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Introduction: Plant–microbe interactions play a vital role in the development of

strategies to manage pathogen-induced destructive diseases that cause enormous

crop losses every year. Rice blast is one of the severe diseases to riceOryza sativa (O.

sativa) due to Magnaporthe grisea (M. grisea) fungus. Protein–protein interaction

(PPI) between rice and fungus plays a key role in causing rice blast disease.

Methods: In this paper, four genomic information-based models such as (i) the

interolog, (ii) the domain, (iii) the gene ontology, and (iv) the phylogenetic-based

model are developed for predicting the interaction betweenO. sativa andM. grisea

in a whole-genome scale.

Results and Discussion: A total of 59,430 interacting pairs between 1,801 rice

proteins and 135 blast fungus proteins are obtained from the four models.

Furthermore, a machine learning model is developed to assess the predicted

interactions. Using composition-based amino acid composition (AAC) and

conjoint triad (CT) features, an accuracy of 88% and 89% is achieved, respectively.

When tested on the experimental dataset, the CT feature provides the highest

accuracy of 95%. Furthermore, the specificity of the model is verified with other

pathogen–host datasets where less accuracy is obtained, which confirmed that the

model is specific to O. sativa and M. grisea. Understanding the molecular processes

behind rice resistance to blast fungus begins with the identification of PPIs, and these

predicted PPIs will be useful for drug design in the plant science community.
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1 Introduction

Rice (Oryza sativa) is an important crop, and its production is

affected by several abiotic and biotic stresses. Among biotic stresses,

the Magnaporthe grisea (M. grisea) fungus is the most harmful and

causes a loss of 30%–40% in yield that is enough to feed millions of

people (Parker et al., 2008). Blast fungus can affect the rice plant

parts like leaves, roots, panicles, and nodes during its growth period.

In addition, the blast fungus is detrimental to small grains like wheat

and results in a significant reduction in yield (Dean et al., 2005; Xue

et al., 2012). One of the most efficient and economical means for

controlling the fungal diseases is by increasing the potential of

resistance in the host plant. For these diseases, genetic engineering

has been a successful and cost-effective approach in the last few

decades (Hulbert et al., 2001; Ribot et al., 2008). The experimental

detection of protein–protein interactions (PPIs) between plant and

pathogen is a cumbersome process. Until now, few numbers have

been reported of experimental PPIs between O. sativa and M. grisea

that are inadequate to explore the pathogenic molecular mechanism

(Pellegrini et al., 1999; Jia et al. 2000; Krogh et al., 2001; Ng et al.,

2003; Salwinski et al., 2004; Quevillon et al., 2005; Shoemaker and

Panchenko, 2007; Wang et al., 2007; Najafabadi and Salavati, 2008;

Parker et al., 2008; Ribot et al., 2008; Kumar and Nanduri, 2010;

Mukhtar et al., 2011; Li et al., 2012; Maetschke et al., 2012; Mentlak

et al., 2012; Park et al., 2012; Schleker et al., 2012; Simonsen et al.,

2012; Meyer et al., 2013; Mosca et al., 2014; Rao et al., 2014; Sahu

et al., 2014; Tully et al., 2014; Nourani et al., 2015; Li et al., 2016;

Singh et al., 2016; Klopfenstein et al., 2018; Savojardo et al., 2018;

Karan et al., 2019; Ma et al., 2019; Sahu et al., 2019; Loaiza et al.,

2020; Lu et al., 2020; Singh et al., 2020; Wang et al., 2020; Rapposelli

et al., 2021; Kumar et al., 2022; Mishra et al., 2022; Wu et al., 2015).

Therefore, the computational approach is seen as an alternative

method for the large-scale identification of PPIs. The computational

approaches for PPI prediction include genomic data-based

predictor (Barker and Pagel, 2005; Najafabadi and Salavati, 2008),

protein structure (Aloy and Russell, 2002), domain details (Huang et

al., 2007; Wang et al., 2007), protein sequence (Zhang et al., 2012),

and semantic similarity of gene ontology (GO) annotations

(Maetschke et al., 2012). The majority of these algorithms are

based on data mining, which uses information from existing PPIs

to predict new interactions (Jaeger et al., 2008). Among these

computational methods, the interolog and domain-based methods

(Wu et al., 2006; Shoemaker and Panchenko 2007; Wang et al., 2007;

Simonsen et al., 2012; Tully et al., 2014; Wu et al., 2015; Singh et al.,

2016; Singh et al., 2020; Wang et al., 2020; Wuchty, (2011)) are

extensively used methodologies for the prediction of PPIs. The

potential PPIs between Homo sapiens (H. sapiens) and

Plasmodium falciparum (P. falciparum) are predicted previously

(Dyer et al., 2007) using domain information of the host–pathogen

system. Recently interolog and domain-based information to obtain

PPIs between B. pseudomalei and human has been utilized (Loaiza et

al., 2020). An earlier GO-based model was presented for yeast

protein interaction (Wu et al., 2006). (Zhou et al., 2013) used

domain information of H. sapiens and M. tuberculosis to obtain
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the PPIs. (Zhu et al., 2011) have obtained 76,585 PPIs by involving

5,049 rice proteins. Previously, a prediction network based on rice

blast fungus was also established (He et al., 2008). In the present

study, the authors have predicted 11,674 interactions involving

3,017 blast fungus proteins using an interolog-based approach.

