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b-1,4-Xylan backbone synthesis
in higher plants: How complex
can it be?

Nadine Anders, Louis Frederick Lundy Wilson †,
Mathias Sorieul †, Nino Nikolovski and Paul Dupree*

Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
Xylan is a hemicellulose present in the cell walls of all land plants.

Glycosyltransferases of the GT43 (IRX9/IRX9L and IRX14/IRX14L) and GT47

(IRX10/IRX10L) families are involved in the biosynthesis of its b-1,4-linked
xylose backbone, which can be further modified by acetylation and sugar

side chains. However, it remains unclear how the different enzymes work

together to synthesize the xylan backbone. A xylan synthesis complex (XSC) has

been described in the monocots wheat and asparagus, and co-expression of

asparagus AoIRX9, AoIRX10 and AoIRX14A is required to form a catalytically

active complex for secondary cell wall xylan biosynthesis. Here, we argue that

an equivalent XSC exists for the synthesis of the primary cell wall of the eudicot

Arabidopsis thaliana, consisting of IRX9L, IRX10L and IRX14. This would suggest

the existence of distinct XSCs for primary and secondary cell wall xylan

synthesis, reminiscent of the distinct cellulose synthesis complexes (CSCs) of

the primary and secondary cell wall. In contrast to the CSC, in which each CESA

protein has catalytic activity, the XSC seems to contain proteins with non-

catalytic function with each component bearing potentially unique but crucial

roles. Moreover, the core XSC formed by a combination of IRX9/IRX9L, IRX10/

IRX10L and IRX14/IRX14L might not be stable in its composition during transit

from the endoplasmic reticulum to the Golgi apparatus. Instead, potential

dynamic changes of the XSC might be a means of regulating xylan biosynthesis

to facilitate coordinated deposition of tailored polysaccharides in the plant

cell wall.
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Introduction

The plant cell wall is a complex matrix of polysaccharides,

proteins and other polymers. The primary cell wall formed

around the growing cell mostly consists of cellulose,

hemicellulose and pectin, and is generally thin and flexible. By

contrast, the secondary cell wall is produced in fully grown

specialized cells and forms a thick and more rigid structure with

differing polysaccharide composition. Incorporation of lignin

rigidifies and reduces the water permeability of the secondary

cell wall. Xylan is present in both primary and secondary cell

walls (Scheller and Ulvskov, 2010) and is crucial to cell wall

strength and biomass recalcitrance. It consists of a linear

backbone of b-1,4-linked D-xylosyl residues. The backbone can

be substituted with decorations such as acetyl groups, a-D-
glucuronic acid, 4-O-methyl-a-D-glucuronic acid, a-L-
arabinofuranose or b-D-xylose, and the sugar side chains

themselves can be further modified. The type, pattern and

degree of substitution vary considerably depending on species

and tissue, which has been recently reviewed in Smith et al., 2017

and Ye and Zhong, 2022. In addition, differences in primary and

secondary xylan structure have been described. In Arabidopsis

primary cell wall, glucuronic acid is further substituted with a

pentosyl modification, suggested to be a-1,2-L-Arap (Chong

et al., 2015; Mortimer et al., 2015). An a-1,2-L-Arap
modification on glucuronic acid of xylan was also identified in

non-commelinid monocots, though, while present in growing

Asparagus tips, it was not detectable in stem xylan (Pena et al.,

2016), suggesting that a-1,2-L-Arapmodifications on glucuronic

acid could be primary cell wall-specific. In contrast to the

primary cell wall, the majority of Arabidopsis secondary cell

wall xylan carries acetate or glucuronic acid decorations on

even-numbered, alternating xylose residues, while other xylan

regions have clustered glucuronic acid substitutions (Bromley

et al., 2013; Busse-Wicher et al., 2014; Grantham et al., 2017).

