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Identification and gene
expression analysis of cytosine-
5 DNA methyltransferase
and demethylase genes in
Amaranthus cruentus L.
under heavy metal stress

Veronika Lancı́ková, Jana Kačı́rová and Andrea Hricová*

Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak
Academy of Sciences, Nitra, Slovakia
Amaranth has become increasingly popular due to its highly nutritious grains

and ability to tolerate environmental stress. Themechanism underlying defense

and adaptation to environmental stress is a complicated process involving DNA

methylation and demethylation. These epigenetic features have been well

documented to play an important role in plant stress response, including

heavy metal-induced stress. This study was aimed at the identification and

analysis of cytosine-5 DNA methyltransferase (C5-MTase) and demethylase

(DMTase) genes in Amaranthus cruentus. Eight C5-MTase and two DMTase

genes were identified and described in response to individual heavy metals (Cd,

Pb, Zn, Mn) and their combination (Cd/Pb, Cd/Zn, Pb/Zn) in root and leaf

tissues. Studied heavy metals, individually and in combinations, differentially

regulated C5-MTase and DMTase gene expression. Interestingly, most of the

genes were transcriptionally altered under Zn exposure. Our results suggest

that identified amaranth MTase and DMTase genes are involved in heavy metal

stress responses through regulating DNA methylation and demethylation level

in amaranth plants.

KEYWORDS
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1 Introduction

DNA methylation is defined as a conserved and heritable epigenetic modification

that plays an essential function in the regulation of plant development and responses to

stress conditions (Zhang and Lang, 2018; Gallego-Bartolomé, 2020). The most common

and the best characterized epigenetic modification is the 5-methylcytosine (5-mC) which
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possess a methyl group at the 5-carbon position of cytosine

(Pavlopoulou and Kossida, 2007; Harrison and Parle-

McDermott, 2011; Zhang and Lang, 2018). DNA methylation

in plants is found in both symmetric (CG and CHG) and

asymmetric (CHH) contexts, where H = A, T, or C (Chen and

Li, 2004; Bartels et al., 2018). The level of cytosine methylation in

plant genome is different and not stable. In Arabidopsis,

genome-wide methylation mapping has shown that 20–33% of

genes are methylated (Penterman et al., 2007). In rice genome,

13–15% of the total cytosines are methylated, and their number

increases under stress (Kumar et al., 2022). In higher plants,

the level of DNAmethylation is controlled by three mechanisms:

initiation of DNA methylation de novo, maintenance of

pre-existing DNA methylation and DNA demethylation

(Wang et al., 2016; Bartels et al., 2018; Yu et al., 2021). Based

on the data obtained in Arabidopsis and other plant species,

DOMAINS REARRANGED METHYLTRANSFERASE 1 and

2 (DRM1 and DRM2) initiate de novo DNA methylation (Cao

and Jacobsen, 2002; Zhang, 2006; Bartels et al., 2018), DNA

METHYLTRANSFERASE 1 (MET1) maintains CG methylation

(Finnegan and Dennis, 1993; Kankel et al., 2003) and

CHROMOMETHYLASE 2 and 3 (CMT2 and CMT3)

primarily maintain CHG and CHH DNA methylation (Bartee

et al., 2001; Lindroth et al., 2001; Du et al., 2012; Wang et al.,

2016). DNA methylation is a reversible modification, thus DNA

demethylases DEMETER (DME), DEMETER-like 2 (DML2),

DEMETER-like 3 (DML3) and REPRESSOR OF SILENCING 1

(ROS1) actively remove 5-mC through the base excision repair

pathway (Zhu, 2009; Bartels et al., 2018; Liu and Lang, 2020).

To a large extent, DNA methylation regulates plant growth

and development through a cascade of gene repression and

activation (Zhang and Lang, 2018; Kumar and Mohapatra,

2021). Abiotic and biotic stresses can trigger changes in DNA

methylation at the level of individual loci or whole-genome (Liu

and He, 2020). Epigenetic stress memory might be a crucial part

of plant defense strategy to cope with extreme and inevitable

environmental changes (Kinoshita and Seki, 2014; Kumar et al,

2016; Kumar, 2018; Ashapkin et al., 2020). Land pollution from

rapidly expanding industrialization negatively influences the

crop growth and production worldwide. Thus, knowledge of

processes associated with abiotic stress and identification of the

factors responsible for stress memory can provide an

opportunity to improve plant tolerance.

Grain amaranths, namely Amaranthus cruentus, A.

hypochondriacus, and A. caudatus are highly nutritional

pseudocereals characterized by the ability to tolerate

environmental stress (Coelho et al., 2018; Lancıḱová et al., 2020;

Pulvento et al., 2022). There is still a little known about the

molecular mechanisms responsible for such a strong stress

tolerance, and even less is known about epigenetic regulation in

Amaranthus. Herein, we aimed to identify cytosine-5 DNA

methyltransferase (C5-MTase) and demethylase (DMTase) genes
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in amaranth. Specific genes encoding amaranth DNAMTases and

DMTases have not been previously identified and/or analyzed.

