright et al. (2021) were used to
perform QTL mapping and genome-wide association studies
(GWAS). In summary, Genotype-By-Sequencing (GBS) data
were generated using a double-digest approach (PstI and MspI),
processed using the Tassel GBS version 2 pipeline (Glaubitz et al.,
2014), and imputed using Beagle 5.1 (Browning et al., 2018) as
described in Boatwright et al. (2021). The complete CP-NAM
contains 144,087 SNPs across 11 RIL families. Given sorghum’s
730 Mb genome, this corresponds to a density of approximately
one variant per 5 kb. The linkage disequilibrium was shown
to decay to 0.2 around 100 kb, indicating that these GBS data
should capture the majority of independent haploblocks in
this population (Boatwright et al., 2021). Genetic maps were
constructed in Boatwright et al. (2021) for each RIL family with
Haldane’s mapping function (Kosambi, 2016) and a genotyping
error rate of 0.0001, where the conditional probabilities of the
true genotypes were estimated using a hidden Markov model.
Here, we performed QTL mapping for each RIL family using
the qtl2 package (Broman et al., 2019) in R, and genomic scans
were performed using Haley-Knott regression (Haley and Knott,
1992) and linear mixed model approaches (Broman et al., 2019)
including both full and leave-one-chromosome-out models. All
models included maturity and DTH as covariates except for
DTH. QTL effects were estimated as 100 × (1 − 10(−2×LOD)/n),
where n is the number of individuals in the corresponding
mapping population (Broman and Sen, 2009). However, we
recognize that estimates for PVE with these population sizes may
exhibit inflated values due to the Beavis effect (King and Long,
2017).

2.3. Genome-Wide Association
GWAS were done using both the Genome-wide Efficient
Mixed Model Association (GEMMA) program version 0.98.3

(Zhou and Stephens, 2014) and the Genome Association and
Prediction Integrated Tool (GAPIT) version 3 (Lipka et al., 2012;
Wang and Zhang, 2021). We specifically used GEMMA for both
MV-LMMs and Bayesian Sparse Linear Mixed Models (BSLMM)
(Zhou et al., 2013) while GAPIT was used for BLINK (Huang
et al., 2019) and LMMs. The phenotypic and genotypic data were
converted to Plink format using Plink [v1.90b6.10] (Purcell et al.,
2007). The genomic relatedness matrix was calculated using the
VanRaden algorithm (VanRaden, 2008) and all models were run
using a MAF filter of 0.01 for all 1,210 CP-NAM accessions.
Univariate LMMs are of the following the form,

y = Xβ + Zu+ ǫ;

u ∼ N(0,G) and ǫ ∼ N(0,R),

where y is a vector of phenotypic values for a single trait,
X is the numeric genotype matrix generated from the SNPs, β

represents the unknown vector of fixed effects representing the
effect size for each SNPs, Z is the design matrix for random
effects, u is the unknown vector of random effects, and ǫ is the
unknown vector of residuals. These univariate models test the
alternative hypothesis H1: β 6= 0 against the null hypothesis H0:
β = 0 for each SNP.

In addition to the frequentist univariate model described
above which estimates fixed effect coefficients by selecting
the optimal value minimizing the least-squared error—the
equivalent of a flat prior, we ran a BSLMM which assumes
fixed effects are distributed according to the sparse prior, β ∼

πN(0, σ2aτ − 1) + (1 − π)δ0 (Zhou et al., 2013). Runs were
executed using 20e6 sampling steps with a burn-in of 5e6, and
the posterior inclusion probability (PIP) threshold established as
0.036 based upon a 99.95% quantile from simulated data sets
across quantiles to determine the empirical significance cutoff
(Sapkota et al., 2020). While more computationally intensive due
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to the Markov Chain Monte Carlo sampling approach involved,
this model provides shrinkage of β estimates to control for
type I errors and provides a posterior distribution of plausible
values rather than simple point estimates. Additionally, we also
conducted univariate analyses using BLINK (Huang et al., 2019).
BLINK approximates the maximum likelihood approach used by
LMMs, instead using Bayesian Information Criteria in a fixed
effect model where each SNP is iteratively associated with the
phenotype of interest. Markers in linkage disequilibrium (LD)
with the most significant marker are then excluded—as estimated
using a Pearson correlation coefficient ≥ 0.7. For subsequent
markers, the next most significant SNP is selected, and the
exclusion process is conducted in the same way until no markers
can be excluded. Unlike SUPER and FarmCPU methods, BLINK
does not assume that causal genes are evenly distributed across
the genome and is faster with higher statistical power—due to its
multi-locus approach—and lower type I error rates (Huang et al.,
2019).