Over the years, a plethora of proteins have been implicated in

the biosynthesis of xylan. Many are known to modify the xylan

backbone or are proposed to produce the essential reducing end

oligosaccharide found in eudicots; others are of yet unknown

function. An overview of xylan biosynthesis can be found in Smith

et al., 2017 and Ye and Zhong, 2022. Here, we would like to focus

on three functionally non-redundant groups of proteins that are

essential for the b-1,4-xylan backbone synthesis in a wide range of
plants (Zhong et al., 2019), comprising two groups assigned to

CAZy glycosyltransferase family GT43 (IRX9/IRX9L and IRX14/

IRX14L) and one to family GT47 (IRX10/IRX10L) (Drula et al.,

2022). Early on, the identification of irx9 and irx14 as xylan-

deficient Arabidopsis mutants with reduced xylan synthesis

activity led to the idea that both enzymes might act together in

a protein complex (Brown et al., 2007; Lee et al., 2007; Lee et al.,

2012a). More recent genetic evidence supporting the existence of a

XSC describes the dominant negative effect of IRX10 point

mutants (Brandon et al., 2020). Biochemical analysis of wheat
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and asparagus proteins further supports the existence of a XSC in

monocots (Zeng et al., 2010; Jiang et al., 2016; Zeng et al., 2016). In

addition, simultaneous expression of the three asparagus proteins

AoIRX9, AoIRX10 and AoIRX14A in tobacco is required to obtain

a catalytically active complex in the Golgi.

How three functionally non-redundant putative GTs work

together to facilitate the b-1,4-linkage of the xylan backbone,

however, remained unanswered. In vitro xylosyltransferase or

xylan synthase activity has only been successfully demonstrated

for isolated GT47 proteins from Arabidopsis, rice, Plantago and

Physcomitrium (formerly Physcomitrella), as well as for an IRX10

ortholog from the streptophyte alga Klebsormidium nitens

(formerly Klebsormidium flaccidum) (Jensen et al., 2014;

Urbanowicz et al., 2014; Jensen et al., 2018; Wang et al., 2022).

The most recent experimental data suggest two in vitro activities

of rice IRX10: one for elongating the xylan chain and the other for

initiating xylan synthesis (Wang et al., 2022), although only

elongating activity was detected in Arabidopsis IRX10L

(Urbanowicz et al., 2014). Lee et al. showed b-1,4-
xylosyltransferase activity of IRX9 and IRX14 when co-

expressed in tobacco (Lee et al., 2012a; Lee et al., 2012b)),

however, a positive effect of the co-expressed proteins on

endogenous IRX10/IRX10L activity cannot be excluded,

especially as the activity of IRX9 and IRX14 alone could not be

shown (Lee et al., 2012a; Lee et al., 2012b; Urbanowicz et al., 2014).

GT43s adopt a GT-A structural fold; enzymes of this class

typically possess an essential catalytic DxD motif, which is

critical in coordinating divalent metal ions required for

nucleotide-binding (Lairson et al., 2008). Indeed, mutations in

the DxD (or DD) motif of AoIRX14A, AoIRX14B and AtIRX14

result in a loss of function, suggesting that IRX14 could be

catalytically active or require UDP-Xyl binding for function

(Ren et al., 2014; Zeng et al., 2016). Mutations in the DxD motif

of AoIRX9L and AtIRX9L, however, have no effect on the

function of the protein and the motif is not conserved in

IRX9. These findings, taken together with the prediction that

some IRX10s and IRX10Ls lack a transmembrane domain

(Jensen et al., 2014), led to the hypothesis that, rather than a

catalytic role, IRX9 and IRX9L might serve a structural role in

xylan synthesis (Ren et al., 2014; Zeng et al., 2016). Yet, the

functional role of the non-catalytic GTs in the XSC may be more

significant in that they could control active complex formation

and consequently regulate xylan biosynthesis.