Furthermore, the transcript abundance was analyzed in root and

leaf tissues under the normal growing conditions and also in

response to heavy metal (HM) stress. Specifically, the effect of

cadmium (Cd), lead (Pb), zinc (Zn) and manganese (Mn) on the

activity of C5-MTase and DMTase genes was tested. The effect of

HMs was tested individually and also in the following

combinations Cd/Pb, Cd/Zn and Pb/Zn. Understanding of

epigenetic regulation in amaranth plants might provide an

essential information how crops are dealing with HM pollution.
2 Materials and methods

2.1 Plant material cultivation and heavy
metal treatments

Amaranth (Amaranthus cruentus L.) variety “Pribina”,

previously bred and registered in Slovakia, was used for the

analysis. Amaranth plants were cultivated as previously

described by Lancıḱová et al. (2020). Briefly, the hydroponic

experiments were performed in the growth chamber at 23°C, 16/

8 light/dark cycle and 50% humidity (KK 1450 TOP+FIT model,

POL-EKO Aparatura, Poland). Amaranth was germinated and

cultivated in soil until the stage of 4-5 true leaves, then

transferred into hydroponic solution (Hoagland and Arnon,

1950). To study the effect of HMs, amaranth was cultivated in

clean Hoagland solution for one week, consequently HMs were

added into solution. Plants were cultivated with HMs for two

weeks, control plants were cultivated alongside. Then, root and

leaf tissues were collected for analysis. HMs were added into

hydroponic solution either individually, thus Cd (CdCl2; 15

mg.L-1), Pb (PbNO3; 200 mg.L-1), Zn (ZnCl2; 150 mg.L-1), Mn

(MnCl2; 300 mg.L-1) or in combinations [Cd/Pb (15 + 200 mg.L-

1), Cd/Zn (15 + 150 mg.L-1) and Pb/Zn (200 + 150 mg.L-1)].
2.2 Identification and characterization of
A. cruentus DNA MTase and
DMTase genes

For in silico identification of MTase and DMTase, the

genome of Amaranthus hypochondriacus was retrieved from

the online Phytozome database (https://phytozome-next.jgi.doe.

gov/info/Ahypochondriacus_v2_1). To search C5-MTase and

DMTase protein sequences, the conserved key domains were

employed as queries. The Hidden Markov Model (HMM) was

obtained from PFAM database (http://pfam.xfam.org/). The

HMM ID of C5-MTase conserved key domain is PF00145

and the HMM IDs PF00730 and PF15628 are for DNA

DMTase conserved key domains. The candidate proteins were
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confirmed and classified with the Simple Modular Architecture

Research Tool (SMART, http://smart.embl-heidelberg.de/)

(Schultz et al., 1998). Incomplete and redundant protein

sequences were removed. The ExPASy tool (https://web.

expasy.org/protparam/) was used for calculating the grand

average of hydrophobicity (GRAVY), molecular weight (MW)

and isoelectric point (pI). The subcellular localization was

predicted with Plant-mPloc (http://www.csbio.sjtu.edu.cn/

bioinf/plant-multi/) (Chou and Shen, 2010). Prediction of

nuclear localization signals for identified C5-MTase and

DMTase proteins was performed using cNLS Mapper (https://

nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi)

(Kosugi et al., 2009).
2.3 Conserved motifs, gene-structure,
protein-protein interaction analysis

Full length amino acid sequences of amaranth C5-MTases

and DMTases were used for conserved motif analysis using

Multiple Expectation Maximization for Motif Elicitation

(https://meme-suite.org/meme/) (Bailey et al., 2015) software

version 5.4.1. Genomic and coding sequences of C5-MTases and

DMTases in amaranth were analyzed using Gene Structure

Display Server (http://gsds.gao-lab.org/) (Hu et al., 2015)

version 2.0, and schematic diagrams of individual genes were

displayed. The protein-protein interaction network was

constructed using the STRING (https://string-db.org/) (Snel

et al., 2000) software version 11.5.
2.4 Phylogenetic analysis

Amaranth C5-MTase and DMTase protein sequences were

aligned by Molecular Evolutionary Genetics Analysis (MEGA X)

(Kumar et al., 2018) software version X. Subsequently, an

evolutionary analysis based on the Neighbor-Joining method

with 1000 bootstrap replicates was conducted using MEGA X.
2.5 RNA isolation and gene
expression analysis

RNA isolation, reverse transcription and quantitative PCR

were performed as previously described (Lancıḱová et al., 2020).

In summary, total RNA was extracted according to the protocol

based on TriZOL reagent (Chomczynski and Mackey, 1995).

Approximately 50 mg of plant tissues were incubated with

TriZOL, then chloroform extraction was performed and

supernatant was precipitated using isopropanol as previously

described (Lancıḱová et al., 2020). The cDNA was synthetized

from 1 µg of RNA using Maxima First Strand cDNA Synthesis
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Kit for RT-qPCR (Thermo Fisher Scientific, Waltham, USA)

according to the manufacturer’s instructions.

