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Deep learning-based object counting models have recently been considered preferable

choices for plant counting. However, the performance of these data-driven methods

would probably deteriorate when a discrepancy exists between the training and testing

data. Such a discrepancy is also known as the domain gap. One way to mitigate the

performance drop is to use unlabeled data sampled from the testing environment to

correct the model behavior. This problem setting is also called unsupervised domain

adaptation (UDA). Despite UDA has been a long-standing topic in machine learning

society, UDA methods are less studied for plant counting. In this paper, we first evaluate

some frequently-used UDA methods on the plant counting task, including feature-level

and image-level methods. By analyzing the failure patterns of these methods, we

propose a novel background-aware domain adaptation (BADA) module to address the

drawbacks. We show that BADA can easily fit into object counting models to improve the

cross-domain plant counting performance, especially on background areas. Benefiting

from learning where to count, background counting errors are reduced. We also show

that BADA can work with adversarial training strategies to further enhance the robustness

of counting models against the domain gap. We evaluated our method on 7 different

domain adaptation settings, including different camera views, cultivars, locations, and

image acquisition devices. Results demonstrate that our method achieved the lowest

Mean Absolute Error on 6 out of the 7 settings. The usefulness of BADA is also supported

by controlled ablation studies and visualizations.

Keywords: plant counting, maize tassels, rice plants, domain adaptation, adversarial training, local count models

1. INTRODUCTION

Estimating the number of plants accurately and efficiently is an important task in agriculture
breeding and plant phenotyping. Counting plants (Liu et al., 2020) or their flowers (Lu et al., 2017b)
and fruits (Bargoti and Underwood, 2017) can help farmers to monitor the status of crops and
estimate yield. Recently, deep learning-based object counting models (Zhang et al., 2015), which
directly infer object counts from a single image, can be a promising choice for plant counting.
Thanks to the strong representation ability of convolutional neural networks (CNNs), these
methods can achieve high accuracy on standard plant counting datasets (Lu et al., 2017b; David
et al., 2020). It seems that the applications of counting models are around the corner. However, a
vital problem has been neglected: the training data can be significantly different from the scenes
where the counting models are deployed. Such a difference is given as a scientific term domain
gap. In plant counting, various factors can contribute to domain gaps, e.g., different camera views,
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cultivars, object sizes or background. The performance of a
counting model trained on one domain (source domain) usually
deteriorates when tested on another domain (target domain) due
to the domain gap. A straight-forward solution is to annotate
additional data, while the consumption of time and labor is
expensive. Naturally, one comes to the thought whether the
unlabeled data in the target domain can be used to correct the
model performance as much as possible. This problem setting is
called unsupervised domain adaptation (UDA).

UDA is a long-standing topic in machine learning. A large
number of task-specific UDA methods have been proposed
for tasks such as semantic segmentation (Vu et al., 2019),
image classification (Ganin and Lempitsky, 2015), and object
detection (D’Innocente et al., 2020; Xu et al., 2020). By
contrast, UDA for object counting, especially for plant counting,
has been less studied. To our knowledge, existing UDA
methods (Giuffrida et al., 2019; Ayalew et al., 2020) applied
to plant counting are often direct adoptions of generic UDA
ideas without considering the particularities of domain gaps in
plant counting. In fact, different from crowd counting or car
counting, domain gaps in plant counting are much more diverse.
The shapes of plants can change with time, cultivars and their
growth environment; plants in different locations show different
appearances; different image acquisition devices and viewpoints
also intensify the domain gap. Considering that camera views and

FIGURE 1 | Typical causes of domain gaps in plant counting. (A) Different camera views. (B) Scale variations in different locations. (C) Different appearances due to

different growth stages.

image perspectives are less diverse than those in crowd counting
datasets, these factors make the domain adaptation for plant
counting tricky. Some typical causes of domain gaps are shown
in Figure 1.

In this work, we first evaluated some frequently-used UDA
methods in the context of plant counting and analyzed the
weaknesses that these methods expose. In particular, we found
that the counting models produce large errors on background
areas that show similar appearances with the plants, e.g., similar
colors or textures. Targeting these weaknesses, we propose a
novel background-aware domain adaptation (BADA) module.
This module can fit into existing plant counting models to
enhance their cross-domain performance. Specifically, BADA is
implemented as a parallel branch in the CNNmodel. This branch
aims to segment areas which potentially contain counting objects,
i.e., the foreground. The predicted foregrounds are merged into
the feature maps as useful cues. In this way the network learns
where to count. We also found that adding only a background-
aware branch was insufficient to yield satisfactory cross-domain
performance. Hence, two additional domain discriminators were
connected to the input feature maps and the output foreground
masks. We use adversarial training strategy to jointly optimize
the discriminators and other parts of the model, facilitating
to extract domain-invariant features and refine the predicted
foreground masks.
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We evaluated our method on three public datasets: MTC (Lu
et al., 2017b), RPC (Liu et al., 2020) and MTC-UAV (Lu
et al., 2021), including 7 different and representative domain
adaptation settings close to real applications. We split data into
different domains by different cultivars, locations, and image
acquisition devices. It is worth noticing that one of our settings
was to train a model using images captured by phenopoles and to
test the model on images captured by UAVs. The results showed
that, comparing with directly applying generic UDA ideas, our
method achieved better cross-domain performance. We also
verified eachmodule of our method via ablation study. Moreover,
the visualizations further show that our method significantly
improves the performance on background areas.