Evolution of paralogs for primary
and secondary cell wall
xylan synthesis

Streptophyte algae exhibit both b-1,4-xylan and GT43 xylan

synthesis genes. Furthermore, at least for Klebsormidium nitens,

IRX10 xylan synthesis function has been demonstrated (Taujale

and Yin, 2015; Jensen et al., 2018; Hsieh and Harris, 2019).
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However, in this species, only one ortholog of each group of

IRX9/IRX9L, IRX10/IRX10L and IRX14/IRX14L is present. This

is also the case in the early vascular model plant Selaginella

moellendorffii. Gene duplication has taken place in the moss

Physcomitrium patens, which has only one catalytically active

IRX10/IRX10L (Jensen et al., 2014), but two IRX9/IRX9L and

three IRX14 paralogs (Hornblad et al., 2013; Haghighat et al.,

2016); however, these duplicated genes might not encode

functional orthologs of the two paralogous gene groups seen in

higher plants. The paralogous genes seen in higher plants

emerged at different stages during evolution: the divergence of

IRX9 from IRX9L most likely occurred earlier than that of

IRX10/IRX10L, or that of IRX14/IRX14L, with separate

homologs for IRX9 and IRX9L in monocots and in contrast

low sequence diversion of IRX14 and IRX14L in eudicots (Wu

et al., 2010; Ren et al., 2014; Wang et al., 2022).

An early step forward in understanding the duplication of

xylan biosynthesis enzymes in higher plants came with the

realization that each protein is partially redundant with respect

to its closest homolog (with the IRX-L mutants displaying less

severe phenotypes); the Arabidopsis double mutants of each

paralogous pair (irx9 irx9l, irx10 irx10l and irx14 irx14l)

manifest significantly more severe phenotypes than either of

the single mutants, but they can functionally replace each other

in overexpression and promoter swap experiments (Brown et al.,

2009; Wu et al., 2009; Keppler and Showalter, 2010; Lee et al.,

2010; Wu et al., 2010; Mortimer et al., 2015). This suggests that

differences predominantly arise due to differential expression

rather than functional divergence. Supporting this, secondary

cell wall xylan in Arabidopsis is mostly dependent on IRX9,

IRX10 and IRX14, while IRX9L, IRX10L, and IRX14 are essential

for primary cell wall xylan synthesis (Mortimer et al., 2015).

Gene expression analyses in asparagus, poplar and rice further

support the idea of different sets of IRX homologs being required

for xylan biosynthesis in the primary versus the secondary cell

wall (Chiniquy et al., 2013; Ratke et al., 2015; Song et al., 2015).

The separation into distinct enzyme groups in higher plants is

reminiscent of the primary and secondary wall-specific CSCs

(Kumar and Turner, 2015).
The primary cell wall XSC
in eudicots

Although research in Arabidopsis has greatly advanced our

understanding of xylan synthesis, with genetic data hinting at an

interaction of XSC enzymes, protein interaction has not been

shown in eudicots. To investigate the existence and composition

of a XSC in Arabidopsis, we generated irx14 irx14l double-

mutant plants expressing IRX14-GFP under its endogenous

promoter, creating functional tagged IRX14 (Supplementary

Figure S1). To investigate XSC formation in primary cell wall-

rich tissue, we performed anti-GFP immunoprecipitation in
Frontiers in Plant Science 03
Golgi-enriched microsomal fractions of root callus culture,

which we generated from the homozygous transgenic plants.

Callus from plants expressing STL1-GFP, a Golgi protein

partially co-localizing with IRX9L (Zhang et al., 2016), was

used as a negative control. Liquid Chromatography with

tandem Mass Spectrometry (LC-MS/MS) analysis was used to

detect interacting proteins, showing that IRX14 interacts with

IRX9L and IRX10L, but not with STL1 (Figure 1A;

Supplementary Table S1). The immunoprecipitation using

STL1-GFP control showed no interaction with IRX9L, IRX10L

or IRX14.