Transcript abundance of identified C5-MTase and DMTase

genes was evaluated using qPCR according to the previously

published protocol (Lancıḱová et al., 2020). Briefly, standard

curves were generated for qPCR optimization using the series of

five-fold cDNA dilutions (1:1, 1:5, 1:25, 1:125, 1:625, and

1:3125). For each gene, PCR efficiency (E), and correlation

coefficient (R2) were determined using the linear regression.

PCR efficiency of 90-110% and R2>0.99 were accepted. The

quantitative PCR (qPCR) was performed in the LightCycler®

Nano (Roche, Basel, Switzerland). The reaction mixtures

consisted of 2x SsoAdvanced Universal SYBR® Green

supermix (Bio-Rad, Hercules, USA), 400 nM of each forward

and reverse primer, 50 ng of cDNA, and nuclease-free water

added up to the total reaction volume of 10 µl. Two-step

amplification protocol was applied, initial denaturation at 95°C

for 30 sec; 45 cycles of denaturation at 95°C for 15 sec and

annealing/polymerization at 60°C for 60 sec; then melting

analysis from 60°C to 97°C at 0.1°C/s was performed to verify

the specificity of the desired amplicon. Expression of all analyzed

genes was determined in each reaction using the threshold cycle

(Ct value). The Ct value was set automatically by LightCycler

Nano software. Calculation of relative gene expression was

performed according to Pfaffl (2001) using the PCR efficiencies

and Ct values of control and unknown samples. The

Amaranthus hypochondriacus Tubulin (AhTUB) gene was used

as an internal standard in all experiments. The primer sequences

of the MTases, DMTases and reference gene are shown in

the Table 1.
2.6 Statistical analysis

Statistical analysis of the obtained data was performed using

the GraphPad Prism version 9.4.0. (GraphPad Software, Inc.,

San Diego, USA). All analysis were performed in three biological

replicates. Statistical significance was analyzed using the one-

way ANOVA with post-hoc Tukey’s multiple comparisons test.
3 Results

3.1 Identification, structural analysis,
nuclear localization of Amaranthus
cruentus MTase and DMTase

Taken together, eight MTases and two DMTases were

described in Amaranthus cruentus. Based on the identified

conserved domains, these DNA MTases were divided into

three groups – MET1, CMT and DRM2. MTases and

DMTases were named according to the highest identity score
frontiersin.org

http://smart.embl-heidelberg.de/
https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/
http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/
https://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi
https://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi
https://meme-suite.org/meme/
http://gsds.gao-lab.org/
https://string-db.org/
https://doi.org/10.3389/fpls.2022.1092067
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
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with their closest homolog as follows: two members of MET1

group, AcMET1a and AcMET1b, four members of CMT group,

AcCMT1, AcCMT2a, AcCMT2b and AcCMT3, two members of

DRM2 group, AcDRM2a and AcDRM2b, and two DML2

DMTases, AcDML2a and AcDML2b.

Key DNA methylase conserved domains were identified,

namely bromo adjacent homology (BAH) domain and

replication foci domain (RFD) in MET1 group and BAH and

chromo (Chr) domains in CMT group. MET1s are homologs of

mammalian DNMT1, while CMTs are plant-specific DNMTs.

Two identified DMTases belong to the DML2 group, and

harbored RNA recognition motif-DME (RRM-DME) domain,

permuted single zf-CXXC (Perm-CXXC) domain and

endonuclease III (ENDO3c) domain. Structural analysis

showed that AcCMT1, AcCMT2a and AcCMT2b harbor one

BAH domain and one Chr domain, while AcCMT3 harbors one

BAH domain and two Chr domains. MET1 was characterized by

presence of two RFD and two BAH domains.

The length of amino acid (AA) sequences varied from 256

(AcMET1a) to 1492 (AcMET1b) in C5-AcMTase proteins. The

AA sequences length of DMTase was 1929 and 286 for

AcDML2a and AcDML2b, respectively. The molecular weight

ranged from 28.43 to 215.08 kDa with a pI 4.76-7.79, mostly

indicating the neutral and basic nature of the identified proteins.

The GRAVY index of the identified proteins varies from the

lowest -0.576 (AcDRM2b) to the highest -0.154 (AcMET1a),

thus A. cruentus C5-MTases and DMTases are hydrophilic. The

predicted subcellular localization for the most identified proteins

was in the nucleus, except the proteins AcMET1a and

AcDRM2b localized in chloroplast (Tables 2, 3).