Our contributions have two folds:

• We present a thorough evaluation of some frequently-used
UDA methods under several plant counting tasks and analyze
their weaknesses;

• We propose a novel background-aware UDA module, which
can easily fit into existing object counting models to prompt
cross-domain performance.

2. RELATED WORK

In this section, we briefly review the applications of machine
learning in plant science. Then we focus on the object counting
methods and the unsupervised domain adaptation (UDA)
methods in open literature.

Machine Learning. Machine learning is a useful tool
for plant science, which can model the relationships and
patterns between targets and factors given a set of data.
It is widely used in many none-destructive phenotyping
tasks, e.g., field estimation (Yoosefzadeh-Najafabadi et al.,
2021) and plant identification (Tsaftaris et al., 2016). A
dominating trend in machine learning is deep learning, as
deep learning models can learn to extract robust features and
complete the tasks in a end-to-end manner. Deep learning-
based methods have shown great advantages in different
tasks of plant phenomics, e.g., plant counting (Lu et al.,
2017b), detection (Bargoti and Underwood, 2017; Madec
et al., 2019), segmentation (Tsaftaris et al., 2016), and
classification (Lu et al., 2017a). For in-field plant counting tasks
(from RGB images), deep learning-based methods show great
robustness against different illuminations, scales and complex
backgrounds (Lu et al., 2017b). The release of datasets (David
et al., 2020; Lu et al., 2021) also accelerates the development
of deep learning-based plant counting methods. Therefore,
the deep learning has become the default choice for in-field
plant counting.

Object counting. Plant counting is a subset of object counting.
Object counting aims to inference the number of target objects
in the input images. Current cutting-edge object counting
methods (Lempitsky and Zisserman, 2010; Zhang et al., 2015;
Arteta et al., 2016; Onoro-Rubio and López-Sastre, 2016; Li et al.,
2018; Ma et al., 2019; Xiong et al., 2019b; Wang et al., 2020)
utilize the power of deep learning and formulate the object
counting problem as a regression task. A fully-convolutional

neural network is trained to predict density maps (Lempitsky
and Zisserman, 2010) for target objects, where the value of each
pixel denotes the local counting value. The integral of the density
map is equal to the total number of objects. Inspired by the
success of these methods in crowd counting, a constellation of
methods (Lu et al., 2017b; Xiong et al., 2019a; Liu et al., 2020) and
datasets (David et al., 2020; Lu et al., 2021) are proposed for plant
counting. However, existing plant counting methods neglect the
influence of domain gap, which is common in real applications.

Unsupervised domain adaptation. The harm of domain gaps
is common for data-driven methods (Ganin and Lempitsky,
2015; Vu et al., 2019). Therefore, UDA has been a long-standing
topic in deep learning society, where unlabeled data collected in
the target domain are utilized to prompt the model performance
on the target domain. Ben-David et al. (2010) theoretically
prove that domain adaptation can be achieved by narrowing the
domain gap. One can achieve this from the feature level, or, more
directly, from the image level. The feature-level methods (Ganin
and Lempitsky, 2015; Tzeng et al., 2017) align the feature to
be domain-invariant. And the image-level methods (Zhu et al.,
2017; Wang et al., 2019; Yang and Soatto, 2020; Yang et al.,
2020) manipulate the styles of images, e.g., hues, illuminations,
textures to make the images in two different domains closer.
Some of the UDA methods are proposed to address the domain
gap for plant counting (Giuffrida et al., 2019; Ayalew et al.,
2020). However, existing UDA methods for plant counting
directly adopt the generic feature-level UDA methods. This
motivates us to test different UDA methods under the context of
plant counting.

3. MATERIALS AND METHODS

3.1. Plant Counting Datasets
We evaluated the performance of UDA on three public plant
counting datasets: Maize Tassel Counting (MTC) dataset (Lu
et al., 2017b), Rice Plant Counting (RPC) dataset (Liu et al.,
2020) and Maize Tassel Counting UAV (MTC-UAV) (Lu et al.,
2021) dataset. Here, we briefly introduce the statistics and
characteristics of these datasets.

3.1.1. The MTC Dataset
The MTC dataset contains 361 images of maize fields. Each
center of maize tassel is manually annotated with a dot. The
samples were collected from 4 different places in China, including
6 different maize cultivars. We split the dataset into 6 domains
according to cultivars. As shown in Figure 2, domain gaps not
only reflect in the different shapes of maize tassels, but also reflect
in different backgrounds, illuminations and camera views.

3.1.2. The RPC Dataset
The RPC dataset contains 382 images of rice seedlings captured
in Jiangxi, China and Guangxi, China. The rice seedlings are
manually annotated with dots. We split the dataset into 2
domains according to locations. For samples from Guangxi,
the images were captured shortly after the rice seedlings were
transplanted, while most of the rice seedlings in Jiangxi had been
growing for some time. Thus, rice seedlings in Guangxi were
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much smaller and with less occlusions. On the contrary, rice
seedlings in Jiangxi had grown more leaves and block each other.
Besides, the hues and camera views are very different, images
from Guangxi show dimmer illuminations and hues. We show
some typical samples in Figure 3.

3.1.3. The MTC-UAV Dataset
The MTC-UAV dataset is very different from the two
aforementioned plant counting datasets, as the samples were
captured by an unmanned aircraft vehicle (UAV). The UAV took
306 pictures of an experimental field which covered around 1 ha.