These data suggest that IRX9L, IRX10L and IRX14 form a

XSC in eudicot primary cell wall-rich tissues, comparable to the

XSC synthesizing the secondary cell wall of monocots. Unique

peptides were only found for IRX9L and IRX10L, but not for

their homologs IRX9 or IRX10 (Supplementary Table S2), most

likely due to a lack of expression of IRX9 and IRX10 in callus

tissue (Mortimer et al., 2015). The detection of IRX9L and

IRX10L in the callus XSC is consistent with the genetic

evidence that these proteins function together in xylan

synthesis of primary cell walls (Mortimer et al., 2015). To

support the structural feasibility of a XSC in Arabidopsis, we

also note that AlphaFold-Multimer predicts a heterotrimer of

the IRX9L, IRX10L and IRX14 globular domains with high

intermolecular confidence scores when provided with one

copy of each protein (Figure 1B; Supplementary Figure S2A).

The model predicts a pseudo-symmetric interaction of IRX9L

and IRX14 and a potential stabilizing role of a conserved

proline-rich region/putative a-helix that sits N-terminally of

the GT43 domain of IRX14 (Figure 1B; Supplementary Figures

S2A, F). An essentially identical model can be generated from

the equivalent secondary cell wall components (Supplementary

Figure S2B).
The core of the complex

Genetic and protein interaction studies suggest that xylan is

synthesized by a protein complex, however, the protein

composition of this complex is not uniformly described.

Surprisingly, an IRX9 homolog was not detected in the wheat

XSC (Zeng et al., 2010; Jiang et al., 2016), raising the question as

to whether all three proteins are required in the active complex.

In Plantago ovata, at least four different IRX10 genes are

highly expressed in the seed mucilaginous layer, while IRX9 and

IRX14 orthologs are only expressed at very low levels (Jensen

et al., 2013; Jensen et al., 2014). Therefore, Jensen et al. (2014)

suggested that IRX10 might be solely responsible for mucilage

xylan synthesis, whereas in stem tissues of Plantago, IRX9 and

IRX14 are relevant.

In Arabidopsis, the only known player to synthesize the

backbone of seed mucilage xylan is IRX14, whereas, surprisingly,

IRX10 appears not to be important (Voiniciuc et al., 2015; Hu
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et al., 2016). To analyze whether IRX14 is indeed the only XSC

protein with a function in xylan biosynthesis in Arabidopsis

mucilage, we stained the adherent mucilage of wildtype, irx9,

irx9l, irx10, irx10l, irx14 and irx14lmutant seeds with ruthenium

red. In the absence of xylan, the mucilage does not adhere to the

seed (Ralet et al., 2016). The mucilage released from the irx9,

irx9l, irx10 and irx14l mutants had a similar appearance to the

mucilage of wildtype seeds, whereas irx10l seed mucilage was

clearly defective, although the phenotype was less severe than in

irx14 (Figure 1C). These data show that IRX10L is also required

for xylan biosynthesis in Arabidopsis mucilage. The finding is

consistent with the Arabidopsis gene-chip data available on

SeedGeneNetwork (Belmonte et al., 2013), showing that

IRX10L and IRX14 are highly expressed in the general seed
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coat at the linear cotyledon stage (the stage of mucilage

biosynthesis gene expression; Supplementary Figure S3A)

(Francoz et al., 2015). An involvement of IRX9/IRX9L in

mucilage xylan biosynthesis is unclear due to a lack of an

obvious mucilage phenotype in the ruthenium red staining.

However, the impact of gene redundancy of IRX9/IRX9L

could not easily be assessed, as the double mutants do not

produce seeds. Strong expression of IRX9, although possibly

delayed to the maturation green stage, might suggest a role of

IRX9, whereas IRX9L expression remains low throughout these

stages of seed development (Supplementary Figure S3).