From different literature, it was found that computational efforts

have hardly been utilized for predicting interspecies PPIs between

O. sativa and M. grisea. A computer-based approach has been

created for discovering known Arabidopsis thaliana PPIs and to

find new PPIs on a genome-scale (Ding and Daisuke , 2019). Ma

et al. 2019) have predicted the PPI networks between rice and M.

grisea using the interolog and domain-based method. However, the

method was not implemented at the genome scale. Also, the

developed machine learning model was neither tested with the

independent experimental dataset nor was it validated with

another pathogen–host system to check its reliability.

In this paper, four computational models, the interolog, domain-

based, GO, and phylogenetic prediction approaches, are developed to

predict the PPIs on a genome-wide scale between rice and M. grisea.

The high confident PPIs are obtained by intersecting all four

computational methods. In the present study, a well-analyzed

filtering method has been proposed to identify the potential

candidate proteins for interactions. Additionally, a machine

learning model using support vector machine has been developed

to predict the PPIs efficiently between rice and M. grisea.
2 Materials and methods

2.1 Retrieval of protein sequences

A total of 11,054 protein sequences of M. grisea (blast fungus)

genome were collected from the Broad Institute website (http://www.

broadinstitute.org/annotation/genome/magnaporthe_grisea/

MultiHome.html). Similarly, 66,153 protein sequences of rice genome

were collected from the MSU database (ftp://ftp.plantbiology.msu.

edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/

pseudomolecules/version_7.0/all.dir/).
2.2 Filtering of rice proteins to obtain
positive-like candidate proteins

In this study, a new approach based on keyword filtering was used

to obtain the probable interacting rice proteins. From different kinds

of literature surveys [6-15], a set of keywords (Supplementary

Tables 1 and 2) related to intraspecies and interspecies were

retrieved. Another set of keywords (Supplementary Table 3) were

obtained from plantTFDB v 5.0 (http://planttfdb.cbi.pku.edu.cn/).

These keywords are related to the transcription factor of rice and

utilized to filter positive-like candidates from the whole-genome rice

sequence. The keywords present in rice protein annotation were

filtered out as positive candidates. These filtered protein sequences

are likely to participate in the interaction. From the above filtering

process, only 3,665 rice proteins are extracted. To get homologs of
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3,665 proteins, these are subjected to blast analysis against the

remaining 62,488 rice proteins having an E-value of 10-5. From this

analysis, a total of only 8,426 homolog proteins were also obtained.

Thus, a cumulative total of 12,091 (3,665 + 8,426) positive-like rice

proteins were obtained that might participate in the interactions. On

the other hand, the remaining 54,062 proteins that do not participate

in the interaction were considered as probable negative samples.
2.3 Filtering of M. grisea proteins to obtain
positive-like candidate proteins

The positive-like candidate proteins of M. grisea were filtered out

from the whole 11,054-protein sequence using transmembrane,

extracellular localization, and secretory protein information. The M.

grisea proteins are identified as transmembrane, when predicted

transmembrane helices were more than one using TMHMM

(Krogh et al., 2001). BUSCA (Savojardo et al., 2018) is used to

locate extracellular localization. Finally, the SignalP (Bendtsen et al.,

2004) predictor is used to identify secretory protein information.

Using the above three tools, a total of 1,572 M. grisea proteins were

identified as positive-like candidates. These 1,572 proteins were

subjected to blast analysis against the remaining 9,482 M. grisea
Frontiers in Plant Science 03
proteins having an E-value of 10-5 to obtain the homologs. From this

analysis, a total of 4,226 homolog proteins were obtained. On the

other hand, only 353 proteins were obtained inM. grisea using the TF

database (http://ftfd.snu.ac.kr/index.php?a=view) and considered as

positive samples. Thus, a cumulative total of 6,151 (1,572 + 4,226 +

353) proteins of M. grisea were obtained and taken as positive-like

samples that might be participating in the interactions. On the other

hand, the remaining 5,256 proteins were considered as negative

samples that do not participate in the interactions.

Experimentally verified PPIs were collected between rice and M.

grisea (Pellegrini et al., 1999; Jia et al., 2000; Krogh et al., 2001; Ng

et al., 2003; Salwinski et al., 2004; Quevillon et al., 2005; Shoemaker

and Panchenko, 2007; Wang et al., 2007; Najafabadi and Salavati,

2008; Parker et al., 2008; Ribot et al., 2008; Kumar and Nanduri, 2010;

Mukhtar et al., 2011; Li et al., 2012; Maetschke et al., 2012; Mentlak

et al., 2012; Park et al., 2012; Schleker et al., 2012; Simonsen et al., 2012;

Meyer et al., 2013; Mosca et al., 2014; Rao et al., 2014; Sahu et al., 2014;

Tully et al., 2014; Nourani et al., 2015; Li et al., 2016; Singh et al., 2016;

Klopfenstein et al., 2018; Savojardo et al., 2018; Karan et al., 2019; Ma

et al., 2019; Sahu et al., 2019; Loaiza et al., 2020; Lu et al., 2020; Singh

et al., 2020; Wang et al., 2020; Rapposelli et al., 2021; Kumar et al.,

2022; Mishra et al., 2022; Wu et al., 2015) from an exhaustive literature

survey and used an independent dataset Table 1.
TABLE 1 List of experimental validated PPIs retrieved from literature search.

