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CRISPR-Cas technology opens
a new era for the creation of
novel maize germplasms
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1Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China,
2Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic
Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
Maize (Zea mays) is one of the most important food crops in the world with the

greatest global production, and contributes to satiating the demands for

human food, animal feed, and biofuels. With population growth and

deteriorating environment, efficient and innovative breeding strategies to

develop maize varieties with high yield and stress resistance are urgently

needed to augment global food security and sustainable agriculture. CRISPR-

Cas-mediated genome-editing technology (clustered regularly interspaced

short palindromic repeats (CRISPR)-Cas (CRISPR-associated)) has emerged

as an effective and powerful tool for plant science and crop improvement,

and is likely to accelerate crop breeding in ways dissimilar to crossbreeding and

transgenic technologies. In this review, we summarize the current applications

and prospects of CRISPR-Cas technology in maize gene-function studies and

the generation of new germplasm for increased yield, specialty corns, plant

architecture, stress response, haploid induction, and male sterility.

Optimization of gene editing and genetic transformation systems for maize is

also briefly reviewed. Lastly, the challenges and new opportunities that arise

with the use of the CRISPR-Cas technology for maize genetic improvement

are discussed.

KEYWORDS

CRISPR-Cas technology, gene editing, maize, gene function, germplasms,
variety improvement
Introduction

Increasing population, climate change, and environmental stresses are crucial issues

threatening global food security. It is estimated that, at present, the increase in yields of

the four key global crops of maize, rice, wheat, and soybean is far below the rate of 2.4%

per year, which will be needed continuously up until 2050 in order to feed the ever-

growing population (Ray et al., 2013).
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Maize (Zea mays), an important crop with the greatest global

production, can contribute to satiating the demands for human

food, animal feed, and biofuels (Chavez-Arias et al., 2021).

However, maize grain yield is a complex quantitative trait

determined by multiple genetic and environmental factors (Lu

et al., 2020; Zhang et al., 2020; Chavez-Arias et al., 2021;

Malenica et al., 2021; Prasanna et al., 2021). It is estimated

that the yield lost via drought stress is currently over 20% of the

maize area per year (Boyer et al., 2013; Malenica et al., 2021), and

via high temperatures, an average of 7.4% is lost for every 1°C

increase (Lobell et al., 2013; Zhao et al., 2017). Moreover,

lepidopteran pests and fungal diseases can also cause over 20%

or 30% of yield loss, respectively (Liu et al., 2016). Hence, the

breeding of new elite crop varieties for high yield, disease

resistance and abiotic stress tolerance is essential to meet the

demands for maize.

Conventional plant breeding methods based on crossbreeding

have been restricted in their ability to develop elite yield varieties

due to the decline in natural genetic diversity, rare germplasm

resources, time-consuming, intensive labor and slow breeding

process (Xiao et al., 2017; Hua et al., 2019). Genetic modification

(GM) technologies, such as transgenic technologies, genome

editing (GE), and molecular-assisted breeding, can efficiently

overcome some problems with conventional breeding, and have

shown great potential for breeding elite crops with high yields

under environmental stress. GM crops have been widely planted

worldwide and brought multiple benefits by increasing global

grain yield and quality (Abdelrahman et al., 2018; Paul et al., 2018;

Montagu, 2019; Fernie and Sonnewald, 2021). In 2015, 53.6 Mha

of GM maize was cultivated, representing about 1/3 of planted

maize globally. In 2020, 79% of maize in the USA was GM

(Pellegrino et al., 2018; Montagu, 2019; Malenica et al., 2021).

However, the transgenic technologies are constrained by

biological processes such as the rate of recombination and the

gene-centric nature of transgenic traits.