Taken together, there could be a certain degree of variability

even in the three core components of the XSC, depending on

species and tissue. Nevertheless, a critical component of xylan
A

B

C

FIGURE 1

The XSC in primary cell wall xylan synthesis in Arabidopsis. (A) Anti-GFP immunoprecipitation of the XSC in Arabidopsis root callus. Mascot
protein scores for IRX9L, IRX10L, IRX14 and STL1 (control) are shown for three biological replicates using IRX14-GFP (left) or STL1-GFP (control,
right) as bait, respectively. (B) AlphaFold-Multimer model of a heterotrimer of the IRX9L (blue), IRX10L (violet), and IRX14 (yellow) globular
domain. A putative nucleotide-binding residue, Asp296 (Wilson et al., 2022), is shown in IRX10L. Note the predicted a-helix of IRX14 at the
interaction surfaces of both IRX9L and IRX10L (asterisk). (C) Phenotype of the adherent mucilage of XSC mutants. Mucilage is stained with
ruthenium red. Wt: Columbia Col-0 wildtype control. Scale bar = 100 µm.
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synthase activity seems to be IRX10/IRX10L, which is in line

with their biochemical activity.
Homo- and hetero-oligomerization
of the XSC components

The apparent size of the asparagus XSCs in native gels is

slightly smaller than the marker size of 242 kDa (Zeng et al.,

2016). Therefore, the complex could consist of one protein of

IRX9/IRX9L, IRX10/IRX10L and IRX14/IRX14L forming a

heterotrimeric complex, as shown for the primary and

secondary cell wall XSCs in our AlphaFold models (Figure 1B;

Supplementary Figures S2A, B). In tobacco, AoIRX9 and

AoIRX14A interact with each other in bimolecular

fluorescence complementation experiments (Zeng et al., 2016).

Interestingly, however, the GT43 proteins TaGT43-4,

AoIRX9 and AoIRX14A were each shown to interact with

themselves (Jiang et al., 2016; Zeng et al., 2016), which is in

line with the finding that mammalian GT43 b-1,3-
glucuronyltransferases form homodimers (Terayama et al.,

1998; Ouzzine et al., 2000). Structural analysis revealed that

the three human isoforms homodimerize via conserved

interaction surfaces (Pedersen et al., 2000; Kakuda et al., 2004;

Shiba et al., 2006). As Arabidopsis GT43s are predicted to adopt

a similar secondary structure to the human enzymes (Taujale

and Yin, 2015), it is possible that homodimerization occurs

through similar surfaces. This is supported by AlphaFold

modelling, (Supplementary Figures S2C, D). This means

homodimeric interactions would presumably compete with

pseudo-symmetric heterodimerization of IRX9/IRX9L with

IRX14/IRX14L by the same interface. However, a trimeric

complex of a GT43 homodimer with IRX10L appears less

likely, based on the modelling scores. Our AlphaFold

modelling of the globular domains alone of two copies of each

IRX9L, IRX10L and IRX14 is predicted to form two separate

heterotrimers (Supplementary Figure S2E). Also, this modelling

does not suggest IRX10 dimerization, which is consistent with

the results for wheat TaGT47-13 by bimolecular fluorescence

complementation (Jiang et al., 2016). On the other hand,

bimolecular fluorescence complementation showed self-

interaction of asparagus AoIRX10 (Zeng et al., 2016).

In plants, alternative homo- or hetero-oligomerization of

GTs has been reported for the N-glycan processing Arabidopsis

a-mannosidase I and Nicotiana tabacum b-1,2-N-

acetyglucosaminyltransferase I (Schoberer et al., 2013).

Another example is the xylosyltransferase XXT2, which can

homodimerize, but also interact with XXT5 or XXT1 (Chou

et al., 2012). Interestingly, while this homodimerization involves

disulfide bridges, heterodimerization seems not to. It is unclear

whether plant GT43s only interact via the conserved interaction

surface of the GT domain, meaning homo- and hetero-
Frontiers in Plant Science 05
oligomerization would be mutually exclusive or whether an

additional interaction surface has evolved to allow both

simultaneously. Expression in Pichia pastoris led to a complex

that appeared to contain two TaGT43-4 proteins and one

TaGT47-13 (Jiang et al., 2016). This suggests that at least

IRX14 can interact with other components of the XSC while

forming a homo-oligomer. This was also suggested in the model,

proposing a XSC consisting of IRX9 and IRX14 interacting

homodimers, which indirectly interact with an IRX10

homodimer (Zeng et al., 2016). In summary, the stoichiometry

of the XSC is yet to be understood.