S. No. Rice gene Accession ID Pathogen gene Accession ID Reference

1 Pita, Pi-4a LOC-Os12g18360 AVR-Pita MGG-15370 Jia et al. (2000)

2 OsExo70-F3 LOC-Os04g31330 AVR-Pii MGG-08024 Fujisaki et al. (2015)

3 OsExo70-F2 LOC-Os02g30230 AVR-Pii MGG-08024

4 RGA-4 NCBIrefseq: XP_015619689.1 AVR-Pia BAH23994.1 Cesari et al. (2013)

5 RGA-4 NCBIrefseq: XP_015619689.1 AVR1-Co39 UniProtKB/Swiss-Prot: Q8J180

6 RGA-5 AGM61351.1 AVR-Pia BAH23994.1

7 RGA-5 AGM61351.1 AVR-Co39 UniProtKB/Swiss-Prot: Q8J180

8 Pikh, Pi54 ALO78751.1 AVR-Pi54 MGG-03685 Devanna et al. (2014)

9 APIP6 LOC-Os05g06270 AVR-Pizt MGG18041 Park et al. (2012)

10 Pia AGM61350.1 AVR-Pia BAH23994.1 Yoshida et al. (2009)

11 Pii BAN59294.1 AVR-Pii MGG-08024

12 pik-m BAH79889.1 AVR-pikm BAP47455.1

13 pikp-1 ADV58352.1 AVR-pik BAH59490.1

14 pikm-1 BAH79878.1 AVR-pik BAH59490.1

15 Pikh AIY55350.1 AVR-pik BAH59490.1

16 Piks AET36547.1 AVR-piks BAH59490.1

17 Os NADP-ME2 LOC-Os01g52500 AVR-Pii MGG-08024 Singh et al. (2016)

18 CEBIP (BIC) Swiss-Prot:D7UPN3.1 SLP1 NCBIrefseq: XP_003714140.1 Mentlak et al. (2012)

19 Pib BAA76282.2 AVR-Pib AKO62639.1 Zhang et al. (2015)

20 OsNLP1 Swiss-Prot: Q10S83.1 MONEP1 ADM07417.1 Zhang et al. (2015)

21 Pi9, pit2 LOC-Os06g17900 AVR-Pi9 MGG12655 Wu et al. 2015

22 Piz-t ABC73398.1 AVR-Pizt MGG18041
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2.4 Development of computational models
to predict the PPIs in rice and M. grisea

The 12,091 positive-like rice proteins as well as 6,151 positive-like

M. grisea proteins were used for the development of computational

models. In this study, PPI was determined using domain-based,

interolog, GO, and phylogenetic-based models. Figure 1 shows a

schematic representation of the entire model development.

2.4.1 Interolog model for PPI prediction
The interolog model relies on the similarity of the protein

sequences (Savojardo et al., 2018). If an interaction between their

homologous proteins happens, each protein pair between the

pathogen and the host is expected to interact (Meyer et al., 2013).

A schematic presentation of the interolog model is shown in Figure 2.

Each protein of rice and M. grisea was subjected to BLAST analysis

against host and pathogen proteins in the HPIDB (Kumar and

Nanduri, 2010) database having an E-value of 10-5. Like the above

criteria, each protein of rice and M. grisea was also subjected to

BLAST analysis against the DIP (Salwinski et al., 2004) database. If

there is an experimentally confirmed interaction with their respective

homologous proteins in the DIP or HPIDB databases, it is assumed

that each protein pair between O. sativa and M. grisea will interact.

2.4.2 Domain-based model for PPI prediction
To predict potential PPIs, the domain-based method uses the

knowledge of information based on domain–domain interaction that

has been derived from known 3D structures of proteins. Here, if two

query proteins contain a pair of interacting domains, then these two

proteins are the most probable candidates to interact with each other

(Ng et al., 2003). A schematic presentation of the domain-based

model has been given in Figure 3. To obtain the domains related to

rice and M. grisea, interproscan5 (Quevillon et al., 2005) is used. Rice

and M. grisea domains were searched against the repositories of
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domain–domain interaction such as Instruct (Meyer et al., 2013),

Pfam (El-Gebali et al., 2019), and 3did (Mosca et al. 2014). Instruct

http://instruct.yulab.org/ is a database annotated to the 3D structural

resolution of protein interactome networks. Pfam https://pfam.xfam.

org/ is a protein domain–domain interaction database that includes

their annotation and multiple sequence alignment generated using

the Hidden Markov model. The Pfam database contains 16,642

domain–domain interaction pairs. The three-dimensional

interacting domains 3did database https://3did.irbbarcelona.org/

index.php is a set of 3D high-resolution structural models for

domain–domain interactions. The 3did is composed of 14,726

domain–domain interaction pairs. If a pair of proteins contains an

interacting pair of domains from the repositories, then the pair is

supposed to interact (Shoemaker and Panchenko, 2007).