FIGURE 2 | Samples in MTC datasets. (A) Images captured at different locations. Camera views, backgrounds and illuminations are different. (B–G) Maize tassels of

different cultivars.

FIGURE 3 | Samples from RPC datasets. (A) Images captured in Guangxi. (B) Images captured in Jiangxi.
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Images were captured at the height of 12.5 m, and the focal length
of the camera was 28 mm. Thus, the ground sampling resolution
is about 0.3 cm/pixel.

This dataset was adopted to evaluate the UDA performance
between different image acquisition devices. This setup is
challenging as camera views, perspectives, and object scales in
images captured by a UAV are significantly different from those
of the images captured by phenopoles.

3.2. Background-Aware Domain
Adaptation
Assume that we have two domains of data under different
distributions: labeled data from the source domain and unlabeled
data from the target domain. Labeled data from source domain
can be denoted by Ds{Xs,Ys}, where Xs denotes the images in
the source domain and Ys stores the point annotations for each
image. Unlabeled data is denoted by Dt{Xt}. UDA for plant
counting aims at jointly utilizing Ds and Dt to prompt counting
performance on the target domain.

We verified our BADA module on a popular and straight-
forward object counting method CSRNet (Li et al., 2018). For
convenience, we first define the variables in Table 1 and the I/O
of each module in Table 2, whereFE,FD,FS,FC,FF andFM are
parameterized by θE, θD, θS, θC, θF and θM , respectively. [Ms,Mc]
denotes the channel-wise concatenation ofMs andMc.

As shown in Figure 4, the input of the whole model is an RGB
image. The image is first processed by the feature encoder FE to
obtain feature mapsMf . Then, the extracted feature mapsMf are
sent to the counting feature decoder FD and the segmentation
branch FS. FD further refines the feature maps to generate

TABLE 1 | Definition of variables.

Variable Symbol

Input image I

Source image Is

Target image It

Basic feature maps Mf

Counting feature maps Mc

Estimated foreground mask Ms

Estimated local count map Cest

Domain class map for feature map Cf

Domain class map for foreground mask Cm

TABLE 2 | I/O for each module.

Module Symbol I/O function

Feature extractor FE Mf = FE (I, θE )

Counting feature decoder FD Mc = FD (Mf , θD)

Segmentation branch FS Ms = FS (I, θS)

Local count regressor FC Cest = FC([Ms,Mc], θC)

Feature discriminator DF Cf = DF (Mf , θF )

Foreground mask discriminator DM Cm = DM (Ms, θM)

the counting feature maps Mc. And the segmentation branch
segments the regions which potentially contain the counting
objects, i.e., the foreground mask. The foreground mask Ms is
then concatenated with Mc to form the input of local count
regressorFC.FC outputs the local countmap for the input image.

To extract domain-invariant features, we applied two domain
discriminators, including a feature discriminator DF and a mask
discriminator DM . The discriminators are fully-convolutional,
which receive the feature mapMf and the foregroundmaskMs as
inputs, and output domain class maps. The adversarial training
strategy was imposed on the discriminators. Segmentation
branchFS, feature discriminatorDF , andmask discriminatorDM

together constitute the BADA module.
To train the network, we jointly optimized three loss

functions: counting loss, segmentation loss and the adversarial
training loss.

3.2.1. Feature Encoder
We adopted part of the VGG16 (Simonyan and Zisserman,
2014) network as the feature encoder. As shown in Figure 5, the
feature encoder includes 3 stride-2 max pooling layers. Given
an image of size H × W, the feature encoder outputs features

mapsMf ∈ R
512×H

8 ×
W
8 . At the beginning of the training process,

the feature encoder was initialized by parameters pretrained on
ImageNet (Deng et al., 2009).

3.2.2. Multi-Branch Decoder
The multi-branch decoder consists of a counting feature
decoder FD and a segmentation branch FS. FD and FS share
almost the same network architecture. Both the two branches
replace standard convolutions with dilated convolutions,
which can enlarge the receptive fields without introducing
extra parameters.

As shown in Figure 5, Mf is sent to FD and FS.
FD outputs feature maps Mc with 64 channels. The last
softmax layer of the FS outputs a 2-channel segmentation
map, where each pixel can be viewed as a 2-d vector.
The second element refers to the probability of a pixel
being the foreground. We denote the second channel as the
segmentation mask Ms. Ms and Mc are concatenated to form
a feature map with 65 channels as the output of multi-
branch decoder.

3.2.3. Local Count Regressor
Most object counting methods are based on density map
regression, which predicts the counting value pixel by pixel.
However, this paradigm is not robust to shape variations of
non-rigid objects in plant counting, e.g., maize tassels or rice
seedlings. In plant counting, shape and appearance of an object
often change with different growth stages and cultivars. Density
map-based methods tend to generate responses at every pixel
that shares similar patterns with the counting objects. Thus, per-
pixel density estimation often leads to accumulated error when
summing the density map. To alleviate this, we followed Lu
et al. (2017b) to estimate patch-wise counting values. As shown
in Figure 5, the local count regressor FC includes two average
pooling layers with the stride of 2 and 4, respectively. Thus,
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FIGURE 4 | The overview of our method. The BADA module works as a parallel branch in the CNN model. Two discriminators are connected to the input and output

of BADA model and are imposed with adversarial training strategies.

FIGURE 5 | The architecture of our model. (A) The architecture of the feature encoder. (B) The architecture of the multi-branch decoder and the local count regressor.