Recently, GE technologies including ZFN, TALEN, and

CRISPR-Cas, have brought unparalleled opportunities for crop

breeding by precisely manipulating genetic information on a

genomic scale (Hamdan et al., 2022). In particular, the CRISPR-

Cas9 system and its derivative systems such as CRISPR/Cpf1,

base editing (BE) and prime editing (PE) provide powerful tools

to edit the plant genome by incorporating random mutations,

editing multiple loci, and inducting heritable inversions and

translocations (Khan et al., 2019; Capdeville et al., 2021; Fiaz

et al., 2021). Moreover, developed CRISPR-dCas9 system

showed an increasingly important role in the process of gene

activation and repression, epigenome editing, modulation of

chromatin topology, live-cell chromatin imaging and DNA-

free genetic modification. Particularly, this system enables the

simultaneous activation of multiple key genes that positively

control different agronomic traits, which is conducive to the

rapid realization of crop genetic improvement by multigene

pyramiding (Zhang et al., 2019). Owing to its high efficiency,
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simple operation and low cost, the CRISPR-Cas technology has

rapidly shown promising potential in plant functional genomics

studies and the genetic improvement of crop such as rice, wheat,

soybean, maize, and potato (Rao et al., 2022). This review focuses

on the application and prospects of CRISPR-Cas technology in

the basic science and the creation of new germplasms in maize.
Functional annotation of maize
genes using CRISPR-Cas technology

Gene-editing technology has paved an efficient and

predictable way to decipher the functions of key genes and

develop new germplasms in maize (Feng et al., 2016; Doll et al.,

2019). Recently, the potential functions of many genes involved

in maize development programs and stress responses have been

well dissected using CRISPR-Cas technology (Table 1 and

Figure 1). For the regulation of growth and development,

ZmSMC3 has been found to be essential for sister chromatid

cohesion and meiotic centromere pairing, and its knockout

causes slow growth and dwarfed plants (Zhang et al., 2020).

MMS21 participates in root and vegetative growth, pollen

germination, and seed development by maintaining maize

genome activity and stability (Zhang et al., 2021). ZmNRPC2

controls RNA polymerase III activity and the expression of

multiple genes involved in kernel development, and its

knockout results in significantly reduced kernel size (Zhao

et al., 2020). ZmThx20 participates in the regulation of kernel

size and storage protein filling in seed, and its mutation resulted

in shrunken kernel (Li et al., 2021). KNR6 and AGAP are

required for vesicle trafficking, and their mutations lead to

severe defects in inflorescences and roots, short ears with

fewer kernels, and dwarfed plants (Li et al., 2021). CC-type

glutaredoxins such as MSCA1, ZmGRX2 and ZmGRX5 mediate

redox status of target proteins, and the triple knockout mutants

show severely suppressed ear and tassel growth and dwarfed

plant (Yang et al., 2021). YIGE1 regulates inflorescence

meristem size and ear length by tuning sugar and auxin signal

pathways (Luo et al., 2021). ZmMIC1 participates in the growth

of seedlings by affecting 5’-methylthioadenosine salvage and

nicotianamine biosynthesis (Sun et al., 2022). Moreover,

ZmPT7 and ZmPAT7 are essential for inorganic phosphate

acquisition and tassel branch number, respectively (Wang

et al., 2020).

For stress response, ZmCLCg positively regulates chloride

transport and sodium chloride stress in maize (Luo et al., 2021).

ZmSRL5 is essential for maintaining cuticular wax structure and

drought tolerance in maize (Pan et al., 2020). Moreover,

ZmPEPR1 restricts S. exigua larval growth through regulating

ZmPep3-activated foliar anti-herbivore defenses (Poretsky et al.,

2020). Maize G protein b subunit (Gb) regulates the trade-off

between growth and defense response by tuning meristem size

and autoimmunity (Wu et al., 2020). Additionally, other key
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TABLE 1 The potential functions and utilizations of key genes annotated by CRISPR-Cas technology.