For MV-LMMs, we used GEMMAmodels of the form:

Y = Xβ + ZU+ E;

U ∼ MVNn×d(0,K,Vg) and E ∼ MVNn×d(0, In×n,Ve),

where Y is an n by d matrix of d phenotypes for n individuals,
X is the numeric genotype matrix generated from the SNPs, β

is a d vector of fixed effects representing the effect size for the d
phenotypes, Z is the design matrix for random effects, U is the n
by d matrix of random effects, E is the n by d matrix of residuals,
K is a known n by n relatedness matrix, Vg is a d by d symmetric
matrix of genetic variance components, In×n is an n by n identity
matrix, and Ve is a d by d symmetric matrix of environmental
variance components. As the maturity of accessions significantly
affects all phenotypes, maturity and DTH were used as covariates
in all QTL mapping and GWAS models except for DTH.

2.4. Pleiotropic and Epistatic Tests
The estimated effect sizes and standard errors for every marker in
the LMMs for ADF, ash, dry matter, dry weight, height, NDF, P,
wet weight, and WSC were filtered using a local false sign rate
< 0.1 based on a condition-by-condition analysis using ashr
in R (Stephens, 2017). A control set of estimated effects and
standard errors were also randomly selected for 40,000 markers
to estimate the covariance between SNPs for each phenotype.
A correlation matrix of the random control set was estimated
and used to control for the confounding effects of correlated
variation among the traits using mashr in R (Urbut et al., 2019).
We utilized both canonical and data-driven cvariance matrices
following mashr best practices to test for pleiotropy across traits
(Urbut et al., 2019). The posterior probabilities were calculated
for each SNP by fitting a mash model with all tests. Bayes
factors were extracted and plotted from mash results using the
CDBNgenomics R package (MacQueen et al., 2020). Variants
exhibiting Bayes Factors greater than 10 were considered as
demonstrating significant pleiotropic effects.

Using PLINK v1.90b6.10, we performed tests for epistasis
using loci exhibiting pleiotropic effects as described above.
PLINK uses a linear regression in the form of:

Y ∼ β0 + Aβ1 + Bβ2 + ABβ3 + ǫ,

where Y is the matrix of phenotypes across the 1,210
accessions, and A and B represent the allele dosages of SNPs
A and B, respectively. The coefficients β0−3 represent the
mean, estimated effects of SNP A, SNP B, or their interaction,
respectively, while ǫ represents the residual deviations. Pairwise
tests for interaction are based on the coefficients estimated for
β3. Significant loci were filtering using a Chi-square statistic
> 80, which is slightly more stringent filtering than Bonferroni
correction for these data. Both the Bayes Factors from the
pleiotropic analysis and the epistatic results were plotted using
Circos v0.69-8 (Schoelz et al., 2021).

3. RESULTS

3.1. Trait Heritabilities and Correlations
Heritability is the proportion of phenotypic variance attributable
to genetic variance, and when differences between genotypes
is assumed to derive entirely from genetic effects, the
measurement of consistent individual differences is called
repeatability (Kruijer et al., 2015). As such, repeatability
includes genetic and environmental sources of variation,
thereby providing an upper bound for broad-sense heritability.
We calculated the repeatability for all traits and identified
many traits with repeatability greater than 0.2 (Table 1 and
Supplementary Tables 2, 3) with maturity and DTH exhibiting
the highest repeatabilities (> 0.75). Agronomic phenotypes
exhibited higher repeatability compared to compositional traits
with all agronomic traits exceeding 0.5 repeatability. Agronomic
traits also demonstrated relatively low correlation among the
traits except for biomass, wet weight, and dry weight which were
all highly correlated (≥ 0.67) (Figure 3). These measures for
repeatability and correlation among traits are consistent with
previous estimates in sorghum (Brenton et al., 2016).