2.4.3 Gene ontology-based model for
PPI prediction

The GO model is based on the hypothesis that proteins that

interact within a cell are more likely to be in similar places or engaged

in similar biological processes (Jain and Bader, 2010).
FIGURE 1

A schematic representation showing the overall prediction network for
the proposed model development.
FIGURE 2

A schematic presentation of the interolog model for protein–protein
interaction prediction. Here, (C, D) are two interacting proteins, and
(C’–D’) are the proteins among which interaction needs to be
predicted. Protein C’ is homologous to (C, D’) is homologous to (D),
then (C’, D’) are likely to interact.
FIGURE 3

A schematic illustration showing a domain–domain method for PPIs.
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2.4.3.1 GO model development:
Fron
█ The GO term related to cellular components, biological

process, and molecular function is obtained for both rice

and M. grisea protein using the GO-Blast tool.

█ Resnik’s max method is used for calculating the semantic

similarity score between paired GO terms [51]. Resnik’s

method uses the information content specified in Jain and

Bader (2010) to compute the semantic similarity (S) between

ontology terms m and n for a given set C of ancestors a and b.
S a, bð Þ = max
cεC

− ln p cð Þð Þ½ �
A threshold of 0.125 on the semantic similarity is obtained from

16 experimentally verified PPIs (refer to Table 2 to identify the

interacting pair). The PPIs having a semantic similarity score of

0.125 or more than 0.125 is considered as potential PPIs (Figure 4).

In the GO-based model, 212,408 PPIs are predicted between 4,321

rice and 753 M. grisea proteins.

2.4.4 Phylogenetic-based model for PPI prediction
The phylogenetic profile of proteins is used for predicting the

PPIs (Simonsen et al., 2012). It is based on the idea that functionally

related proteins are more likely to coexist or be removed in a new

species throughout evolution (Pellegrini et al., 1999). The

phylogenetic profile is created by using the BLASTP (E value: 10-

5) to recognize homologous proteins as present or absent in

reference organisms. Each protein of rice and M. grisea was

compared with the 4,045 reference organisms from UniProt using

BLASTP. If any homologs are found in any reference organism, we

put 1 in that place (and 0 otherwise), indicating the presence or

absence of the target protein in that organism. Thus, a binary
tiers in Plant Science 05
phylogenetic profile of dimension 4,145 was constructed for each

protein. Subsequently, hamming distance is used to compute the

similarity of the profiles. The threshold value for prediction is

calculated from the positive PPIs and negative PPIs as shown

in Figure 5.

If the similarity score is less than a threshold (0.15), the protein

pairs are interacting. In the phylogenetic model, 6,706 PPIs are

predicted between 160 rice and 477 M. grisea proteins.
2.4.5 High-confidence PPIs
From the computational approach, it is observed that all the

individual unsupervised models (domain-based, interolog, GO, and

phylogenetic-based models) predict the interactions efficiently. To

obtain the potential PPIs, the consensus of any of the two models was

selected and then all the obtained PPIs were merged as shown

in Figure 6.

All the consensus interactions between possible combinations of

four developed models were searched and finally a total of 59,430

unique PPI pairs are obtained (Supplementary Data Sheet 1). The

whole process of obtaining final PPIs is shown in Figure 6.
2.5 Machine learning model development

The predicted PPIs from the genomic information-based

methods were further used to develop a machine learning-based

model that could predict PPIs efficiently. The PPIs obtained as the

consensus of four genomic models were considered as positive

samples. On the other hand, an equal number of negative samples

were obtained from the random pairing of probable negative

candidates of rice and M. grisea.
FIGURE 4

Threshold value calculation from experimentally verified PPIs.

FIGURE 5

Threshold value calculation from positive PPIs and negative PPIs.
TABLE 2 List of potential rice and M. grisea protein participating in multiple interactions.

Proteins Protein name

Rice LOC_Os02g03060.2, LOC_Os02g05480.1, LOC_Os02g05480.2, LOC_Os05g25450.1, LOC_Os02g54510.3, LOC_Os01g59360.1

M. grisea MGG_06320T0, MGG_14847T0, MGG_02757T0, MGG_08689T0, MGG_04790T0, MGG_14773T0, MGG_00803T0, MGG_12821T0, MGG_01998T0,
MGG_01596T0, MGG_06599T0, MGG_09960T0, MGG_06382T0
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2.5.1 Features extraction
The widely used features, amino acid composition (AAC), and

conjoint triad (CT) were extracted from protein sequences.