Golgi GTs are typically type II membrane proteins. Hence, in

addition to the luminal GT domain, most exhibit a short cytosolic

tail, a single transmembrane domain as well as a stem region

(CTS). This CTS region can also mediate protein–protein

interactions, including via disulfide bridges in the

transmembrane helix (TMH) and stem (Tu and Banfield, 2010;

Kellokumpu et al., 2016). Interestingly, we found that IRX9/IRX9L

orthologs harbor a highly conserved CFxxGxxxG motif in their

predicted TMH (Figure 2A), resembling a canonical GxxxGmotif,

which could act as a GASright helix oligomerization motif like that

in glycophorin A (Mueller et al., 2014). The previously identified

WxxxHxxCCxxSxxLGxRFS motif of IRX14/IRX14L orthologs

(Jiang et al., 2016) could be considered a GASright variant since

it contains a SxxxGxxxS motif (Figure 2A). Indeed, AlphaFold

modelling supports the notion that the IRX9 and IRX14 TMHs

could form a disulfide-linked homo- or heterodimer with the

GASright motifs situated at the helix interface (Figure 2B),

providing a potential mechanism of interaction. This motif

might provide an additional dimerization surface, allowing

larger asparagus XSC complex formation such as that

additionally detected in the native gel analysis running just

below the 480kDa marker (Zeng et al., 2016).
Subcellular localization of the
XSC and dynamic changes of
its composition

As well as mediating protein interactions, the CTS region of

Golgi GTs can determine correct localization to distinct Golgi

cisternae (Schoberer and Strasser, 2011; Schoberer et al., 2013).

The cytoplasmic tail of IRX14 and IRX14L also contains a

conserved cytosolic di-arginine motif (Jiang et al., 2016), a

motif that has been described in governing ER retrieval or

Golgi localization (Welch and Munro, 2019). Proteins in

assembled complexes with an ER-retaining motif can pass to

the Golgi, possibly through masking of the motif (Michelsen

et al., 2005; Banfield, 2011). Ren et al., 2014 noted that the milder

phenotype of irx9-2 (versus irx9-1) might be due to the presence

of the truncated protein, assigning a potential function to the N-

terminus of IRX9.
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Notably, the interaction of TaGT47-13 and TaGT43-4

already occurs in the ER and their co-expression is required

for ER to Golgi translocation of the complex in tobacco (Jiang

et al., 2016). Using a similar approach, co-expression of AoIRX9,

AoIRX10 and AoIRX14A was shown to be required for catalytic

activity and XSC transition from the ER to the Golgi (Zeng et al.,

2016). This mechanism seems not unique to monocots; we have

also observed that co-expression of IRX10 and IRX14 is required

for the Golgi-localization of IRX9-GFP in tobacco (Figure 2C).

Co-expression with IRX10 or IRX14 alone were not tested.

Sub-Golgi localization of GTs in Arabidopsis using free-flow

electrophoresis followed by mass-spectrometry analysis revealed

that IRX14 and the glucuronyltransferase GUX3 mostly locate to
Frontiers in Plant Science 06
the trans-Golgi, while IRX10L was predominantly found in