Many compositional traits exhibited strong correlation (>
|0.5|) (Figure 4), which is expected due to the aggregate nature
of some traits and their dependency on maturity (Figure 2).
Importantly, while many of the fiber-based compositional traits
exhibited strong repeatability, only six compositional traits of 34
had Pearson’s correlation coefficients> |0.3|with dry weight and
none had values exceeding |0.5|. The lack of strong correlation
between compositional traits and dry weight suggests that
sorghum composition could be improved without significantly
affecting total vegetative yield (Murray et al., 2008; Brenton et al.,
2016).

3.2. Mapping and Associations
3.2.1. Agronomic Traits
As the CP-NAM is composed of 11 RIL families, it provides
the opportunity to resolve genotype-to-phenotype associations
through both QTL mapping and GWAS. To this end, QTL
mapping was performed using 110 accessions for each RIL
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TABLE 1 | Repeatability for agronomic (top portion of table) and compositional

(bottom portion) traits.

Trait Repeatability

Maturity 0.81

Plant height 0.53

Wet weight 0.52

Dry weight 0.55

Biomass 0.52

DTH 0.76

ADF 0.65

Adj. CP 0.38

aNDFom 0.61

Crude protein 0.35

Dry Matter 0.36

Lignin 0.45

NDF 0.55

NEG (OARDC) 0.59

WSC 0.47

TDN (ADF) 0.62

Agronomic traits include maturity at harvest, plant height, wet weight, dry weight, above-

ground biomass, and days to harvest. Compositional traits include acid detergent fiber

(ADF), adjusted crude protein (Adj. CP), ash-free neutral detergent fiber (aNDFom), crude

protein, dry matter, lignin, neutral detergent fiber (NDF), net energy growth (NEG), total

digestible nutrients (TDN) as a percentage of ADF, and water-soluble carbohydrates

(WSC). NEG was estimated using an Ohio Agricultural Research & Development Center

(OARDC) summative energy equation.

family in the CP-NAM for every trait using maturity and
DTH as covariates except when DTH is the response variable.
We identified 59 QTL across the 11 RIL families for the
agronomic traits (Supplementary Table 4). Several known
QTL were identified for plant height on chromosomes (Chr) 6
[qHT7.1/Dw2], Chr7 [Dw3], and Chr9 [Dw1] aggregated by RIL
families derived from grain, cellulosic, sweet, and forage parents
(Figure 5 and Supplementary Tables 4, 5) along with several
potentially novel associations on Chr1 and Chr8. The newly
identified QTL on Chr1 spanned from 10 to 12 Mb (13.2 PVE)
and from 22 to 56.7 Mb (14.5 PVE) (Supplementary Table 4).
The QTL from the latter position also had a significant
genome-wide association for height using the BLINK model
with a peak at Chr1:50,888,855 (Supplementary Figure 1 and
Supplementary Table 6). Another novel QTL was identified
for height on Chr8 from approximately 0.37 to 2.7 Mb
(Supplementary Table 4) using a leave-one-chromosome-
out method (Figure 5C and Supplementary Figure 2). A
significant genome-wide association for height was found
for the SNP at Chr8:2,033,695 using the BSLMM model
(Supplementary Figure 3), and the associated region is within
previously identified QTL for transpiration rate and efficiency of
energy of PSII (Ortiz et al., 2017).