(C,D) The architecture of the feature discriminator and the foreground mask discriminator.

given an image of size H × W, the spatial resolution of the
estimated local count map Cest is

H
64 × W

64 . Each element in Cest

denotes the number of counting objects in a 64× 64 patch of the
input image.

3.2.4. Discriminator
Adding a segmentation branch can guide the network to learn
where to count (Lu et al., 2021;Modolo et al., 2021). Nevertheless,
under the cross-domain setting, the segmentation branch also
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suffers from the domain gap. The foreground masks may also
contain some false positives. Thus, we added two domain
discriminators: a feature discriminator DF and a foreground
mask discriminator DM . DF aims to force Mf extracted by FE

to be domain-invariant. DM can help the segmentation branch
to predict foreground mask Ms with reasonable shapes and high
accuracy on both the source domain and target domain. This is
motivated by the observation that the shape of the foreground
mask is irregular and scattered when directly applying the model
on target domain without discriminators. Readers can refer to
section 4.4.2 for detailed visualizations.

The architectures of DF and DM are shown in Figure 5.
The softmax layer outputs a domain class map Cf (Cm).
Each element in Cf (Cm) can be viewed as a 2-d vector, and
the first element in the vector denotes the probability of the
corresponding 4 × 4 patch in Mf (Ms) being the target domain.
Similarly, the second dimension denotes the probability being the
source domain.

To train the discriminator, we adopted the adversarial training
strategy (Ganin and Lempitsky, 2015). While discriminators DF

and DM learn to classify Mf and Ms into source and target
domains, FE and FS attempt to confuse the discriminators by
generating domain-invariant Mf and Ms. This can be achieved
by adding a gradient reversal layer (Ganin and Lempitsky, 2015)
before the input layers of the two discriminators. During forward
propagation, the gradient reversal layer passes the input to the
next layer with no change, but reverses the sign of the gradient
during back propagation. The operation rule of the gradient
reversal layer can be defined by

{

Rλ (x) = x
dRλ

dx
= −λI

, (1)

where x denotes the input of the gradient reverse layer, and I

denotes the identity matrix. λ is a pre-defined parameter which
adjusts the attenuation ratio when propagating the gradients
back. This is useful as the adversarial training could interfere with
the main task (counting) at the beginning of the training process.
We will discuss the updating strategy of λ in section 3.2.6.

3.2.5. Loss Function
1) Counting loss
The counting loss Lc is used to measure the differences between
estimated local count maps Cest and the ground truth local count
maps Cgt . One can obtain Cgt from the ground truth density map
Dgt . Supposing the image Ii have n annotated points P ∈ R

n×2

and the corresponding density map can be defined by

Dgt,i =

n
∑

k=1

N
(

µ = Pk, σ
2
)

, (2)

where N
(

µ = Pk, σ
2
)

denotes a 2-d Gaussian kernel with the
mean Pk and the variance σ 2. Then the ground truth local count
map Cgt can be obtained by

Cgt = Dgt ∗ 1h×w. (3)

∗1h×w denotes the convolution operation using a h × w matrix
with all ones as kernel. The horizontal and vertical strides are h

and w, respectively. In our method, we set h = 64 and w = 64.
Then, we define the counting loss by:

Lc =
1

N

N
∑

i=1

|Cest(i)− Cgt(i)|, (4)

where N = H · W, i.e., the number of pixels in the local
count map.
2) Segmentation loss
Akin to semantic segmentation (Lin et al., 2017), the foreground
segmentation can be viewed as a 2-class semantic segmentation
task, and can be supervised by the cross-entropy loss. However,
pixel-wise foreground labels are not available in plant counting
datasets. Thus, we generated pseudo foreground masks Sgt from
ground truth density maps. Sgt is obtained by

Sgt(i) =

{

0,Dgt(i) < tc

1,Dgt(i) ≥ tc
, (5)

where tc is a pre-defined threshold. For different datasets, tc can
be adjusted conditioned on the empirical estimate of object size
to make sure that every counting object can be fully covered by
the foreground mask.

The standard cross-entropy loss was adopted as the
segmentation loss. Given the estimated foreground mask
Ms and the ground truth Sgt , the segmentation loss Ls can be
formulated by

Ls = −
1

N

N
∑

i=1

[

Sgt(i) log (Sest (i)) +
(

1− Sgt(i)
)

· log (1− Sest (i))
]

, (6)

where N = H · W, i.e., the number of pixels in the
foreground mask.
3) Loss for adversarial training
The adversarial training loss function La supervises the training
of domain discriminators.We labeled the source domain as 1 and
the target domain as 0. Then, the ground truth domain class map
Agt can be obtained by

Agt =

{

1, I ∈ It

0, I ∈ Is
, (7)

where 1 and 0 denote matrices filled with ones and zeros. I ∈ It
denotes the image I belongs to the source domain, and I ∈ It
means I comes from the target domain.

Let the second channel of Cf and Cm be Aest , i.e., the
probability that the feature maps (foreground masks) are from
the source domain. Then, the adversarial training loss La is
defined by

La =−
1

N

N
∑

i=1

[

Agt(i) log
(

AF
est (i)

)

+
(

1− Agt(i)
)

· log
(

1− AF
est (i)

)]

−
1

N

N
∑

i=1

[

Agt(i) log
(

AM
est (i)

)

+
(

1− Agt(i)
)

· log
(

1− AM
est (i)

)]

,

(8)
where N = H ·W.
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3.2.6. Implementation Details
1) Training details
We used PyTorch (Paszke et al., 2019) to train and evaluate
our model. Stochastic gradient descent (SGD) was adopted as the
optimizer. We trained the datasets for 500 epochs. The initial
learning rate was set to 0.01, and at the 250th and the 400th
epoch, the learning rate decayed by 10 times.