Target gene Potential function Editing
strategy

Phenotype Citation

ZmCOI2a/b Receptor of jasmonate signal Knockout Defective anther, male sterility (Qi et al.,
2022)

ZmDFR1/2,
ZmACOS5-1/2,

Regulating anther and pollen
development

Knockout Defective anther and pollen, male
fertility

(Liu et al.,
2022)

ZmTGA9-1/2/3 ZmMs25 Fatty acyl reductases involved in
lipid metabolism

Knockout Defective anther and pollen, male
fertility

(Zhang
et al., 2021)

ZmbHLH51, ZmbHLH122, ZmTGA9-1/2/3, ZmTGA10,
ZmMYB84, ZmMYB33-1/2, ZmPHD11, ZmLBD10/27

Regulating anther and pollen
development

Knockout Male fertility (Jiang et al.,
2021)

ZmABCG26, ZmFAR1 Regulating lipid metabolism Knockout Defective anther and pollen, male
fertility

(Jiang et al.,
2021)

DCL5 Generation of 24-nt phasiRNAs Knockout Defective tapetal cell, male fertility (Teng et al.,
2020)

ZmPEPR1/2 Regulators of defense responses Knockout Anti-herbivore defenses (Poretsky
et al., 2020)

ZmGDIa Vesicle membrane trafficking Knockout Disease resistance (Liu et al.,
2022)

ZmCOI1a, ZmJAZ15 Jasmonate signaling components Disease resistance
Disease susceptibility

(Ma et al.,
2021)

LOX3 Lipoxygenase Knockout Disease resistance (Pathi et al.,
2020)

ZmCLCg Chloride transport Knockout Reduced salt tolerance (Luo et al.,
2021)

ARGOS8 Negative regulator of ethylene
responses

Activating
expression of
ARGOS8

Drought tolerance (Shi et al.,
2017)

ZmSRL5 Maintaining cuticular wax
structure

Knockout Reduced drought tolerance (Pan et al.,
2020)

MSCA1, ZmGRX2/5 Modifying the redox state and the
activity of their target proteins

Knockout Suppressed meristem, ear and tassel
growth, reduced plant height

(Yang et al.,
2021)

YIGE1 Regulating ear length by affecting
pistillate floret number

Knockout Decreased inflorescence meristem
size and ear length

(Luo et al.,
2021)

ZmACO2 Ethylene biosynthesis Knockout Enhanced ear length, kernel number,
and grain yield

(Ning et al.,
2021)

ZmPHYC1/2 Phytochrome C Knockout Moderate early flowering (Li et al.,
2020)

ZmSMC3 Participating in meiotic
centromere pairing

Knockout Loss of sister chromatid cohesion
and mis-segregation of chromosome

(Zhang
et al., 2020)

ZmMIC1 5’-methylthioadenosine salvage
and nicotianamine biosynthesis

Knockout Interveinal chlorosis (Sun et al.,
2022)

Gb Transducers of receptor signaling Knockout Lethality (Wu et al.,
2020)

ZmPOD65 Peroxidase controlling ROS
balance

Knockout Haploid induction (Jiang et al.,
2022)

ZmPLD3 Phospholipase D Knockout Haploid induction (Li et al.,
2021)

ZmPLA1 Phospholipase A Knockout Haploid induction (Liu et al.,
2017)

ZmDMP DUF679 domain membrane
protein

Knockout Haploid induction (Zhong
et al., 2019)

Zm00001d016075 Negatively modulating kernel row
number

Knockout Increased kernel row number and
grain yield

(An et al.,
2022)

ZmCEP1 Peptide hormones Knockout Increased plant height, kernel size
and 100-kernel weight

(Xu et al.,
2021)

(Continued)
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genes have been characterized and utilized in the development of

new germplasms as follows.