The exon-intron architecture of the A. cruentus MTase

and DMTase genes was characterized. The coding region of

the MTase genes was interrupted by 3–29 introns, while that of

the DMTase was interrupted by 6 and 18 introns, respectively.
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Among them, the MTase gene with the largest number of

introns is AcCMT3, while AcMET1a contains the least

introns (Figure 1).
3.2 Phylogenetic analysis

Evolutionary analysis was performed where A. cruentus C5-

MTases and DMTase were divided into two main clusters. In

total, 10 conserved motifs were identified for both C5-MTases

and DMTase. The length of conserved motifs varied from 20 to

50 amino acids in analyzed C5-MTases and from 6 to 50 amino

acids in DMTase (Figure 2).
3.3 Protein-protein interaction

The network of protein-protein interactions was

computationally predicted using the STRING 11 database. The

highest homology of identified C5-MTase and DMTase proteins

was shown to Beta vulgaris. Therefore, the corresponding

protein homologs of A. cruentus and B. vulgaris were aligned

and an interaction map was constructed. Functionally, the

analyzed proteins are involved in the following biological

processes – DNA methylation on cytosine within a CG

sequence, non-CG methylation, maintenance of DNA

methylation, demethylation, base-excision repair and DNA

metabolic process. Specifically, AcMET1a and AcMET1b

showed 70 and 82% homology with B. vulgaris DNA

(cytosine-5)-methyltransferase 1-b like isoform x1,

respectively. A high homology was observed for all analyzed

proteins, specifically AcCMT1 and putative DNA (cytosine-5)-

methyltransferase CMT1 showed 71% identity. Furthermore, A.

cruentus AcCMT2a, AcCMT2b and AcCMT3 share homology
TABLE 1 Primer sequences for analyzed MTase, DMTase and reference genes in A. cruentus.

GENE FORWARD 5’-3’ REVERSE 5’ 3’

AcMET1a GTGGTTTTGGAGAACTTGGGG GCATGCTTACGTGACTGGGA

AcMET1b GGCCAATGGGGAAAATGCTT CGATCGCAGCTATCTCGCTT

AcCMT1 CAAAGCAAACCAAGTCGGGG CTCCAGCTAAGGTTGCACCA

AcCMT2a CTTCCTCCGGTGACAAACGA AACATCCGGAGAACCCAACA

AcCMT2b TGGGGGAAAATGCGTCGTTA TATCGCCAAAGACGAAGGCA

AcCMT3 CAAACTGTGGGGTCGGAGTT TTGTTGTCAGCACGAACACG

AcDRM2a CCTGGTCCGGTATCAGAGGA GACGCCCTTGCCATTTGTG

AcDRM2b CAGAGGCTTCAATCTGGCGA GCCACCACCTCTTGTGTGAT

AcDML2a GTCCATTCACAGCCTGACCA CTCTGCTGTTGCTCACTGGA

AcDML2b TGACCATCCACTGCTCAAGG TCGCGGTTCGAACAGGTATC

AhTUB TCTCAGCAGTATGTCTCCCTC TCTACTTCTTTGGTGCTCATC
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TABLE 3 Prediction of nuclear localization signals for identified C5-MTase and DMTase proteins in A. cruentus; cut off score = 2; protein with score >8
is predicted to be localized exclusively in nucleus, score >3 and <8 both the nucleus and the cytoplasm; score <2 localized in the cytoplasm.

Protein
name

Monopartite
NLSs

Starting position
monopartite NLS

Score
monopartite

NLS
Bipartite
NLSs

Starting position
bipartite NLS Score bipartite NLS

AcMET1a – – – 3 10/224/224 2/2/2.3

AcMET1b 2 8/616 5/4 14
5/5/8/8/8/8/8/8/10/10/

10/10/28/28
2.6/5.7/3.1/6.5/4.8/4.9/2.6/3.2/

6.8/3.1/2.7/3.1/3.2/2.3

AcCMT1 1 16 2 12
12/14/14/14/14/14/16/

16/16/18/18/18
2.5/7.2/3.6/7.1/2.3/4.2/6.4/2.6/

4.4/6.2/3.7/3.4

AcCMT2a 3 85/626/628 2/6/3 1 19 2.5

AcCMT2b 2 187/937 3.5/2 2 77/934 3.2/3.3

AcCMT3 5 21/21/21/21/111 3/7/4.5/2/3.5 6 1/1/2/3/3/1280 6.1/4.9/4.3/5.1/3.7/2

AcDRM2a 2 243/246 12/6 6
233/243/246/246/246/

495 4.5/4.5/6.5/2/2/2.8

AcDRM2b 1 170 5.5 2 171/421 7/3.6

AcDML2a 5 617/706/708/763/867 2.5/3/2/5/9 8
4/25/25/346/347/364/

1894/1894 2/2/3.1/2/5.2/2/3.3/2.8

AcDML2b 1 12 2.6 – – –
F
rontiers in Pl
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TABLE 2 Characterization of A. cruentus C5-MTase and DMTase genes; 1Gene ID from A.hypochondriacus genome in Phytozome database;
2Chromosome location in the genome of A.hypochondriacus; 3AA – number of amino acids; 4MW – protein molecular weight; 5GRAVY – grand
average of hydrophobicity; 6pI – isoelectric point; 7Intron number; 8Predicted subcellular localization by Plant-mPloc software.