As the resolution of samples was high, images were resized
during training and evaluation. For data augmentation, 512 ×

512 patches were randomly cropped from resized images,
and then the cropped images were flipped along horizontal
directions randomly.
2) Parameters update
Here we specify the parameter updating strategy during training.
At each epoch, Lc and Ld were jointly optimized while La was
optimized separately. The detailed updating strategy is defined in
Algorithm 1.

Algorithm 1: Parameters updating strategy

input : Image from source domain Is, image from target
domain It
Ground truth density map Dgt

1 begin

2 Update λ of the gradient reversal layer with Equation (9)
3 Input Is to obtain Cest ,Ms, Cf and Cm

4 Calculate Lc and Ls and update parameters
5 Calculate La for source domain and update parameters
6 Input It to obtain Cf and Cm

7 Calculate La for target domain and update parameters
8 end iteration

9 end

At the beginning of each epoch, λ of the gradient reverse layer
was updated by

λ =
2

1+ exp
(

γ · p
) − 1 , (9)

where p denotes the ratio of the current epoch to total epochs.
And γ denotes a pre-defined parameter that controls the speed
when λ ascends. As the training proceeds, λ increases from 0 to 1.

4. EXPERIMENTS

Here we report the experiments results. We first evaluated
multiple UDA methods on 7 different domain adaptation
settings. The results were compared with our method. The
efficiency of each module in our method was verified via ablation
study. We also conducted visualizations to show the qualitative
results of our method. First, we introduce the evaluation metrics.

4.1. Evaluation Metrics
We used mean absolute error (MAE) and root mean square error
(MSE) as the main evaluation metrics, which can be defined by:

MAE =
1

N

∑N

n=1
|ŷn − yn|, (10)

MSE =

√

1

N

∑N

n=1
|ŷn − yn|

2, (11)

where N denotes the number of samples on the test set. ŷn and
yn denote the estimated count and the ground truth count of
the nth sample.

To measure the ratio of counting error to the total count of
each sample, we used mean absolute percentage error (MAPE),
which can be calculated by:

MAPE =
1

N

∑N

n=1

|ŷn − yn|

yn
× 100%. (12)

In addition, we measured the correlation between estimated
counts and annotations by R2:

R2 = 1−

∑N
n=1 [ŷn − yn]

2

∑N
n=1(ȳn − yn)2

. (13)

We also noticed that, the false positive responses in the
estimated density maps may compensate for errors from missing
targets. This indicated that MAE may not fully reflect the real
performance of counting models. Therefore, we designed a
decoupled MAE where errors on target areas and background
areas are calculated independently and then summed up, instead
of directly comparing the total counts. For example, if the model
wrongly predicts density responses on background and omits
some targets. The density responses on background will not
compensate for the error on real targets when calculatingmetrics.
To be specific, DMAE is defined as follows,

DMAE =
1

N

∑N

n=1

[

|ŷb,n − yb,n| + |ŷf ,n − yf ,n|
]

. (14)

ŷb,n and ŷf ,n denote the estimated object count in the background
areas and target areas. Similarly, yb,n and yf ,n denote the ground
truth count in the background areas and target areas. To obtain
ŷb,n and ŷf ,n, we used the same pesudo segmentation mask Sgt
mentioned in section 3.2.5 to divide the image into background
areas B and target areas. This process can be defined as follows,

ŷb,n =
∑

i∈B

Dest (i) , ŷf ,n =
∑

i/∈B

Dest (i) . (15)

yb,n and yf ,n can be obtained likewise.

4.2. Experimental Settings
Here we specify the experimental settings, including the split of
source domain and the introduction of other tested algorithm.
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4.2.1. The MTC Dataset
We split the MTC dataset according to cultivars. As Zhengdan
No.958 contains more samples while samples of other cultivars
are much fewer, we used Zhengdan No.958 as the source
domain, and the other 5 cultivars as the target domains.
Accordingly, there were 5 different adaptation pairs for MTC
dataset. For convenience, we named the adaptation pairs by
abbreviation, e.g., adaption from Zhengdan No.958 to Jundan
No.20 was marked as Z→Jun. The abbreviations for cultivars
Zhengdan No.958, Jundan No.20, Wuyue No.3, Jidan No.32,
Tianlong No.9 and Nongda No.108 were Z, Jun, W, Ji, T and
N, respectively.

4.2.2. The RPC Dataset
We split the RPC dataset into two domains according to different
locations. Since only 62 images were captured from Guangxi, we
adapted the model from Jiangxi to Guangxi, marking this setting
as J→G.

4.2.3. The MTC-UAV Dataset
The MTC-UAV dataset and the MTC dataset shared the same
counting object. We used data from MTC dataset as source

domain and data from MTC-UAV dataset as target domain to
constitute a domain adaptation setting.

4.3. Comparison With Other Methods
As UDA for plant counting has seldom been studied, we first
evaluated some frequently-used UDA methods. We trained
these methods on the plant counting datasets using official
implementations (CSRNet, FDA, PCEDA) when available. If no
codes are released, we implement the method according to the
their papers (CSRNet_DA, MFA).