Generation of new maize
germplasm resources using
CRISPR-Cas technology

The CRISPR-Cas technology can overcome the limitations of

conventional breeding due to the lack of available genetic

resources and negative genetic linkage drag, and enables

researchers to quickly and precisely modify target genes related
Frontiers in Plant Science 04
to various traits in specific varieties, which has shown unique

advantages in accelerating breeding process by generating new

germplasms with more flexibility (Dong et al., 2019). Recently,

CRISPR-Cas technology has been widely used to improve a

variety of agronomic traits in different crops including rice,

maize, wheat, barley and tomato (Liu et al., 2022). In maize, a

series of new germplasms have been generated using the CRISPR-

Cas technology. We with increased yield, improved quality and

enhanced stress resistance, as well as male sterile lines, haploid

inducers, and specialty cornsWe summarized them one by one in

terms of improved yield, quality and special corns, haploid

inducers, male sterile lines, and stress resistance.
TABLE 1 Continued

Target gene Potential function Editing
strategy

Phenotype Citation

ZmNRPC2 Second-largest subunit of RNA
polymerase III

Knockout Reduced kernel size (Zhao et al.,
2020)

ZmThx20 GT-2 trihelix transcription factor Knockout Shrunken kernels (Li et al.,
2021)

ZmNL4 Regulating cell division Knockout Reduced leaf width (Gao et al.,
2021)

ZmCLE7, ZmFCP1, ZmCLE1E5 CLE peptide ligands Making weak
promoter alleles

Increased multiple grain-yield-related
traits

(Liu et al.,
2021)

ZmPAT7 S-acyltransferase Knockout Increased tassel branch number (Guan
et al., 2022)

ZmPT7 Phosphate transporter Knockout Reduced phosphate acquisition and
transport

(Wang
et al., 2020)

ZmRAVL1 B3-domain transcription factor Knockout Upright plant architecture (Tian et al.,
2019)

ZmANT1 AP2 transcription factor Knockout Reduced growth rate and grain yield (Liu et al.,
2020)

GA20OX3 GA biosynthesis Knockout Semidwarf plant (Zhang
et al., 2020)

Zmspl12 SPL transcription factor Knockout Increased plant height and ear height (Zhao et al.,
2022)

MS45,
MS26

Strictosidine synthase-like enzyme
Cytochrome P450-like

Knockout Male fertility (Svitashev
et al., 2015)

AGAP Arf GTPase-activating protein Knockout Dwarfed plant, smaller ear, and small
leaf

(Li et al.,
2021)

MMS21 SUMO ligase Knockout Seed lethality, short root, abnormal
seed/vegetative development

(Zhang
et al., 2021)

stiff1 F-box domain protein Knockout Stronger stalk strength (Zhang
et al., 2020)

ZmTMS5 Thermosensitive genic male-sterile Knockout Thermosensitive male fertility (Li et al.,
2017)

ALS1/2 Acetolactate synthase Knockout Herbicide resistance (Svitashev
et al., 2015)

ZmBADH2a/b 2-acetyl-1-pyrroline biosynthesis Knockout Aromatic corn (Wang
et al., 2021)

Waxy Granule bound starch synthase Knockout Waxy corn (Gao et al.,
2020)

Wx,
SH2

Granule bound starch synthase
ADP-glucose pyrophosphorylase

Knockout Supersweet and waxy corn (Dong
et al., 2019)
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Yield-related traits

Maize yield has been found to be closely associated with

multiple yield-related traits including ear diameter, ear length,

ear row number, ear weight, 100-kernel weight, and kernel

number per row (Lu et al., 2020; Zhang et al., 2020). Thus, the

editing of key genes related to these traits can be conducive to

improving maize grain yield. For example, ZmCEP1 is involved

in nitrate and sugar transport into the kernel, and its knockout

can effectively enhance plant height, ear length, kernel size and

100-kernel weight (Xu et al., 2021). The editing of ZmACO2 can

significantly increase ear length, kernel number per row, ear

weight, and grain yield in hybrids (Ning et al., 2021). For key

genes positively controlling agronomic traits, CRISPR-Cas

genome editing of their promoters is a potential way to

generate new quantitative variations for breeding (Rodriguez-

Leal et al., 2017). In maize, genome editing of cis-regulatory

regions within the promoters of ZmCLE7, ZmFCP1 and

ZmCLE1E5 can effectively increase meristem size and multiple

grain-yield-related traits (Liu et al., 2021; Chen and Tian, 2021).