Sorghum has over 40 identified flowering time and maturity
QTL (Mace et al., 2013). QTL mapping results for DTH in
PI506069 RILs identified a locus on Chr4 (11.8 PVE) from
70 to 113 cM that peaked at 79 cM (Figure 5B). This QTL
colocalizes with the flowering time gene CN2 (Marla et al., 2019),

which is a centroradialis-like gene homologous to Terminal
Flower1 (TFL1). An additional 11 loci were identified using
BLINK including Ma3/Ma5 [Chr1], SbCN12 [Chr3], and
Ma1 [Chr6] (Yang et al., 2014) along with several other
unidentified loci (Supplementary Figure 4). The identified loci
include phytochromes and other flowering time modulators
that mediate photoperiod sensitivity in these non-temperately
adapted accessions.

3.2.2. Biomass Traits
In addition to height and DTH phenotypes, various measures
of biomass yield were taken including wet weight, dry
weight, and above-ground biomass (abbreviated as biomass).
These biomass traits were often associated with the same
QTL—particularly the QTL on Chr6 and Chr7 (Figure 5),
but significant associations from GWAS were more variable
(Figure 6 and Supplementary Table 5). The QTL on Chr3 (12.7
PVE) identified using wet weight spans from approximately 1–
6 Mb in the sweet x cellulosic RILs of PI586454 (Figure 5C)
and coincides with QTL associated with stem circumference
and transpiration rate (Zhao et al., 2016; Ortiz et al., 2017).
GWAS of wet weight also identified an association on Chr3
at approximately 62 Mb (Figure 6D), which colocalizes with
numerous trait associations including plant height (Bouchet
et al., 2017), stem circumference (Zhao et al., 2016), and days
to flowering (Kong et al., 2018). However, the gene(s) mediating
these phenotypes is unclear. Dry weight and wet weight were
associated with several QTL on Chr6 (Figures 5A,D) that were
also captured through GWAS (Figure 6) and ranged from 1
to 5 Mb and 49 to 51 Mb, respectively. The QTL spanning
1 to 5 Mb corresponds to the known maturity locus, Ma6
(Murphy et al., 2014). These phenotypes also captured the height
loci Dw2, which encodes a protein kinase that regulates stem
internode length (Hilley et al., 2017), and Dw3, which encode a
P-glycoprotein auxin transporter and only affects plant height
below the flag leaf (Li et al., 2015). As auxin stimulates the
production of hemicellulose and consequently stem elongation,
the association is consistent with the known identity of the locus
(Li et al., 2015).

The forage RIL family, CP-NAM PI655972, was uniquely
suited for identifying a QTL (14.3 PVE) controlling biomass
content on chromosome 5 (Figure 5D). The biomass QTL
also overlapped a QTL for adjusted crude protein content
(Supplementary Table 4). Ritter et al. (2008) identified a sucrose
content QTL that falls completely within the biomass QTL and
partially overlaps the adjusted crude protein QTL seen here
(Ritter et al., 2008). Given the large range of the QTL or even the
overlapping region, it is difficult to pin down what gene(s) may
be responsible for these associations. In addition to this unique
locus, biomass was associated with the same loci on Chr6 and
Chr7 as height, wet weight, and dry weight (Figure 6).

3.2.3. Compositional Traits
QTL mapping was also performed for all compositional traits,
and select traits were plotted for all RIL families (Figure 7).
As described in the methods, NIR and wet chemistry estimates
of these compositional traits demonstrated strong correlations
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FIGURE 3 | Heatmap of Pearson’s correlation coefficients among agronomic phenotypes. Biomass represents a scaled meter weight, and DTH is days to harvest.

across a highly diverse panel from which the founders were
derived. We identified 522 QTL across 34 compositional traits
and the 11 RIL families (Supplementary Table 7). Several
overlapping QTLwere identified across traits within RIL families,
and the various sorghum RIL families/types captured different
QTL for the same traits. The most significant QTL on Chr6
associated with ADF was consistently identified in all RIL
families. The narrowest range of this locus was obtained in
PI229841 and PI508366 RILs and spanned from approximately
50.3 to 51.8 Mb (Supplementary Table 7).