2.5.2 Amino acid composition
AAC provides a 20-dimensional feature vector for each protein.

For each query protein y, let f(xi) denote the frequencies of occurrence

of its 20-amino acid constituent. Hence, the amino acid composition

(Px) in the query protein has been represented by

P xið Þ = f xið Þ
o20

i=1f xið Þ                   i = 1, 2, 3… :::20 (1)

and the protein x in the composition space was defined as: P(x) =

[P1(x), P2(x),…, P20(x)]. By combining their distinct AAC, each pair

of host–pathogen PPI is represented by a 40-length feature vector.

2.5.3 Conjoint triad
Shen et al. (Hulbert et al., 2001) first introduced the “Conjoint triad”

descriptor for the protein sequence in predicting the PPIs. Based on their

electrostatic and hydrophobic properties of side chain residues, the 20

native amino acids were grouped into seven classes. Each protein was

described by a 343-dimensional feature vector. In the present study, to

represent each PPI, the CT descriptors of the host and pathogen proteins

were concatenated, resulting in the construction of 686-dimensional

feature vectors. A detailed schematic experimental depiction of the

constructed machine learning model is shown in Figure 7.

3 Results and discussion

PPI has a very important role in predicting the target protein

function (Rao et al., 2014). The complete protein–protein predicted

network has also been visualized using the Cytoscape tool (Simonsen

et al., 2012) and shown in Figure 8.

3.1 Analysis of functional enrichment of
proteins involved in the interaction

The Database for Annotation Visualization and Integrated

Discovery (DAVID) v6.8 is a widely used tool to verify the
Frontiers in Plant Science 06
functional significance of the predicted host and pathogen proteins

implicated in PPIs (Dennis et al., 2003). The GO enrichment analysis

is conducted to observe the functional relevance of proteins used. The

enrichment analysis of rice and M. grisea proteins has been listed in

Tables 3, 4, respectively. The GO terms having a p-value of less than

0.05 were identified to be enriched in predicted proteins.

It is inferred that many proteins were involved in biological

processes related to metal and cadmium ions. It has been described

that metal ion is required for plant defense (Fones et al., 2010; Jain

and Bader, 2010). It was detected that genes are enriched with protein

such as protein kinase activity, ATP binding, serine/threonine kinase

act ivi ty , intracel lular signal transduction, and protein

phosphorylation, which are related to interaction (Jia et al., 2000;

Cesari et al., 2013). Similarly, inM. grisea, the biological process such

as ATP binding, protein kinase activity, protein serine/threonine

kinase activity, and peptidyl-serine phosphorylation was enriched in

the predicted genes. From the literature, it has been inferred that the

identified biological process and function are closely related to the

host–pathogen interaction (Pellegrini et al., 1999; Jia et al., 2000;

Hulbert et al., 2001; Krogh et al., 2001; Aloy and Russell (2002);

Dennis et al., 2003; Ng et al., 2003; Bendtsen et al., 2004; Glazko and

Mushegian, 2004; Salwinski et al., 2004; Barker and Pagel, 2005; Dean

et al., 2005; Quevillon et al., 2005; Chou and Shen, 2007; Dyer et al.,
FIGURE 6

Illustration for getting the potential PPIs from the developed genomic models.
FIGURE 7

A schematic illustration of the machine learning model.
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2007; Huang et al., 2007; He et al., 2008; Jaeger et al., 2008; Najafabadi

and Salavati, 2008; Parker et al., 2008; Ribot et al., 2008; Fones et al.,

2010; Jain and Bader, 2010; Kumar and Nanduri, 2010; Mukhtar et al.,

2011; Bai et al., 2012; Braun and Gingras, 2012; Das et al., 2012; Li

et al., 2012; Maetschke et al., 2012; Mentlak et al., 2012; Park et al.,

2012; Schleker et al., 2012; Cesari et al., 2013; Meyer et al., 2013;

Devanna et al., 2014; Mosca et al., 2014; Rao et al., 2014; Sahu et al.,

2014; Fujisaki et al., 2015; Huo et al., 2015; Nourani et al., 2015;

Li et al., 2016; Berkey et al., 2017; Klopfenstein et al., 2018; Savojardo

et al., 2018; Ding and Daisuke, 2019; El-Gebali et al., 2019; Karan

et al., 2019; Ma et al., 2019; Sahu et al., 2019; Loaiza et al., 2020;

Lu et al., 2020; Farooq et al., 2021; Rapposelli et al., 2021; Kumar et al.,

2022; Mishra et al., 2022; Shoemaker and Panchenko, 2007).
FIGURE 8

Visualization of the predicted protein–protein interaction between rice
and M. grisea using the Cytoscape tool.
TABLE 3 GO enrichment analysis of predicted rice proteins.