Gene
name

Gene
ID1

Chromosome
localization2location

AA
(aa)3

MW
(kDa)4 GRAVY5 pI6 Intron7 Predicted subcellular

localization8localization

AcMET1a
AH001971-
RA

Scaffold_1:32547615.32563037 256 28.43 -0.154 7.79 3 Chloroplast

AcMET1b
AH006822-
RA

Scaffold_4:3862657.3871287 1492 167.52 -0.488 5.45 11 Nucleus

AcCMT1
AH003426-
RA

Scaffold_2:16586229.16601252 803 91.11 -0.53 5.39 20 Nucleus

AcCMT2a
AH007324-
RA

Scaffold_4:13151061.13170913 1339 149.58 -0.457 4.98 19 Nucleus

AcCMT2b
AH018462-
RA

Scaffold_12:5201808.5215197 988 111.44 -0.492 5.65 20 Nucleus

AcCMT3
AH010889-
RA

Scaffold_6:20787067.20799928 1325 148.75 -0.561 4.82 29 Nucleus

AcDRM2a
AH015836-
RA

Scaffold_10:13471627.13480075
reverse

527 58.38 -0.445 4.76 9 Chloroplast/Nucleus

AcDRM2b
AH004791-
RA

Scaffold_3:1047582.1051004
forward

472 53.26 -0.576 6.27 6 Chloroplast

AcDML2a
AH012665-
RA

Scaffold_8:2344820.2356763
reverse

1929 215.08 -0.721 6.38 18 Nucleus

AcDML2b
AH023483-
RA

Scaffold_16:11334720.11349586 286 32.51 -0.558 4.94 6 Nucleus
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with B. vulgaris CMT2-like, CMT2 isoform x1 and CMT3 at

levels 71, 72, and 77%, respectively. Both AcDRM2a and

AcDRM2b were homologous to B. vulgaris DRM2-like at the

level 70 and 82%. Amaranth demethylase AcDLM2a showed

64% homology with protein ROS1, and AcDLM2b with

Demeter-like protein 3 isoform x1 has 49% homology.

The analyzed proteins were divided into three clusters at a

confidence level of 0.40. The interaction among AcCMT2a,

AcCMT2b and AcDLM2b was observed, then AcCMT1,

AcDLM2a and AcDRM2b were clustered, and the third cluster

was formed by AcDRM2a, AcMET1b and AcCMT3 (Figure 3).

AcDLM2a and AcDLM2b interact relatively strongly with C5-

MTases, mainly AcCMTs and AcDRM2b, suggesting that the
Frontiers in Plant Science 06
level of cytosine methylation can be dynamically regulated by

both C5-MTases and DMTases.
3.4 DNA MTase and DMTase gene
expression in A. cruentus in response to
HM stress

Environmental pollution with HMs can significantly alter

plant growth and development. Amaranth efficiently copes with

HMs, even accumulates the large amount of metal ions into root

tissues. However, the molecular mechanism of amaranth

adaptive responses to HMs is still uncovered. To evaluate the
FIGURE 1

Gene structure of A. cruentus C5-MTase and DMTase genes; CDS regions are represented by yellow boxes; UTR regions by blues boxes; lines
indicate intron regions.
B

A

FIGURE 2

Evolutionary analysis and conserved motifs identified in A. cruentus C5-MTase and DMTase proteins; evolutionary analysis was performed using the
Neighbor-Joining method; conserved motifs were identified using the MEME software, conserved motifs identified in (A) C5-MTases and (B) DMTases.
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Lancı́ková et al. 10.3389/fpls.2022.1092067
responses of the C5-MTase and DMTase transcripts to metal

stress, four metal ions - Cd, Pb, Zn, and Mn were applied in the

excessive concentration. In general under the control conditions,

MTase and DMTase genes showed higher expression in leaf

tissues when compared to the roots (Figure 4). However, de novo

MTase AcDRM2a gene expression was almost completely

silenced in leaf tissues. Relative gene expression of MTase and

DMTase genes in tested tissues under HMs exposure is shown in

Figure 5. Significant changes in gene expression between control

and HM-treated plants are schematically represented in a

heatmap (Figure 6) based on the Tukey’s test.

When comparing the stress response in root and leaf

amaranth tissues, notable gene response was primarily

observed in roots (Figure 5). This is consistent with our

hypothesis because roots are the first point of contact, and

most HMs are stored in roots. When analyzing the effect of

various HMs on the MTase and DMTase gene expression, Mn

did not disturb the amaranth methylome. The expression of

most genes was comparable to control plants in both tissues,
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with the exception of AcDRM2a and AcCMT1, which were

differentially expressed in leaves. Interestingly, Zn triggered a

much stronger stress response than toxic Cd. In response to Zn

stress, almost all analyzed genes were significantly upregulated in

roots (Figure 6A). Especially chromomethylase AcCMT2b

showed 55-fold upregulation under this metal exposure. The

effect of Cd exposure was manifested in root tissues by

significantly higher activity of 3 chromomethylase genes

(AcCMT1, AcCMT2a, and AcCMT3), de novo MTase gene

AcDRM2a and DMTase gene AcDML2b (Figure 6A). The

transcript level under Pb stress was significantly higher in

AcMET1a and AcDRM2b, ensuring the maintenance of CG

methylation and de novo DNA methylation.