4.3.1. Baseline Approaches
1) CSRNet

CSRNet (Li et al., 2018) is a generic object counting method
with simple network architecture and competitive performance.
For a fair comparison, all the UDA methods compared were
based on CSRNet. We trained the counting model with
only source data and directly evaluated the model on the
target domain.
2) CSRNet_DA

CSRNet_DA refers to a naïve upgrade of CSRNet. We added
a discriminator for CSRNet and applied adversarial training

TABLE 3 | Quantitative comparisons on MTC dataset.

Settings Z→Jun Z→W

methods MAE MSE MAPE DMAE R2 MAE MSE MAPE DMAE R2

CSRNet 5.89 8.22 77.5% 6.52 0.9682 3.56 4.56 5.9% 45.23 0.9106

CSRNet_DA 2.38 3.33 13.7% 7.56 0.9864 5.46 7.41 9.9% 15.77 0.8173

PCEDA 4.53 6.58 41.3% 10.68 0.9369 3.47 2.46 5.7% 29.86 0.9388

FDA 4.92 6.44 57.0% 6.23 0.9853 2.48 2.99 4.3% 5.92 0.9573

MFA 4.02 5.65 37.1% 6.11 0.9655 3.76 4.72 6.6% 9.17 0.9463

Ours 1.92 2.83 10.1% 3.78 0.9884 3.83 5.13 6.7% 7.98 0.9041

Settings Z→Ji Z→T

methods MAE MSE MAPE DMAE R2 MAE MSE MAPE DMAE R2

CSRNet 0.92 1.16 10.3% 14.2 0.9776 15.76 19.42 134.9% 35.87 0.9039

CSRNet_DA 0.68 0.85 10.9% 5.11 0.9869 12.38 15.14 102.9% 26.32 0.9275

PCEDA 0.97 1.27 12.8% 6.76 0.9752 16.61 23.09 116.9% 39.83 0.6549

FDA 0.66 0.92 9.1% 1.82 0.9856 12.29 16.14 138.0% 28.35 0.9312

MFA 0.83 1.09 14.2% 1.81 0.9762 13.77 16.81 94.8% 33.93 0.8567

Ours 0.50 0.69 9.5% 2.92 0.9939 6.96 9.33 31.9% 11.61 0.9115

Settings Z→N Avg.

methods MAE MSE MAPE DMAE R2 MAE MSE MAPE DMAE R2

CSRNet 2.59 3.57 11.2% 24.92 0.9891 5.74 7.39 48.0% 12.01 0.9499

CSRNet_DA 1.88 2.43 9.2% 5.83 0.9864 4.56 5.83 29.3% 5.232 0.9409

PCEDA 2.45 3.18 18.7% 15.23 0.9765 5.61 7.72 39.1% 9.454 0.8965

FDA 1.84 2.44 9.9% 3.92 0.9850 4.44 5.79 43.7% 4.316 0.9689

MFA 2.04 2.87 7.6% 3.47 0.9706 4.88 6.22 32.1% 5.148 0.9431

Ours 1.54 2.06 7.0% 3.41 0.9846 2.95 4.01 13.0% 2.49 0.9565

The best performance is in boldface.
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strategy discussed in section 3.2.5. The discriminator receives
the features extracted by decoder as input and outputs domain
class maps.
3) Multi-level feature-aware domain adaptation

Multi-level Feature Aware (MFA) domain adaption is a
feature-level UDA method purposed by Gao et al. (2021).
Multi-level refers to a setup where the adversarial training is

conducted on 2 intermediate feature maps and the estimated
density maps. Specifically, two discriminators are connected to
the output of VGG16 backbone and the output of the decoder.
4) PCEDA

PCEDA is an image-level unsupervised domain adaptation
method based on Cycle GAN framework (Zhu et al., 2017).
Most image-level domain adaptation methods are designed for

FIGURE 6 | Qualitative comparisons on MTC dataset. From top to bottom alternating: RGB image, ground truth density map, density maps (count maps) estimated

by CSRNet, CSRNet_DA, FDA, MFA, PCEDA, and our method. Numbers in the upper left corner of estimated density maps (count maps) represent the ground-truth

or predicted counting value (rounded).

TABLE 4 | Quantitative comparisons under J→G setup (RPC dataset) and MTC→MTC-UAV setup.

J→G setup MTC→MTC-UAV setup

Method MAE MSE MAPE DMAE R2 MAE MSE MAPE DMAE R2

CSRNet 310.09 326.50 38.16% 310.44 0.1467 54.27 73.58 32.86% 98.14 0.6425

CSRNet_DA 209.56 282.93 26.46% 209.76 0.2599 43.17 60.61 25.77% 61.52 0.7252

PCEDA 152.41 203.14 18.95% 152.55 0.1926 57.56 75.37 33.90% 69.10 0.6442

FDA 356.28 370.63 44.06% 356.54 0.2433 36.78 51.06 21.83% 102.31 0.8247

MFA 243.05 283.61 30.48% 244.14 0.1593 46.56 65.91 29.11% 62.42 0.6755

Ours 111.17 161.46 14.54% 117.27 0.2057 35.88 47.41 23.99% 60.04 0.8655

The best performance is in boldface.
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adaptation between synthetic data and real-world data. Since
evident and unified style differences exist between computer-
rendered images and real-world images, directly applying GAN
to transfer images between two real-world domains could
produce many artifacts. To alleviate this, we used PCEDA (Yang
et al., 2020), which preserves the high-frequency details of the
source images, to evaluate the GAN-based UDA method.