GO ID GO Term p-Value

GO:0004674 Protein serine/threonine kinase activity 1.73E-439

GO:0005524 ATP binding 1.12E-305

GO:0004672 Protein kinase activity 1.68E-247

GO:0006468 Protein phosphorylation 1.05E-186

GO:0035556 Intracellular signal transduction 9.78E-101

GO:0005886 Plasma membrane 1.11E-77

GO:0016021 Integral component of membrane 5.45E-66

GO:0018105 Peptidyl-serine phosphorylation 4.91E-57

GO:0046777 Protein autophosphorylation 3.61E-48

GO:0048544 Recognition of pollen 2.11E-45

GO:0009738 Abscisic acid-activated signaling pathway 1.01E-43

GO:0004683 Calmodulin-dependent protein kinase activity 5.69E-36

GO:0009931 Calcium-dependent protein serine/threonine kinase activity 9.39E-35

GO:0004713 Protein tyrosine kinase activity 7.01E-30

GO:0007166 Cell surface receptor signaling pathway 1.71E-29

GO:0005516 Calmodulin binding 3.95E-27

GO:0004702 Receptor signaling protein serine/threonine kinase activity 6.16E-19

GO:0006952 Defense response 1.85E-18

GO:0004707 MAP kinase activity 7.63E-18

GO:0030246 Carbohydrate binding 1.12E-16

GO:0007165 Signal transduction 1.26E-14

GO:0042626 ATPase activity, coupled to transmembrane movement of substances 4.50E-14

GO:0004693 Cyclin-dependent protein serine/threonine kinase activity 1.92E-13

GO:0008353 RNA polymerase II carboxy-terminal domain kinase activity 1.92E-13

GO:0009506 Plasmodesma 2.01E-13

GO:0005509 Calcium ion binding 8.43E-10

GO:0030247 Polysaccharide binding 1.01E-09

GO:0016055 Wnt signaling pathway 1.05E-09

GO:0006897 Endocytosis 2.03E-09

(Continued)
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TABLE 3 Continued

GO ID GO Term p-Value

GO:0005737 Cytoplasm 3.04E-09

GO:0008360 Regulation of cell shape 4.98E-09

GO:0006950 Response to stress 7.03E-04
F
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TABLE 4 GO enrichment analysis of predicted M. grisea proteins.

GO ID GO Term p-Value

GO:0005524 ATP binding 2.68E-83

GO:0004672 Protein kinase activity 7.00E-41

GO:0004674 Protein serine/threonine kinase activity 2.47E-38

GO:0018105 Peptidyl-serine phosphorylation 3.96E-08

GO:0000166 Nucleotide binding 1.94E-06

GO:0010971 Positive regulation of G2/M transition of mitotic cell cycle 3.22E-06

GO:0018107 Peptidyl-threonine phosphorylation 8.55E-06

GO:0005829 Cytosol 1.60E-05

GO:0046777 Protein autophosphorylation 2.12E-05

GO:0004693 Cyclin-dependent protein serine/threonine kinase activity 5.00E-05

GO:0005634 Nucleus 7.51E-05

GO:0032153 Cell division site 8.54E-05

GO:0051286 Cell tip 1.55E-04

GO:0030428 Cell septum 5.08E-04

GO:0004708 MAP kinase kinase activity 0.001624

GO:0004709 MAP kinase kinase kinase activity 0.001624

GO:0042787 Protein ubiquitination involved in ubiquitin-dependent protein catabolic process 0.003427

GO:0032880 Regulation of protein localization 0.003427

GO:0000307 Cyclin-dependent protein kinase holoenzyme complex 0.003436

GO:0005935 Cellular bud neck 0.00456

GO:0001403 Invasive growth in response to glucose limitation 0.010325

GO:0007124 Pseudohyphal growth 0.013999

GO:0001302 Replicative cell aging 0.013999

GO:0000196 MAPK cascade involved in cell wall organization or biogenesis 0.026172

GO:0071507 MAPK cascade involved in conjugation with cellular fusion 0.026172

GO:1990497 Regulation of cytoplasmic translation in response to stress 0.026172

GO:1902402 Signal transduction involved in mitotic DNA damage checkpoint 0.026172

GO:1990263 MAPK cascade in response to starvation 0.026172

GO:0010696 Positive regulation of spindle pole body separation 0.026172

GO:0036283 Positive regulation of transcription factor import into nucleus in response to oxidative stress 0.026172

GO:1903695 MAPK cascade involved in ascospore formation 0.026172

GO:0043332 Mating projection tip 0.036166

GO:0044878 Mitotic cytokinesis checkpoint 0.039004

(Continued)
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3.2 Subcellular localization of rice proteins

To check the location of predicted interacting rice proteins, their

subcellular localization was extracted using BUSCA (Savojardo et al.,

2018). Results revealed that subcellular localization of predicted proteins

was distributed in the cytoplasm, plasma membrane, nucleus,

mitochondria, extracellular space, and endomembrane by 46%, 29%,

7%, 7%, 2%, and 6%, respectively, as shown in Figure 9. The subcellular

localization of gene product with the site of their interactions has already

been reported (Bai et al., 2012; Das et al., 2012; Berkey et al., 2017; Singh

et al., 2020). A detailed list of cloned blast resistance gene Pi54

overexpressed in rice for understanding its cellular and subcellular

localization and response to different pathogens has been reported

(Singh et al., 2020). Due to the advancement in rapid genome

sequencing techniques, annotation and subcellular localization of

uncharacterized plant proteins are very important. Considering this

important challenge, classifiers, namely, Plant-PLoc and Plant-mSubP,

have been developed and reported for large-scale subcellular location

prediction for plant proteins (Chou and Shen, 2007; Sahu et al., 2019).