WSC content provides an estimate of the carbon partitioned
and accumulated by accessions in the stem in the form of
water-soluble carbohydrates (Brenton et al., 2020). For WSC, we
identified a QTL on Chr6 in the PI22913 RILs around 50 Mb,
which results from a cross between the sweet sorghum accession
PI22913 and the cellulosic Grassl (Figure 7A). The QTL occurs
within the Dry Midrib (D) locus, which has also shown strong
association with midrib color, grain yield, sugar yield, juice
volume, and biomass, indicative of a pleiotropic effect of the
D locus across these phenotypes (Burks et al., 2015; Xia et al.,
2018). This QTL also overlaps with QTL identified using ADF,
wet weight and dry weight phenotypes described above. Burks
et al. (2015) previously demonstrated that green midrib color
was more strongly associated with sugar content traits than theD
locus genotypic data with sugar content, and therefore suggested
that selecting for green midribs is a simple alternative to genetic
selection for sweet sorghum breeding programs. Consistent with
this observation, the D locus accounted for 64.2% of the variance
explained for WSC in PI229841 RILs.

Following the design pattern indicated in Figure 2, we used
a combination of LMMs with various compositional traits
as covariates to deconvolute the contribution of individual

traits to phenotypic variance, and as a converse approach,
we also ran multivariate-response models on constituent parts
to compare with composite traits. While population genomic
studies have historically utilized univariate LMMs, more recent
works are finding that multivariate-response linear mixedmodels
(MV-LMM) have higher true-positive rates particularly when
correlated traits with low, medium, and high heritabilities are
analyzed together in one MV-LMM (Rice et al., 2020). The use
of MV-LMMsmay also provide additional power to detect causal
loci exhibiting pleiotropic effects across multiple traits (Mural
et al., 2021). By using MV-LMMs on combinations of carbon-
partitioning traits, we can better understand the interplay among
these traits and predict the systemic effects of trait selection on
the respective carbon sinks.

Running WSC and NDF in a multivariate-response model
with maturity and DTH as covariates approximates the dry
matter phenotypic variance (Figures 2, 8). While only one locus
has significant associations, the highly significant association
on Chr6 occurs broadly from approximately 49.5–52Mb
with the three most significant SNPs (50,556,927; 50,558,124;
and 50,574,062). As noted from the QTL mapping results
for WSC, this associated corresponds to the D locus. The
most significant SNP (Chr6:50,558,124) exhibited considerable
phenotypic variation across traits but contrasting effects for
NDF and WSC for each allele (Supplementary Figures 5, 6).
The identity of the gene underlying this locus is believed to be
a NAC transcription factor where recessive parents possess a
premature stop codon in the NAC domain and were shown to
exhibit lower lignin content but higher sugar and grain yields
(Xia et al., 2018) similar to the relationship between NDF and
WSC seen here. Running the samemodel but adding the top SNP
as a covariate brings the peak on Chr4 above the significance
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FIGURE 4 | Heatmap of Pearson’s correlation coefficient among compositional traits. Traits include acid detergent fiber (ADF), adjusted crude protein (Adj.CP), neutral

detergent fiber (NDF), ash-free NDF (aNDFom), calcium, chloride, crude protein, dietary cation-anion difference (DCAD), dry matter, potassium, lignin, magnesium,

moisture, non-fiber carbohydrates (NFC), relative feed value (RFV), and water-soluble carbohydrates (WSC). NEG, NEL, NEM, and TDN were also estimated using an

Ohio Agricultural Research & Development Center (OARDC) summative energy equation and may appear conjugated with the OARDC abbreviation.

threshold (Supplementary Figures 7, 8). This SNP overlaps a
QTL previously identified with dry matter growth rate, leaf
appearance rate (Fiedler et al., 2014), and stem circumference
(Zhao et al., 2016). Potential candidate genes in the region
include two high-affinity nitrate transporter (NRT) genes

(Sobic.004G009400/Sobic.004G009500). In sorghum, increased
expression of NRTs has been suggested to improve the efficiency
at which inorganic and organic nitrogen is assimilated (Gelli
et al., 2014) and affect both the biomass and grain yield (Gelli
et al., 2017).
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FIGURE 5 | QTL mapping for agronomic traits with maturity covariate where the red dashed line represents a logarithm of the odds (LOD) threshold of three in (A)

PI297155, (B) PI506069, (C) PI586454, and (D) PI655972 RILs, which are grain, cellulosic, sweet, and forage recombinant populations, respectively.