It has also been shown that ideal plant architecture for high-

density planting can contribute to an increase in maize grain yield

(Wei et al., 2018; Cao et al., 2022).Gene editing of ZmRAVL1, a

positive regulator of leaf angle, can generate an upright leaf

architecture and enhance high-density maize yields (Tian et al.,

2019). The knockout of ZmNL4 results in narrow leaves, which

can be conducive to optimizing plant architecture for high-

density planting (Gao et al., 2021). The double knockout

mutant of zmphyC1 and zmphyC2 shows a moderate early-
Frontiers in Plant Science 05
flowering phenotype under long-day conditions, providing

valuable target genes to develop maize cultivars for adapting to

different local environments (Li et al., 2020). Moreover, knockout

of Zm00001d016075, a negative regulator of kernel row number,

can increase the number of kernels per ear and grain yield (An

et al., 2022). These studies have provided feasible strategies to

improve maize yield via CRISPR-Cas genome editing.
Specialty corns

At present, the market demand for specialty corns, such as

sweet, waxy or baby corns is increasing, and CRISPR-Cas

technology provides effective ways to create these specialty

germplasms (Dong et al., 2019). For example, simultaneous

editing of ZmBADH2a and ZmBADH2b can generate an aromatic

corn by increasing the accumulation of 2-acetyl-1-pyrroline (Wang

et al., 2021). Moreover, a supersweet and waxy maize has been

created by CRISPR–Cas9 editing of SH2 and WX (Dong et al.,

2019). Recently, elite CRISPR–wx corn hybrids with higher yield

have been developed by editing of a waxy allele in 12 inbred lines.

Importantly, these CRISPR–wx corns are agronomically superior to

introgressed hybrids, and are out of the scope of regulatory oversight

over geneticallymodified organisms in theUnited States, Argentina,

Brazil and Chile (Gao et al., 2020), and have initiated a new age in

the global commercial production of gene-edited maize. These

studies have indicated that CRISPR-Cas technology is a powerful

tool to precisely develop various specialty corns withmore flexibility

in genetic background selection.
FIGURE 1

A schematic of the CRISPR-Cas technology used for the functional genomics study and generation of new germplasms in maize.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1049803
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2022.1049803
Haploid inducers

Doubled haploid technology can create perfectly homozygous

individuals by rapidly fixing the recombinant haploid genomes on

homogenous progeny, overcoming various constraints in genetic

improvement and enabling rapid evaluation of phenotypic traits

in maize. If a doubled haploid technology is combined with

CRISPR-Cas technology, the breeders can perform faster and

more precise crop breeding (Jacquier et al., 2020; Jacquier et al.,

2021). In maize, the editing of ZmPOD65, ZmPLD3, ZmPLA1 and

ZmDMP using CRISPR-Cas technology has successfully

generated haploids, providing an approach to unravel the

molecular mechanisms of haploid induction and the creation of

various haploid inducers (Liu et al., 2017; Zhong et al., 2019; Li

et al., 2021; Jiang et al., 2022). Furthermore, using a CRISPR-Cas9

cassette, haploid-inducer mediated genome editing was

established to generate genome-edited haploids in the elite lines,

which can greatly accelerate maize breeding by rapidly creating

pure lines with desirable traits (Wang et al., 2019).. These studies

provide potential ways to clarify the molecular mechanisms of

haploid induction and breeding of haploid inducers.
Male sterility lines

Male sterility plays an important role in hybrid seed

production. Using CRISPR-Cas technology, new male sterile

lines have been created utilizing male fertility genes including

ZmTMS5, ZmMs7, MS8, Ms26 and Ms45 (Svitashev et al., 2015;