As shown in Figure 5, MTase and DMTase gene expression

in leaves was mostly steady or slightly upregulated in

comparison to the controls. However, de novo MTase

AcDRM2a and AcDRM2b were significantly upregulated in

response to Cd and Pb. On the other side, AcCMT1 was

significantly downregulated in response to the Cd, Zn and Mn
FIGURE 3

Computational prediction of protein-protein interaction network for AcC5-MTases and AcDMTases showing functional and physical
associations among proteins. The dotted lines represent a relatively weak interaction while the solid lines indicate a relatively strong interaction.
Colored lines between the proteins indicate the various types of interaction evidence: yellow line indicates textmining evidence, black line
indicates coexpression evidence and purple line indicates experimental evidence.
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stress. Moreover, AcCMT3 was significantly suppressed in

response to the Cd stress (Figure 6B), which indicates the

different regulation of DNA MTases depending on the

metal stress.
3.5 Effect of combined HM stress on
MTase and DMTase gene expression

The expression pattern of MTase and DMTase genes was

also investigated under combined HM stress (Figures 5, 7). As

well studied toxic metals, Cd and Pb ions and their combination

were applied. Additionally, Zn was used as an essential metal

that showed the most notable effect on expression patterns of

invest igated MTase and DMTase genes , mainly in

roots (Figure 6A).

Interestingly, the combination of two toxic metals Cd/Pb did

not significantly upregulate gene expression in below-ground

tissues (Figure 7A). Unlike roots, combined Cd/Pb stress

triggered the most significant response in leaf tissues.

Specifically, de novo MTase gene AcDRM2b and DMTase

AcDML2a, were significantly upregulated 6 and 5-fold,

respectively (Figure 7B). Unexpectedly, the expression of

AcCMT2b and AcCMT3 was completely silenced in leaves

during this combined HM stress.

However, there is clear evidence that combined stress

involving Zn led to the significant response of specific MTase

and DMTase genes. In roots, genes AcMET1b and AcDRM2b,

responsible for the maintenance of CG methylation, were

significantly (6 and 90-fold, respectively) upregulated in

response to the simultaneous Cd/Zn stress (Figure 7A).

Furthermore, DMTase gene AcDML2b showed 20-fold

upregulation. As the results show, the AcDRM2b appears to
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play a crucial role in response to the Cd/Zn stress, perhaps

protecting the amaranth genome from excess stress by

hypermethylation. At the same time, DMTase AcDML2b

counteracts uncontrolled DNA methylation.

DMTase gene AcDML2b was also significantly upregulated

in response to the combined Pb/Zn stress, which suggests its

involvement in genome protection against hypermethylation.

Simultaneous Pb/Zn exposure induced significant upregulation

of AcMET1a and chromomethylases AcCMT2a and

AcCMT2b (Figure 7A).
4 Discussion

In the last few years, relatively forgotten pseudocereal

amaranth (Amaranthus spp.) gained the interest of researchers

worldwide. When climate change and environmental pollution

are in focus, amaranth’s adaptability and tolerance to harsh

environmental conditions become interesting. These attributes

might also be important for agricultural purposes and soil

remediation strategies (Li et al., 2016; Guo et al., 2019; Wang

et al., 2019; Lancıḱová et al., 2020; Njoku and Nwani, 2022).

However, there is little known about amaranth stress response at

the molecular level. Based on our knowledge, no study dealing

with epigenetic regulation of stress response has been performed

up to this date.

Herein, eight A. cruentus C5-MTase and two DMTase genes

were identified. Three groups of C5-MTase genes, MET, CMT

and DRM, were recognized. As regards to MET genes, analysis

resulted in identification of two genes, similar to soybean or rice

(Sharma et al., 2009; Garg et al., 2014). In comparison, there are

six members of MET group in rapeseed and only one in tomato

or pea (Pavlopoulou and Kossida, 2007; Cao et al., 2014; Fan

et al., 2020a). Moreover, four members of the CMT group were

discovered in amaranth and also in soybean, while there are

three members in rice and six members in rapeseed (Sharma

et al., 2009; Garg et al., 2014; Fan et al., 2020a). Amaranth

harbors CMT1 gene also identified in Arabidopsis, however,

concluded as defective and/or silent. Interestingly, globe

artichoke lacks CMT1 homolog (Ashapkin et al., 2016).

Likewise in this study, all rapeseed CMT proteins were also

predicted to be localized in the cell nucleus (Fan et al., 2020a),

while the predicted localization of the other MTases varied. Only

two DRM genes were recognized in A. cruentus, while rice,

soybean or rapeseed contain four, five, and eight DRM genes,

respectively (Sharma et al., 2009; Garg et al., 2014; Fan

et al., 2020a).