Using MV-LMM, we ran ash and lignin as response variables
with maturity and DTH covariates (Figure 9), which may be
roughly viewed as examining ADL (Figure 2). Though we
do not have a direct measure of ADL for comparison, the
significant loci are a subset of those found using ADF and
NDF (Supplementary Figures 9, 10) indicating the utility of
MV-LMM and covariate models for compositional analyses.

By examining accumulation of soluble sugars in addition to
lignocellulosic content and aggregate traits such as NDF, we may
obtain a broader perspective of varying sink strength across the
accessions. NDF represents a measure of the total lignocellulosic
content. Lower lignin content and high lignocellulose production
is preferred for efficient biofuel production (Jung et al., 2015).
Using dry matter as the response variable, NDF was included in
the LMM as a covariate to examine the effects of keeping NDF

constant on the SNP significance (Figure 10B). Biologically, this
could be seen as running a model on the phenotypic variance
of WSC. Similarly, using dry matter as the response variable
with ADF as a covariate examines the phenotypic variance
of hemicellulose and WSC (Figure 10C). By using covariates
or multivariate-response models, the individual (i.e., WSC) or
cumulative (i.e., NDF) phenotypic variance of compositional
traits may be disentangled, and the relationships among traits
may be more clearly distinguished.

Interestingly, the significantly associated SNPs are not
identical between models such as a WSC LMM vs. a dry
matter response with NDF covariate LMM (Figures 10B,D)
with composite traits such as dry matter often exhibiting
more associated loci. As previously indicated, the integration
of multi-scale phenotypes and multivariate models may be
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FIGURE 6 | Manhattan plot of several agronomic traits using BLINK with maturity and DTH as covariates. (A) Plant height, (B) biomass, (C) dry weight, and (D) wet

weight. The green horizontal line represents the Bonferroni-corrected significance threshold. Vertical lines indicate SNPs common to multiple phenotypes.

identifying emergent properties of these biological systems as
some trait associations are not merely the sum of their parts
(Fischer, 2008; Benes et al., 2020), which further indicates
the importance of running several different models that
attempt to examine characteristics of a trait from multiple
perspectives. The various dry matter models (Figures 10A–C
and Supplementary Figure 11) were also associated with a
previously identified WSC locus containing a putative vacuolar
iron transporter (VIT) on Chr4 (Brenton et al., 2020). It
has been suggested that the candidate gene underlying this
locus (Sobic.004G301500) may affect sugar accumulation either

through neofunctionalization or via an iron-deficiency response
(Brenton et al., 2020). Though interestingly, the same LD
block is also hit with adjusted crude protein as well as NEG
(Supplementary Figures 12, 13). Previous identification of a
putative Dw4 locus identified from plant height GWAS also
corresponds to this locus (Li et al., 2015), and the locus has
also been associated with increased total biomass and root
biomass (Moghimi et al., 2019). Together, these results suggest
a mechanism foundational to carbon accumulation underlying
this locus, or the locus exhibits a pleiotropic effect on carbon
accumulation or partitioning.
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FIGURE 7 | QTL mapping for compositional traits with maturity and DTH covariates where the red dashed line represents a logarithm of the odds (LOD) threshold of

three in (A) PI22913, (B) PI297155, (C) PI508366, and (D) PI655972 RILs, which are sweet, grain, cellulosic, and forage recombinant populations, respectively.