Our predicted result infers that a major interaction occurs in the plasma

membrane and cytoplasm, which is in line with the literature.
3.3 Identified hub protein in rice
and M. grisea

In biological networks, PPI hubs have a significant role in the

pathogenicity mechanism. The hub proteins that have many

interacting partners were identified. The top 20 hub proteins with

their interacting partners are shown in Figure 10.

These identified hub proteins might be used for drug target design.

From Table 2, it is inferred that rice proteins like LOC_Os02g03060.2,

LOC_Os02g05480.1, LOC_Os02g05480.2, LOC_Os05g25450.1,
Frontiers in Plant Science 09
LOC_Os02g54510.3, and LOC_Os01g59360.1 were involved in more

than 80 interactions with M. grisea. On the other hand, in case of M.

grisea out of 126 proteins, 49 were involved in multiple interactions.

The top 11 M. grisea proteins are MGG_06320T0, MGG_14847T0,

MGG_02757T0, MGG_08689T0, MGG_04790T0, MGG_14773T0,

MGG_00803T0, MGG_12821T0, MGG_01998T0, MGG_01596T0,

and MGG_06599T0 (Table 2). These M. grisea pathogen proteins are

interacting with more than 1,600 rice proteins, indicating that these

genes are important for interaction and pathogenesis.
3.4 Development of the machine
learning model

3.4.1 Training/testing schema
To develop the machine learning model, a total of 59,430

computationally predicted PPIs have been used as a positive
TABLE 4 Continued

GO ID GO Term p-Value

GO:0071473 Cellular response to cation stress 0.039004

GO:0001402 Signal transduction involved in filamentous growth 0.039004

GO:0010515 Negative regulation of induction of conjugation with cellular fusion 0.039004

GO:0016242 Negative regulation of macroautophagy 0.039004

GO:0045860 Positive regulation of protein kinase activity 0.039004

GO:0000751 Mitotic cell cycle arrest in response to pheromone 0.039004

GO:1901196 Positive regulation of calcium-mediated signaling involved in cellular response to salt stress 0.039004

GO:0004712 Protein serine/threonine/tyrosine kinase activity 0.046542

GO:0008353 RNA polymerase II carboxy-terminal domain kinase activity 0.046542

GO:0008349 MAP kinase kinase kinase kinase activity 0.046542

GO:0038083 Peptidyl-tyrosine autophosphorylation 0.051671

GO:0031028 Septation initiation signalling 0.051671

GO:0034605 Cellular response to heat 0.051671

GO:0031134 Sister chromatid biorientation 0.051671

GO:0045835 Negative regulation of meiotic nuclear division 0.051671
fron
FIGURE 9

Distribution of predicted rice proteins in subcellular localization.
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dataset whereas a negative dataset was prepared by random pairing

of the negative candidate proteins generated from a filtered non-

interacting sequence of rice and M. grisea as described in Section 2.

Here, a fivefold cross-validation scheme was used for model

development (Karan et al., 2019; Li et al., 2016). Training

accuracies of 95% and 99% were obtained with AAC and CT

features, respectively (Sahu et al., 2014). SVM-based testing

performance for AAC indicated its accuracy, sensitivity, and

specificity as 88%, 89%, and 86%, respectively. On the other

hand, SVM-based testing performance for CT provides an

accuracy, sensitivity, and specificity of 89%, 84%, and 93%,

respectively (Table 5). Furthermore, the model was assessed with

22 experimentally verified PPIs as an independent test set.

Importantly, 21 out of 22 samples were predicted as positive

based on CT features (Table 5).
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3.4.2 Testing with other host–pathogen systems
The predicted model was further assessed with various host–

pathogen systems to evaluate its reliability. Datasets of animal with

Bacillus (set 1), hepatitis C virus (set 2), measles virus (set 3), Yersinia

(set 4), and herpes virus (set 5) were used for analysis. While the

dataset of the Arabidopsis thaliana plant was used for analysis with

Pseudomonas syringae (set 6). The animal pathogen database was

extracted from HPIDB 2.0 version while the Arabidopsis thaliana–

Pseudomonas syringae database was extracted from Mukhtar et al.

(2011) and Tully et al. (2014). The false-positive results are shown in

Table 6. AAC feature analysis revealed that the percentage of false-

positive values for sets 1 to 5 was 21%, 0.02%, 2%, 14%, and 8%,

respectively. The percentage of false-positive value between

Arabidopsis thaliana with Pseudomonas syringae (set) was 41%. On

the other hand, CT feature analysis revealed that the percentage of
B

A

FIGURE 10

Hub nodes in the rice and M. grisea protein–protein interaction network. (A) Number of interactions in top 20 rice hub proteins and (B) number of
interactions in top 20 M. grisea hub proteins.
TABLE 5 SVM-based analysis result for amino acid composition and conjoint triad features.