PCEDA adds a phase consistency constraint between the
original images and the transferred images. Fourier transform
of an image consists of phase and amplitude, and the phase
contains the semantic information (edges, textures) of the image.
The phase consistency requires the phases of the original and
transferred images to be close. Thus, instead of manipulating
the shapes or textures, the generator tends to transfer the
illuminations, hues or colors to target domain. For different
domain adaptation setups, we used the official implementation
to transfer source images to the target domain, and used the

transferred images to train CSRNet, and directly evaluated the
model on target data.
5) Fourier domain adaptation

Fourier Domain Adaptation (FDA) (Yang and Soatto, 2020)
is image-level UDA method which does not need to train a
complex GAN. The transfer process is achieved by swapping
low frequency spectrums of two images. This simple procedure
can achieve comparable performance on UDA semantic
segmentation benchmarks against GAN-based methods.

4.3.2. Comparison on the MTC Dataset
Table 3 presents the quantitative comparison of aforementioned
methods on 5 different domain adaptation settings of the MTC
dataset. Comparing with the non-adaptation method CSRNet,
all UDA methods more or less reduced the MAE, MSE as well
as the MAPE. We also noticed that, even with comparable
MAE (Z→W), the UDA methods can improve the DMAE by

FIGURE 7 | Visualizations on RPC dataset. From top to bottom alternating: RGB image, ground truth density map, density maps (count maps) predicted by CSRNet,

CSRNet DA, FDA, MFA, PCEDA, and our method. Numbers on the upper left corner of the estimated density maps (count maps) represent the ground-truth or

predicted counting value (rounded).
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FIGURE 8 | Visualizations on MTC-UAV dataset. From top to bottom alternating: RGB image, ground truth density maps, density maps (count maps) predicted by

CSRNet, CSRNet DA, FDA, MFA, PCEDA, and our method. Numbers on the upper left corner represent the ground-truth or predicted counting value (rounded).

TABLE 5 | Ablation study on regression targets and discriminator configurations (MAE).

Settings Z→Jun Z→W Z→Ji Z→T Z→N

Regression

Target

Density map regression 2.37 4.76 1.31 7.01 1.87

Local count regression 1.92 3.83 0.50 6.96 1.54

Discriminators

None 2.15 2.37 0.85 13.37 1.51

DF 1.88 2.65 1.06 8.64 1.48

DM 2.11 3.48 0.79 11.02 1.41

DF +DM 1.92 3.83 0.50 6.96 1.54

The best performance is in boldface.

a large margin, indicating that UDA methods can also generate
more correct density maps. Then we focused on the comparison
between different UDA methods. Averaging the performance
of five settings, the proposed method obtained the best MAE,
MSE, MAPE and DMAE. Comparing with the second best, our
method brought a relative improvement 42% on the DMAE. For
different domain adaptation settings, our method obtained the
best MAE except for Z→W. It can also be observed that our

method was more stable under different settings. On a difficult
setting Z→T, BADA reduced the MAE and DMAE by 43% and
56% comparing with the second best method. Domain gap under
Z→T is dramatic due to different viewpoints, illuminations and
background elements. We believe results under Z→T setup can
better reflect the adaptation effectiveness of UDA methods. The
visualizations of different methods on MTC dataset are shown in
Figure 6.
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4.3.3. Comparisons on RPC Dataset
The experiments on RPC dataset further demonstrated the
effectiveness of our method. As shown in Table 4, our method
achieved the lowest MAE, MSE, MAPE, and DMAE. Most
of the methods underestimated the number of rice seedlings,
mainly because the rice seedlings in the target domain are
smaller than those in the source domain due to different
growth stages. The other methods only generated responses
for rice seedlings with more leaves and larger scales. In
contrast, our method attained the accurate prediction results.
The visualizations on RPC dataset are illustrated in Figure 7.
For results on the RSC dataset, the DMAE were very close
to the MAE, as the targets appeared densely throughout
the images.

4.3.4. Comparisons on MTC-UAV Dataset
Nowadays, UAVs have become useful image acquisition devices
for agriculture. In practice, a model trained with images collected
by phenopoles may be tested on images collected by UAVs. We

adapted the model from MTC dataset to MTC-UAV dataset
under this setting. As shown in Table 4, our method surpassed
others in all metrics except for MAPE. The visualizations on
MTC-UAV dataset is illustrated in Figure 8.

4.4. Ablation Study
First, we compared two different regression paradigms: local
count regression and density map regression. Then we
demonstrated the effectiveness of the feature discriminator and
foreground mask discriminator in the proposed BADA module.

4.4.1. Local Count Regression
We found that local count regression were more robust than
density map regression for cross-domain settings. To verify this,
we replaced the local count regressor of the original BADANet
with a local count regressor without any downsampling
operations. The local count regressor consisted of a series of
convolution layers and directly predicted the density maps. The
training strategy was kept the same. As shown in Table 5, on

FIGURE 9 | Visualizations of model with and without discriminators. From left to right are input images, ground truth density maps, estimated foreground mask

without discriminators, estimated local count maps without discriminators, estimated foreground masks with discriminators, estimated local count maps with

discriminators. The foreground masks have been binarized. The white numbers on the corners of ground truth density maps and estimated local count maps denote

the ground truth counts and the inferred counts, respectively.