Li et al., 2017; Chen et al., 2018). Recently, a simple next-

generation hybrid seed production system was created to

generate a nuclear-genetic-male-sterility (GMS) line by

knocking out ZmMS26 and its MGM maintainer line

simultaneously, enabling effective production of sortable

hybrid seeds labeled by a red fluorescent protein (DsRED) (Qi

et al., 2020). Moreover, ZmCOI2a/b, ZmDFR1, ZmDFR2,

ZmACOS5-1/2, DCL5, ZmABCG26, ZmFAR1, ZmMs25,

ZmbHLH51 , ZmbHLH122 , ZmTGA9-1/2/3 , ZmTGA10,

ZmMYB33-1/2, ZmMYB84, ZmPHD11, and ZmLBD10/27 are

required for the anther and pollen development, and they have

been confirmed, and will be utilized, as potential target genes for

the development of novel male-sterile lines using CRISPR-Cas

technology (Teng et al., 2020; Zhang et al., 2021; Jiang et al.,

2021; Jiang et al., 2021; Qi et al., 2022; Liu et al., 2022).
Stress resistance

Biotic and abiotic stresses cause devastating crop yield loss

worldwide. Maize resistance is a complex quantitative trait

determined by multiple genes and various environmental

factors, and only few identified genes and rare elite germplasm

resources are available for maize resistance breeding (Yang et al.,
Frontiers in Plant Science 06
2017). Recently, an effective way for the creation of novel

germplasm resources and breeding resistant varieties has been

successfully applied via gene editing technology. For example,

the knockout of lox3 could enhance maize durable resistance to

Ustilago maydis (DC.) Corda by triggering reactive oxygen

species bursts (Pathi et al., 2020). CRISPR-Cas9 targeted

editing of ZmGDIa can strongly increase maize resistance

against maize rough dwarf virus without agronomic penalty

(Liu et al., 2022). ZmCOIa, by interacting with ZmJAZ15,

antagonistically modulates maize immunity to Gibberella stalk

rot (Fusarium graminearum Schwabe (teleomorph Gibberella

zeae); GSR), and the knockout of ZmCOIa can enhance maize

resistance to GSR (Ma et al., 2021).These studies provide a good

indication of the potential of gene editing technology in the

breeding of maize cultivars with increased resistance to fungal

pathogens or insects.

Multiple abiotic stresses including drought, extreme

temperature, flooding, and soil conditions seriously affect maize

production. Compared with traditional breeding methods,

genome editing technologies have shown considerable potential

in the breeding of stress-tolerant variants (Chavez-Arias et al.,

2021; Malenica et al., 2021; Prasanna et al., 2021; Chennakesavulu

et al., 2021). Stalk lodging caused by various environmental

stresses is a major threat to maize yield and quality, and

developing maize lines with high stalk strength has become of

major interest to breeders to ensure high and stable yield

(Armarego-Marriott, 2020). stiff1 is a negative regulator of

maize stalk strength, its edited allele with 2 bp deletion, caused

a frameshift and an early-stop translation, conferred CRISPR-

edited plants with a stronger stalk, which contributes to high

density planting and preventing stalk lodging (Zhang et al., 2020).

Moreover, semidwarfmaize plants have been generated by editing

ZmGA20ox3 using CRISPR-Cas9 technology, which might be

useful in the creation of new germplasm with stronger lodging

resistance and suitable for high-density planting (Zhang et al.,

2020). For drought tolerance, precisely editing the promoter

sequence of ARGOS8 leads to its upregulated expression and

enhances maize grain yield under drought stress (Shi et al., 2017).

Thus, CRISPR-Cas technology paves the way for the generation of

novel germplasm sources for breeding stress-tolerant maize.
Challenges and prospects

Future and industrialization prospect of
CRISPR-Cas edited maize

Breeding elite maize lines with multiple traits is a time-

consuming and low efficiency process. Genome editing

technology has revolutionized cereal crop improvement, and

will shape future agricultural practices by integrating with

traditional breeding (Hisano et al., 2021; Matres et al., 2021). In

particular, CRISPR-Cas technology has shown the most exciting
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potential for the rapid and precise development of desirable

varieties with multiple agronomic traits and stress tolerance

(Figure 1). Now, the generation of single- and multiple-gene

mutagenesis by CRISPR-Cas has become a powerful tool for

functional genomics studies, to generate new germplasm

resources, and to accelerate high-precision breeding processes

in maize (Svitashev et al., 2015; Feng et al., 2016; Zhu et al., 2016;

Agarwal et al., 2018; Doll et al., 2019; Liu et al., 2020). Notably, the

combination of CRISPR-Cas technology with haploid induction

or male sterility will help rapidly and predictably integrate

desirable agronomic traits into new elite varieties.