While the sorghum gene is classified as an iron transporter,
further comparison with the Arabidopsis ortholog (AT3G43660)
indicates a potential role in cellular manganese ion homeostasis
(GO:0030026) (Gollhofer et al., 2011; Berardini et al., 2015).
The CCC2-like domain of Sobic.004G301500 or one of the
duplicate loci (Sobic.004G301600/Sobic.004G301650) therefore
likely acts to transport manganese to vacuoles and maintain
manganese homeostasis. As manganese serves to increase
nitrogen assimilation (Przemeck and Schrader, 1981), is a
fundamental catalyst during the water-splitting reaction of
photosystem II (Fischer et al., 2015), and is necessary for
respiration (Alejandro et al., 2020), a pivotal role in manganese
homeostasis might better explain these associations. Further,
since a role in manganese homeostasis has been described, these
duplicated loci may instead demonstrate subfunctionalization

followed by tissue-specific expression of one copy or the
duplicationmay alter gene dosage and consequentlymodify some
rate-limiting process. The association on Chr7 at approximately
59.5 Mb found using dry matter with an ADF covariate, which
is equivalent to looking at phenotypic variation due to WSC and
hemicellulose, is Dw3 (Figure 10C).

To estimate the pleiotropic effects of variants across traits,
we also performed a meta-analysis of SNP effects estimated
using LMMs with an empirical Bayesian multivariate adaptive
shrinkage approach that included results from nine traits
(Urbut et al., 2019). Multivariate shrinkage serves to regularize
parameter estimates across all models, effectively shrinking
potential outliers toward zero. This shrinkage effect also reduces
spurious associations (i.e., false positive rates), acting as a
form of multiple testing correction. Variants with parameter
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FIGURE 8 | Manhattan plot of a MV-LMM using GEMMA with WSC and NDF as response variables and both maturity and DTH as covariates. The red-dashed,

horizontal line represents the Bonferroni-corrected significance threshold.

FIGURE 9 | Manhattan plot of a MV-LMM using GEMMA with ash and lignin as response variables and both maturity and DTH as covariates. The red-dashed,

horizontal line represents the Bonferroni-corrected significance threshold.

estimates still significant after shrinkage represent putatively
true associations. Over 190 variants exhibited strong associations
across the nine traits with most associations occurring in
chromosomes six and seven (Supplementary Figure 14). While

most associations occur within known loci including Dw2,
Dw3, Ma3, Ma6, and the D locus, a SNP on Chr10 colocalizes
with previously identified locus for fresh stem weight and
juice yield (Lv et al., 2013) as well as sucrose content
(Ritter et al., 2008). These loci exhibiting pleiotropic effects
also demonstrated strong epistatic effects across the genome,
with Chr6 exhibiting significantly more effects than other
chromosomes (Supplementary Figure 15). Taken together, these

multivariate approaches highlight the pleiotropic and epistatic
effects of loci across the sorghum genome and support the

importance of collecting peripherally related phenotypes to
maximize carbon accumulation and partitioning.

4. DISCUSSION

The diverse carbon-partitioning regimes of sorghum have the
potential to provide valuable insights into the genetic control
of carbon partitioning in grasses (Braun and Slewinski, 2009)
from transport (Milne et al., 2013) to compartmentalization
(Furbank and Kelly, 2021). Genes sensitive to carbohydrate
concentration compose part of a highly conserved network
necessary for cellular adjustment to nutrient availability and
the partitioning of carbon among tissues and organs (Koch,
1996). A holistic understanding of these processes requires
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FIGURE 10 | Manhattan plot of several compositional traits with different covariates following the design represented by Figure 1. (A) dry matter with maturity and

DTH covariates, (B) dry matter with maturity, DTH, and NDF covariates, (C) dry matter with maturity, DTH, and ADF covariates, and (D) WSC with maturity and DTH

covariates. The green horizontal line represents the Bonferroni-corrected significance threshold.