Frontiers in Plant Science | www.frontiersin.org 13 February 2022 | Volume 13 | Article 731816

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Shi et al. Background-Aware Domain Adaptation

all settings of the MTC dataset, local count regression obtained
better results than the density map regression.

4.4.2. Discriminators
The domain discriminators were imposed at the input and
output of BADA module. The feature discriminator DF can
help the CNNs extract domain-invariant feature maps. And the
mask discriminatorDM can help refine the predicted foreground
masks. As shown in Table 5, the combination of DF and DM

can achieve lowest MAEs on 2 different settings, and the
performance was more stable than only applying one or none of
the discriminator. Although on some settings, the full method
slightly fell behind the other versions. We believe this was
because the domain gaps in these settings were not obvious,
as the MAEs were already relatively low when no domain
adaptation modules were attached. Under such circumstances,
the adversarial training strategy might hurt the training process.

To understand the effectiveness of discriminators more
intuitively, we show the visualizations of methods with/without
discriminators in Figure 9. With foreground mask discriminator
DM , the network was more confident about the segmentation
results and produced less error. The shapes of foreground masks
were regular and neat. By contrast, when no discriminators
were attached, the shapes of foreground masks were irregular
and scattered. Besides, more backgrounds were mistaken
for foregrounds, which provided incorrect target distribution
information for the network. For scenes on row 3, 4, and 5 of

Figure 9, although the estimated foreground masks were correct,
non-adversarial method produced more errors.

5. DISCUSSION

Here we conclude all the tested methods and discuss their
advantages and drawbacks. For all the tested domain adaptation
settings, we find that UDA methods more or less improve the
cross-domain performance, which demonstrates the necessity
and effectiveness of domain adaptation. According to the
proposed metric DMAE, UDA method can also help the model
predict more precise density maps. Among all the UDAmethods,
the proposed BADA module is more stable and obtains the best
MAE and DMAE on 5 out of the 7 domain adaptation settings,
which demonstrates its effectiveness.

For feature-level domain adaptation methods (CSRNet_DA,
MFA and our method), the results show that adversarial
training can help aligning the features for different domains
in plant counting datasets. Compared with CSRNet_DA, MFA
aligns features at different scales with multiple discriminators.
MFA showed marginal improvement on MTC datasets, while
significant improvements on the setting MTC→MTC-UAV were
obtained. This indicates that multi-scale adversarial training
is more suitable when objects in different domains are with
different scales. This also inspires us that the proposed BADA
module can be further improved with multi-scale adaptation
strategy. Our methods aligns the features as well as the

FIGURE 10 | Visualizations of style transferred images with different image-level UDA methods. From top to bottom alternating: source domain image, transferred

images by PCEDA and transferred images with FDA.
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foreground segmentation results. The visualizations show that,
our method can better distinguish the targets and other
background elements and generate more precise density maps
comparing with other UDAmethods. Therefore, the overall MAE
and DMAE can be effectively reduced.

For image-level domain adaptaion methods (FDA and
PCEDA), domain adaptation is achieved by aligning the
image styles. We visualize the transferred images in Figure 10.
Although these methods fail to modify the core difference
like camera views, target scales and appearances, some global
style like illuminations, hues and textures can be transferred
between source and target domain. However, the transferred
images showed some artifacts. For example, some blue and red
shadows can be observed in the transferred images from the
source domain of J→G settings. The PCEDA model recognized
the texture of blue and red poles in the target domain while
incorrectly added it on irrelevant objects like plants. We also
noticed that the better quality of transferred images may not
guarantee better cross-dataset counting performance. FDA can
better boost the cross-domain performance on MTC dataset,
while the quality of style transfer was inferior to PCEDA.
However, when failure cases occur, the image-based UDA
method will significantly harm the cross-domain performance.
As shown in the third row of Figure 10. FDA generated wrong
hues and colors for the source domain, which led to performance
drop on setting J→G in Table 4. While the experimental results
showed that these methods can improve the performance, we
were suspicious whether the boost came from the reduction of
image-level domain gaps, or from data augmentation. As style-
transfer can be viewed as a data augmentation method which
will change the hues, contrasts or illuminations of the original
images. To validate this, we also conducted an experiment where
we randomly swap the low frequency spectrums of two source
domain images (identical to FDA) on the MTC dataset, and
obtained almost the same performance improvement.

6. CONCLUSION

In this paper, we investigate the influence of domain gap for deep
learning-based plant counting method and show how to alleviate
the influence with unsupervised domain adaptationmethods.We
evaluated the performance of several popular UDAmethods. We
found that these methods only prompted limited cross-domain

performance due to the characteristics of domain gaps in plant
counting. Particularly, the countingmodels produced large errors
on background areas. To address this, we purpose a flexible
background-aware domain adaptation module, which can easily
fit into existing object counting methods and enhance the
cross-domain performance. We evaluated our methods under 7
different domain adaptation settings. The results showed that our
method can obtain better cross-domain accuracy than existing
UDA methods on plant counting task.

Nowadays, despite the rapid development of deep learning-
based plant counting methods, the scale and diversity of plant
counting datasets are still limited. When applying data-driven
plant counting methods on new scenes, it is necessary to
consider the hazard of domain gaps. We hope our work can
help more researchers and practitioners noticing this issue and
bring more solutions for UDA in plant counting. In the future,
we will investigate how to extract more generic features for
plant counting.
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