From the two DMTase groups, only members of the DML2

group have been found in A. cruentus. DMTases DML2 belong

to the 5-methylcytosine DNA glycosylases, which are expressed

in many plant organs and are required to remove DNA

methylation marks from improperly-methylated cytosines, but
FIGURE 4

Basal expression of A. cruentus MTase and DMTase genes in root
and leaf tissues in control conditions. Data were quantified using
the 2−DDCt method based on Ct values of A. cruentus MTase
and DMTase genes and tubulin. Error bars indicate the mean ±
SD (standard deviation) of three biological replicates.
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also to maintain high levels of methylation in properly targeted

sites (Ortega-Galisteo et al., 2008). In the Arabidopsis genome,

all groups of DMTase genes, including DML2, are encoded

(Schumann et al., 2017). Also, higher number of the DME,

DML3 and ROS1 groups have been discovered and identified in

rapeseed than that of A. cruentus (Fan et al., 2020a).

Structural analysis showed that MET1 in A. cruentus is

characterized by presence of two RFD and two BAH domains

likewise observed in Solanum melongena (Kumar et al., 2016). It

is assumed that one BAH domain mediates MET1 interaction

with histone tails and second BAH domain ensures interaction

with other proteins (Garg et al., 2014). The amaranth DMTases

possess Perm-CXXC, which is the main attribute of Demeter-

like proteins in plants (Gianoglio et al., 2017). Moreover, RRM-

DME, ENDO3c belonging to the HhH-GPD domain and iron-

sulphur binding FES domain which belongs to the ENDO3

superfamily. Specifically, RRM-DME sequence consists of 90
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residues identified in RNA and ssDNA-binding proteins. The

domain HhH-GPD is linked to base excision repair DNA

glycosylase (Gianoglio et al., 2017). Protein-protein interaction

analysis revealed that DMTases interact relatively strongly with

C5-MTases, especially AcCMTs and AcDRM2b. Similar results

were obtained in the study by Yu et al. (2021), in which it was

supposed that C5-MTases and DMTases may form a reciprocal

negative feedback loop that dynamically affects the overall level

of cytosine methylation.

A close relationship exists between physiological responses,

gene expression levels, and DNA methylation patterns under

HM stress. Hypermethylation is considered one of the defense

strategies of plants to protect against possible damage by HM

products (Sun et al., 2022). Modulation of the metal stress

response by DNA methylation has been reported in many

different species, including important cereals such as wheat

and barley (Kong et al., 2020). It is assumed that different
FIGURE 5

Relative expression of A. cruentus MTase and DMTase genes in root and leaf tissues under the individual and combined HM stress. Error bars
indicate the mean ± SD (standard deviation) of three biological replicates. .
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plant protection mechanisms may exist depending on whether

the heavy metal element is essential for plant growth or not (Sun

et al., 2022). In the present study, DNA methylation also varied

within the combination of metals as well as with individual

metal application.

We analyzed the transcript abundance of identified MTase

and DMTase genes under exposure to four metals (Cd, Pb, Zn,

Mn) and three of their combinations (Cd/Pb, Cd/Zn, Pb/Zn).

Our results indicate that one MTase/DMTase gene could be

regulated by more than one metal. Similarly, Shafiq et al. (2020)

concluded their expression study of MTases in maize under the

same metal treatments.

Our previous results demonstrated uptake and accumulation

of significant portion of Cd mainly into roots, with low

translocation into aerial parts (Lancı ́ková et al., 2020).

Consistent with previous findings, Cd induced significant

upregulation of five genes in roots, including one DMTase,

while only one gene was upregulated in shoots (AcDRM2b).

However, the activity of two upregulated genes (AcCMT1 and

AcCMT3) in roots was significantly suppressed in shoots. This

indicates that level of Cd-induced stress decreased in aerial plant
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parts. These chromomethylase genes are strongly associated with

non-CG methylation (Stroud et al., 2014; Ashapkin et al., 2020).

In leaves, only AcDRM2b gene was significantly responsive to

Cd and Pb stress either when applied individually or in Cd/Pb

combination. However, when these metals were applied with Zn,

the AcDRM2b transcript was identified in leaf tissues as low. As

for the amaranth roots, DRM genes were upregulated in

response to the Cd, Pb or Zn stress and in Cd/Zn

combination. Type of DRM proteins is present solely in

plants. In chickpea roots, DRM genes were upregulated in

response to drought, cold and salt stress (Garg et al., 2014).

Differential expression of DNA MTases in response to Pb, Cd

and Zn metal treatment was also observed in wheat and maize

(Shafiq et al., 2019; Shafiq et al., 2020).

Sun et al. (2021) indicated that soybean resists Cd stress via

an increased level of genomic DNA methylation, with the

methylation level increasing with increased Cd concentration.

Similarly, increased Cd concentrations combined with Mn

boosted the number of differentially methylated loci in

pokeweed (Jing et al., 2022). On the other hand, Cd-exposed

and Cd-free rice plants had similar genomic cytosine
B

A

FIGURE 6

Heatmap representation of relative expression data for A. cruentus MTase and DMTase genes in the root (A) and leaf (B) tissues under the
various HM stress; asterisks in heatmap show statistical significance at p <0.05 based on Tukey’s test when comparing HM-treated and control
plants. The white and blue scale indicate relative expression to control samples where the expression level was set to 1.
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methylation levels and no difference in DNA methylation marks

was observed between the roots and shoots of rice seedlings

exposed to Cd (Feng et al., 2016).