1 SVM-based testing performance (kernel = RBF, Gamma = 0.4, C = 1,000) in test dataset

Features Accuracy (%) Sensitivity (%) Specificity (%)

Amino acid composition 88 89 86

Conjoint triad 89 84 93

2 SVM-based prediction result of experimental verified dataset (independent dataset)

Features Total no. of PPIs No. of true positives Accuracy (%)

Amino acid composition 22 17 77

Conjoint triad 22 21 95
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false-positive values for sets 1 to 6 was 12%, 14%, 11%, 9%, 6%, and

5%, respectively. The percentage of false-positive value between

Arabidopsis thaliana with Pseudomonas syringae was 15%. From

Table 6, it is noticed that the prediction accuracy of average FP

positive is approximately 14.33% in case of AAC and 11.6% using CT

features. This revealed that the model was specific to rice and

M. grisea.

The machine learning model performance was compared with a

similar study reported previously by Ma et al. (2019) who have

reported 532 potential PPIs using interolog and domain-based

methods. The similar number of negative PPIs are extracted from

the negative datasets obtained by the random pairing of filtered rice

and M. grisea protein sequence. A machine learning model using

support vector machine is developed using 532 positive and 532

negative PPIs. The obtained machine learning model was tested with

22 experimental datasets (Table 1). A total of 17 PPIs are predicted

using AAC features with an accuracy of 77%. Also, the developed

machine model was tested with CT features, and it provides 95%

accuracy (Table 7).

The main difference between the work of Ma et al. (2019) and

our proposed work was in the filtering process involved. Ma et al.

removed the PPIs with rice fungus proteins annotated with non-

membrane and non-secreted ones from the intersection potential

PPIs obtained from interolog and domain-based models. In

contrast, in the present study, both rice and fungus proteins were

first filtered out using a well-analyzed filtering process. The

interolog and domain-based model was employed on the filtered

database. The limitation of Ma et al.’s work was that the developed

machine learning model was not tested with an independent

dataset and other host–pathogen systems. Zheng et al. (2021)

presented a computer methodology for structurally based plant–

pathogen PPI prediction in rice and fungus.
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PPI has a key role in predicting the functions of uncharacterized

protein as well as in determining its role in the phenotypic

responses. PPIs are involved in controlling the various biological

processes like cell-to-cell interactions as well as metabolic and

developmental processes (Braun and Gingras, 2012). Reports

describing the PPIs in drug discovery (Rapposelli et al., 2021), the

development of PPI modulators (Lu et al., 2020), and PPI

applications in virus–host study (Farooq et al., 2021) have been

published. Also, a rice protein interaction network revealing high

centrality nodes and candidate pathogen effector targets (Mishra

et al., 2022) and another pipeline of integrating transcriptome and

interactome for elucidating central nodes in host–pathogen

interactions (Kumar et al., 2022) have been published. The

present study provides a genome-wide PPI between rice and M.

grisea. Furthermore, it is accurate and computationally inexpensive

because of its filtering process prior to computational model

development. Furthermore, a validation study on predicted PPI

subcellular localization may also be carried out in the future.
4 Conclusion

In this study, several computational models are developed using

the interolog, domain, GO, and phylogenetic information to predict

the PPI between rice and M. grisea in a genome. A total of 59,430

highly confident PPIs are predicted between 1,801 rice proteins and

135 M. grisea proteins. The GO enrichment analysis shows that the

predicted proteins are involved in interactions related to

functionalities. Furthermore, to assess the effectiveness of predicted

PPIs, a machine learning model based on support vector machine is

developed. Based on the fivefold cross-validation test, better accuracy

is obtained using AAC and CT features of protein sequence.
TABLE 6 Comparative performance of amino acid composition and conjoint triad features with other host–pathogen systems.

Amino acid composition Conjoint triad

Sl no. Independent
host–pathogen system Total PPIs # of False positives False positive (%) # of False positives False positive (%)

1. Set 1 3,090 660 21 370 12

2. Set 2 3,295 9 0.02 475 14

3. Set 3 994 24 2 109 11

4. Set 4 4,296 600 14 381 9

5. Set 5 9,152 847 8 577 6

6. Set 6 166 68 41 25 15

Average performance (%) 14.33 11.6
TABLE 7 SVM-based comparative prediction result of amino acid composition and conjoint triad features in the experimental verified dataset with the Ma
et al. (2019) model and our proposed model.

Testing with the model obtained from
PPIs from Ma et al. (2019)

Testing with the model obtained from
PPIs from our proposed method

Features Total no of PPIs # of True positives Accuracy (%) Total no. of PPIs # of True positives Accuracy (%)

Amino acid composition 22 17 77 22 17 77

Conjoint triad 22 1 4 22 21 95
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Furthermore, the proposed model was tested on 22 experimentally

identified PPIs between rice andM. grisea in an independent test that

resulted in the prediction of 21 PPIs as positive using CT features. The

reliability of the proposed model is also checked for PPIs on various

host–pathogen systems. The proposed model predicted a lower

number of PPIs as positive, inferring that the method is specific to

rice and M. grisea. The predicted PPIs could be a useful resource for

further studies on the rice–M. grisea interaction mechanism.
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