medial-Golgi (Parsons et al., 2019). Quantitative immuno-

transmission electron microscopy also shows that IRX9

localizes predominantly to the medial-Golgi (Meents et al.,

2019). Hence, the three core components of the XSC seem not

consistently co-localized, suggesting they do not always exist in

the same complex. Similar to the sequential distribution of GTs

involved in N-glycosylation of proteins, recent models suggest

that GTs involved in polysaccharide biosynthesis of the plant cell

wall are distributed in different Golgi-cisternae cis, medial to

trans, depending on their functional activity (Parsons et al.,

2019; Hoffmann et al., 2021). Supporting this idea is the reported

absence of IRX9 and presence of two putative UDP-sugar
A B

C

FIGURE 2

The CTS of GT43s, their potential interactions and impact of interactions on Golgi localization. (A). Sequence logos showing conserved motifs in
the predicted transmembrane helices (TMH) of orthologs of IRX9/IRX9L (top) and IRX14/IRX14L (bottom). (B) Close-ups of AlphaFold-Multimer
models of the transmembrane dimers for an IRX9 homodimer (top), an IRX9–IRX14 heterodimer (middle) and an IRX14 homodimer (bottom).
Residues of the GASright motif and conserved cysteines are highlighted in magenta or dark blue, respectively. (C) Subcellular localization of
Arabidopsis IRX9-GFP, transiently expressed in tobacco leaves. Top panel (left to right), IRX9-GFP (green), ManI-mCherry from soy (Golgi
marker, red), merge of the two former, and merge including differential interference contrast (DIC) image. Bottom panel shows the same
localization analysis in presence of co-expressed, untagged IRX10 and IRX14. Note the change of localization of IRX9-GFP in presence of IRX10
and IRX14.
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mutases, TaGT75-3 and TaGT75-4, and two non-GTs, TaGLP

and TaVER2, in the wheat XSC (Zeng et al., 2010; Jiang et al.,

2016), although these interactions have not been described in

other systems. The XSC isolated from Golgi-enriched

membranes of wheat also exhibited arabinosyl- and

glucuronyltransferase activity, indicating that the XSC might

harbor xylan modifying enzymes, although the respective

enzymes were not detected (Zeng et al., 2010; Jiang et al.,

2016). Similarly, in our immunoprecipitation study we did not

detect co-precipitation of the glucuronyltransferase GUX3.

Nevertheless, it is tempting to think that a specialized primary

cell wall XSC might differ in its interactions compared with the

secondary cell wall XSC, leading to the differences reported in

GlcA modification patterns of xylan (Mortimer et al., 2010;

Bromley et al., 2013). The interaction of the core XSC proteins

with xylan backbone-modifying enzymes would be expected to

occur in the trans-Golgi. Other potential interactors (for

example the UDP-Xyl transporter UXT1, which is suggested

to channel the UDP-Xyl substrate for xylan biosynthesis (Ebert

et al., 2015)) might interact with the XSC early in the Golgi.

Hence, the XSC might not have a uniform composition, but

rather might change while transiting from the ER to the Golgi

and through the Golgi cisternae, reflecting its functional activity.
Discussion

All three components of the XSC, IRX9/9L, IRX14/IRX14L

and IRX10/IRX10L, are necessary for xylan synthesis in most

systems. Despite this, the emerging picture is that IRX10/

IRX10L is the catalytically active enzyme essential for the

biochemical function of the XSC. In contrast, the role of IRX9/

9L and IRX14/IRX14L in the XSC remains poorly understood

and future research will have to establish why IRX9/IRX9L and

IRX14/IRX14L are essential for xylan synthesis, albeit not

directly involved in the catalytic reaction. Diverse non-catalytic

functions of the GT-like proteins have been suggested over the

years. These range from membrane anchoring of or UDP-Xyl

channeling to IRX10/IRX10L, to serving as a scaffold for XSC

assembly or assembly-dependent trafficking (Ren et al., 2014;

Jiang et al., 2016; Zeng et al., 2016).

In mammalian Golgi N-glycosyltransferases, homomers are

disassembled and heteromers formed depending on pH-changes

during transition through the Golgi (Hassinen et al., 2010;

Hassinen and Kellokumpu, 2014). It is unknown whether such

a mechanism plays a role in plants; however, it is important to

keep in mind that interactions between proteins might not be

static. Thus, one step to understanding the role of the individual

XSC components might be through analysis of their sub-Golgi

localization, complex formation and interaction with xylan-
Frontiers in Plant Science 07
modifying enzymes. Finally, changes in the protein

c omp o s i t i o n o f t h e X SC t h r o u g h h omo - a n d

heterodimerization of its components could provide a

mechanistic tool to regulate the localization of the XSC and its

activity in response to environmental cues, allowing dynamic

adjustment of the plant cell wall.
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