It should be noted that many CRISPR-Cas-manipulated

genes have been reported to improve maize traits, but very few

lines have been validated by field trials and only CRISPR-waxy

maize hybrids have had a limited commercial launch, in the

Midwestern United States (Gao et al., 2020). Many transformed

plants have only been tested for their potential breeding value in

model systems or glasshouses, which may result in poor

availability to develop elite maize lines suitable for field

planting, and they might encounter negative effects in the field

(Simmons et al., 2021). Thus, field testing is essential to evaluate

whether the reported gene effects can be finally utilized in elite

germplasm and maize production. To date, only 1671 genes,

representing about 4.4% of the maize genome, have been tested

to evaluate their field performance, and only 22 gene leads have

been validated (Xiao et al., 2017; Simmons et al., 2021; Shikha

et al., 2021). Thus, it is urgent to accelerate field testing of

existing CRISPR-Cas-edited maize materials.

In agriculture, CRISPR-Cas technology has accelerated the

process of breeding new crop varieties with improved traits, and

increasing CRISPR-edited crops have been on the market, but

their future depends on a scientific global regulatory framework

(Ahmad et al., 2021). Among numerous CRISPR-edited maize

germplasms, only limited precommercial launch of CRISPR-waxy
Frontiers in Plant Science 07
hybrids was conducted in the Midwestern USA (Gao et al., 2020).

Thus, it is more important to reframe existing regulatory policies

to develop more scientific and technical criteria for the

commercial production of CRISPR-Cas edited crops worldwide

(Zhang et al., 2020; Ahmad et al., 2021). In addition, although

CRISPR has potential to bring disruptive innovations for maize

breeding, gene edited maize should consider the need of practical

production and market demand to breed locally adapted and

preferred crop varieties.
Improved CRISPR-Cas technologies
and transformation systems
for maize

Three major obstacles to the use of CRISPR technology in

maize is the low gene editing frequency, low genetic

transformation efficiency and few maize materials amenable

for transformation. Recently, many progresses have been made

in the improvement of CRISPR-Cas technology and

transformation methods for maize (Table 2).

As for optimizing CRISPR-CAS technology to improve gene

editing efficiency, a type I-E CRISPR-Cascade tool for gene

activation, a ViMeBox (VIsual Maize Editing toolBox) high-

frequency gene targeting method, and a seed fluorescence

reporter (SFR)-assisted CRISPR-Cas9 system have been

established in maize, providing effective and rapid methods to

generate genome-edited plants (Young et al., 2019; Barone et al.,

2020; Xu et al., 2021; Yan et al., 2021). Further, a highly efficient

prime-editing tool, unrestricted by the strict NG protospacer

adjacent motif (PAM) sequences, has been created by optimizing

pegRNA expression in maize (Jiang et al., 2020). A selectable

marker-free site-specific gene insertion can efficiently increase
TABLE 2 Improved gene editing technologies and transformation methods in maize.

Technology or system Improved advantage Citation

ViMeBox Rapid positive selection by visualizing fluorescence with the naked eye (Xu et al., 2021)

SFR-assisted CRISPR/Cas9 system Seed fluorescent fluorescence reporter assisted selection (Yan et al., 2021)

I-E CRISPR-Cascade tool Mediating target gene activation (Young et al., 2019)

Inducible CRISPR-Cas9 system High-frequency and selectable marker-free intra-genomic gene targeting (Barone et al., 2020)

Optimized pegRNA expression system Improved prime-editing efficiency (Jiang et al., 2020)

CRISPR-Cas12a Ribonucleoprotein Complexes Improved editing efficiency (Dong et al., 2021)