multiscale phenotypes from molecule-specific quantification to
anatomically aggregated measures of carbon. These multiscale

metrics are necessary to accurately assess traits such as biomass
where optical measures are typically poorly correlated with
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manually collected, macroscale phenotypes (Eberius and Lima-
Guerra, 2009). Orthogonal and partially correlated measures
of diverse morphology assist in resolving functional questions
of plant growth and development while simultaneously
improving significant associations with functional genomic
data. We pair these multi-aspect traits with statistical models
that mimic the biological design to better distinguish which
loci correspond to particular components. In conjunction
with broad-scale phenotyping, multiparameter statistical
approaches improve inferences through joint consideration
of genomic and phenotypic measures (Eberius and Lima-
Guerra, 2009). To better resolve the broad-scale effects
of carbon-partitioning in this population, we performed
individual analyses of traits before performing a meta-
analysis across traits. This provides a consistent framework
for weighing and resolving the effects of individual variants
across traits.

Using QTL mapping, we identified 59 QTL for the agronomic
traits and 522 QTL for 34 compositional traits across the
11 RIL families resulting in numerous putative loci that
are associated with a variety of different phenotypes across
different scales. We similarity identified a median of 30
associated variants per trait for 42 traits using MLM alone,
which totalled 1,163 significant hits before identifying 194
variants with significant pleiotropic effects and interactions
among those loci (Supplementary Figures 16, 17 and
Supplementary Tables 4–8). In particular, Chr6 displays
strong pleiotropic and epistatic effects within a highly localized
region around the latter half of the chromosome. Several
well-studied loci are present at that location including,
qHT7.1, Dw2, Ma1, and the D locus. The different alleles at
these loci have been shown to result in broad phenotypic
variation for several different carbon partitioning traits. The
interactions between loci and locus pleiotropy hint at the
underlying genetic architecture of these dynamic carbon-
partitioning traits and may represent whole-network hub
genes or intramodular hubs mediating carbon accumulation
or partitioning networks. By performing these additional
tests for pleiotropy and interactive effects across carbon
partitioning traits, we seek to highlight genomic positions
that are likely to have broad phenotypic effect in carbon
networks. However, source and sink interactions can complicate
the dissection of individual traits (Brenton et al., 2016).
High-capacity, non-photosynthetic sinks can increase yield
through sugar-responsive genes that mediate feed-forward
loops that ultimately bolster systemic carbon accumulation
(Bihmidine et al., 2013; Brenton et al., 2020). Similar carbon
relationships have been previously identified such as the
positive correlation between plant height and yield, which
has been observed in sorghum for well over half a century
(Graham and Lessman, 1966). Conversely, as seen here with
the D locus NAC transcription factor exhibiting reduced lignin
content but increased sugar and grain yields (Xia et al., 2018),
selection for some loci can result in a tradeoff between carbon
regimes. The identification of these feedback mechanisms

suggests that ongoing optimization of carbon allocation should
simultaneously focus on improved source and sink strengths as
a system of interconnected processes from nitrogen assimilation
to photosynthetic efficiency (Brenton et al., 2016, 2020;
Boatwright et al., 2021). Additionally, these findings indicate
that sorghum yields (i.e., sugar, grain, forage, and biomass) may
be further optimized to incorporate beneficial alleles from other
sorghum types.

Using these models, we identified numerous candidate loci—
both known and novel—associated with carbon-partitioning
traits using the CP-NAM. Several traits, such as WSC and
biomass traits, shared associated loci supporting previous
observations that selection for non-target, sink-related traits may
collectively increase yields across carbon-partitioning regimes.
Further, we identified strong pleiotropic and interactive effects
across the sorghum genome with particularly strong effects on
Chr6. The identification of these broad-effect loci will set the
stage for future studies to examine the individual and interactive
effects of alleles on carbon-parititioning traits using methods
such as allele-specific expression in hybrid systems as well as
generate multi-trait, multi-environment data to further extricate
the environmental and genotype-by-environment effects on
carbon-partitioning traits by leveraging the power of multiscale
traits andMV-LMMs (Covarrubias-Pazaran, 2016). Additionally,
breeders may consider collecting peripherally related traits as
a means of understanding and maximizing carbon flow in
their system as selection for carbon sinks is not a zero-sum
relationship as indicated by the relationships and correlations
identified here.
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