In response to individual Pb, amaranth roots showed

significant upregulation of AcMET1a gene, responsible for

maintenance of CG methylation, and AcDRM2b gene,

responsible for de novo non-CG methylation (Brocklehurst

et al., 2018). AcMET1 was upregulated in the case of combined

Cd/Zn and Pb/Zn stress, while AcCMT was upregulated only in

the case of Pb/Zn. Apart from MET1 and CMT genes also

DML2b gene showed increased expression in root tissue under

this metal combination. Specific changes in DNA methylation

were also observed in response to the combination of metals (Pb,

Cd and Zn) in maize. This suggests that the combination of

metals could produce different levels of DNA methylation

compared to individual metals (Shafiq et al., 2020).

Zn-induced stress significantly increased transcript

abundance in amaranth root tissues in almost all analyzed

MTase and DMTase genes. In contrast, the expression of

studied genes was mainly comparable to the controls under

Mn stress. Moreover, AcCMT1 was significantly downregulated

in aerial parts in response to Zn and Mn stress. The amaranth

genome encodes three types of CMT genes, CMT1, CMT2 and

CMT3, which is comparable to the Arabidopsis genome. CMT1

is the least studied gene because it has been suggested that CMT1

is non-essential (Bewick et al., 2017). Stroud et al. (2014) tested
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CMT2 and CMT3 activity in vitro and confirmed their essential

involvement in CHH and CHG methylation. Interestingly,

CMT2 primarily methylated unmethylated sequences in both

CHH and CHG sites while CMT3 preferentially targeted CHG

sites at the hemimethylated sequences. Nevertheless, CMT3 is

widely associated with non-CG methylation, there is a link

between CMT3 and CG context gene-body methylation

observed in Brassicaceae species (Bewick et al., 2017).

In control conditions, MTase genes showed higher

expression in leaf tissues compared to roots. On the other

hand, under HM stress, the expression of MTase genes was

higher in root tissues. The exception was AcDRM2a gene, which

had a higher expression in the roots under control conditions

and in leaves under HM stress, especially under Pb stress. In

general, none of the AcCMTs and AcMETs genes were

significantly upregulated in leaves under HM stress. Some of

them were significantly downregulated and AcCMT2b and

AcCMT3 were completely silenced under combined HM stress

in leaves. Given that the roots are in contact with heavy metals,

we assume that DNA methylation occurs mainly in this tissue.

The pattern of DNAmethylation is organized by the interplay of

DNA methylation and demethylation. In case of acute stress,

hypermethylation can be balanced by demethylation process

which prevents transposable elements from accumulation of

DNA methylation. As a result, DNA methylation is not

spreading into adjacent genes (Penterman et al., 2007; Parrilla-
B

A

FIGURE 7

Heatmap representation of relative expression data for A. cruentus MTase and DMTase genes in the root (A) and leaf (B) tissues under the
combined HM stress; asterisks in heatmap show statistical significance at p <0.05 based on Tukey’s test when comparing HM-treated and
control plants. The white and blue scale indicate relative expression to control samples where the expression level was set to 1.
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Doblas et al., 2019). Demethylation has also been found in

response to HMs (Sun et al., 2022).

Upregulation of DML2 DMTases genes was observed in

amaranth root tissues in response to Cd and Zn stress either

when applied individually or in combination. DMTase gene

AcDML2b was also significantly upregulated in response to the

combined Pb/Zn stress in roots and AcDML2a was significantly

upregulated in response to the combined Cd/Pb stress in aerial

tissue. Similar observation, thus upregulation of DMTases, was

described in eggplant in response to salt and drought stress

(Moglia et al., 2019). In rapeseed, DMTase genes were up- or

down-regulated in response to hot and salt stress (Fan et al.,

2020a). In the study by Gu et al. (2016), expression of some

DMTase genes increases in response to various abiotic stresses

including heat, cold, drought and salinity in Fragaria vesca. On

the other hand, DMTase genes were significantly inhibited and

DNA methylation was increased at the genome-wide level in

Arabidopsis plants under Cd stress (Fan et al., 2020b).
5 Conclusion

Eight C5-MTase (MET, CMT and DRM) and two DMTase

(DML2) genes were discovered and identified in A. cruentus

genome. Phylogenetic analysis separated identified genes into

two main clusters. The expression pattern of identified genes

varies in response to individual and combined metal treatments.

Not surprisingly, the response to HM stress was observed mostly

in roots compared to leaves, since the roots are the first point of

contact and studied HMs are primarily stored in the roots.

Further, transcripts of identified genes were highly abundant

under Zn treatment, suggesting they are implicated in the

mechanisms to protect the amaranth plant from Zn-induced

stress. The results, however, document the involvement of C5-

MTase and DMTase in general response to heavy metal-induced

stress. Several other studies have also shown that patterns in

methylation and demethylation levels differ by type of HM, but

the results of some studies are contradictory. This suggests that

HM-induced DNA methylation and demethylation in plants is a

rather complicated process that requires further investigation.
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