CRISPR Cas12a system Targeted chromosomal crossovers (Kouranov et al., 2022)

CRISPR/dCas-mediated gene activation toolkit High-specific gene activation (Qi et al., 2022)

PhieABEs Improved base-editing activity and expanded target range editing windows (Tan et al., 2022)

ISU Maize CRISPR High-frequency targeted mutagenesis (Char et al., 2017)

Marker-free site-specific gene insertion method High-frequency of targeted gene insertion (Peterson et al., 2021)

Transformable fast-flowering mini-maize FFMM line amenable for genetic transformation (McCaw et al., 2020)

Ternary vector system united with morphogenic genes Increasing the efficiency of CRISPR/Cas delivery transformation and (Zhang et al., 2019)
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the frequency of targeted gene insertion (Peterson et al., 2021).

Recently, CRISPR-Cas technologies have successfully

manipulated targeted large fragment insertion/inversion and

chromosomal crossovers in maize, providing promising

methods to develop new maize varieties with multiple-traits

stacking by breaking linkage drag, generating genetic diversity

and facilitating trait introgression (Lee and Wang, 2020;

Schwartz et al., 2020; Gao et al., 2020; Kouranov et al., 2022).

Traditional transgenic technology by overexpressing specific

genes is an important technology to verify gene function and

developing new crop materials with the improved traits, but its

wide application is limited due to its difficulty in realizing the

multi-gene polymerization and the strict regulation of

genetically modified crops. Recently, the developed CRISPR-

based gene activation technology has offered powerful tool for

the simultaneous activation of multiple genes in a way superior

to traditional transgenic technology, which provides new

strategy for the manipulation of crop genetic improvement

using the key genes positively controlling specific agronomic

traits (Ding et al., 2022). For example, a CRISPR/dCas9-based

toolkit was established to precisely and effectively activate

expression of specific target genes in maize (Qi et al., 2022).

Moreover, off-target effects are frequently reported and widely

existed in genome editing plants. A variety of approaches including

improved CRISPR-Cas systems and new methods have been

developed to eliminate the potential for off-target editing (Young

et al., 2019; Modrzejewski et al., 2020; Sturme et al., 2022). It has

been reported that the off-target editing in CRISPR-Cas edited

maize plants could be mitigated using specifically designing guide

RNAs differed from other genomic locations (Young et al., 2019).

Moreover, a PAM-less/free high-efficiency adenine base editor

toolbox (PhieABE toolbox) can effectively prevent off-target

editing in rice, which shows wide applications in plant functional

genomics and crop improvement (Tan et al., 2022).

Currently, Agrobacterium-mediated transformation is widely

used to generate gene-edited plants, but this has major constraints

due to few maize inbred lines amenable for transformation, low

transformation efficiency and lower editing frequency (Ayar et al.,

2013; Peterson et al., 2021; Hunter, 2021). Recently, several

Agrobacterium-mediated transformation methods have been

improved for maize genome-editing. For example, an

agrobacterium-mediated CRISPR-Cas9 platform for high-

efficiency genome editing has been used in a maize Hi II line (Char

et al., 2017; Lee et al., 2019). Additionally, the Fast-Flowering Mini-

Maize (FFMM) line A, previously unsuitable for genetic

transformation, has now been bred for transformable lines by

hybridizing it with a transformable genotype high Type-II callus

parent A (Hi-II A) with line A of FFMM (McCaw et al., 2020).

Moreover, a ternary vector system-based platform, employingWUS

and Bbm for Agrobacterium-mediated transformation, can

effectively increase the efficiency of transformation and gene
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editing, and widen the range of maize lines available for

transformation (Zhang et al., 2019; Julkowska, 2019). In addition,

the geneediting rateofCRISPR-Cas12ausingparticlebombardment

was increased toover60%inanelitemaizevariety (Donget al., 2021).

Thus, continuous optimization of transformationmethods and gene

editing systems is a prerequisite for the promotion of the application

of gene editing technology in maize.
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