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Berry crops, a nutrient powerhouse for antioxidant properties, have long been

enjoyed as a health-promoting delicious food. Significant progress has been

achieved for the propagation of berry crops using tissue culture techniques.

Although bioreactor micropropagation has been developed as a cost-effective

propagation technology for berry crops, genetic stability can be a problem for

commercial micropropagation that can be monitored at morphological,

biochemical, and molecular levels. Somaclonal variations, both genetic and

epigenetic, in tissue culture regenerants are influenced by different factors,

such as donor genotype, explant type and origin, chimeral tissues, culture

media type, concentration and combination of plant growth regulators, and

culture conditions and period. Tissue culture regenerants in berry crops show

increased vegetative growth, rhizome production, and berry yield, containing

higher antioxidant activity in fruits and leaves that might be due to epigenetic

variation. The present review provides an in-depth study on various aspects of

phenotypic variation in micropropagated berry plants and the epigenetic

effects on these variations along with the role of DNA methylation, to fill the

existing gap in literature.

KEYWORDS

antioxidants, clonal fidelity, DNA methylation, in vitro culture, vegetative growth,
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Introduction

Berry crops, also called small fruits, are composed of plants in a number of genera

including Actinidia (hardy kiwi), Amelanchier (Juneberry/Saskatoon, serviceberry),

Aronia (Aronia melanocarpa), Fragaria (strawberry), Hippophae (sea buckthorn),

Lonicera (edible honeysuckle/Haskap), Prunus (chokecherry), Ribes (currants,

gooseberries), Rubus (blackberries, raspberries and their hybrids), Sambucus

(elderberries), Schisandra (schisandra), Shepherdia (silver buffalo berry), Vaccinium

(blueberries, cranberries, lingonberries, bilberries, and huckleberries), Viburnum

(highbush cranberry), and Vitis (grapes) (Debnath et al., 2012; Debnath, 2016;
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Debnath, 2018). Although grapes are the most important berry

crop worldwide, the production of strawberries, blueberries,

raspberries, and cranberries is also a profitable agricultural

enterprise (Debnath, 2016). These produce small- to

moderate-sized edible fruits on perennial vines, herbs, or

shrubs, and can be consumed in fresh, juice, dried, or

processed form. The fruits and leaves are a good source of

health-promoting bioactive compounds (Vyas et al., 2015;

Abeywickrama et al., 2016; Debnath and An, 2019; Bhatt and

Debnath, 2021) and are believed to fight against cardiovascular

and degenerative diseases (Isaak et al., 2017; Debnath, 2018;

Debnath and Arigundam, 2020; Debnath and Goyali, 2020;

Hewage et al., 2020). Berry crops are genetically heterozygous

and are generally propagated vegetatively to maintain genetic

integrity and fruit quality, and for achieving quick fruit-bearing

condition (Debnath, 2018). Micropropagation, also called in

vitro propagation, is a multi-billion-dollar industry across the

world for the propagation of various crop plants. It has been long

used in berry crops for their quick and mass propagation in

commercial cultivation. Despite the tremendous advantage of

this propagation system in berry crop plants, clonal fidelity or

trueness-to-type is of significant importance for its commercial

application. In vitro-derived variations can be heritable (genetic)

or epigenetic, that arise without alteration of DNA sequences but

due to gene activation or silencing. Epigenetic variations can be

unstable and may disappear following transfer from culture

media or after a few clonal or sexual generations (Kaeppler

et al., 2000), although heritable epigenetic changes are also

available that are valuable for enhanced crop production and

improvement (Kakoulidou et al., 2021). However, propagation

strategies have been developed to minimize variations in

micropropagated berry plants (Debnath and Goyali, 2020).

Although a number of DNA-based molecular markers have

been used to monitor the clonal fidelity in berry crops

including raspberry (Debnath, 2014), lingonberry (Arigundam

et al., 2020), blueberry (Goyali et al., 2015; Debnath, 2017a), and

strawberry (Debnath, 2009a), tissue culture-induced epigenetic

variation such as DNA methylation has been studied so far only

in blueberry (Ghosh et al., 2017; Goyali et al., 2018; Ghosh et al.,

2021a), strawberry (Cao et al., 2021), and lingonberry (Sikdar

et al., 2022). The present review deals with in-depth variations

during in vitro culture of berry crops along with their analysis at

morphological, biochemical, and molecular levels.
In vitro propagation

The theoretical concept of in vitro culture was explained by

Gottlieb Haberlandt in his lecture at the German Academy of

Sciences based on his experiments on single-cell culture

(Haberlandt, 1902). Haberlandt experimented with leaf and

other actively differentiating cells that failed to give rise to

artificial embryos. He further added that cultivating vegetative
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cells under optimal hormonal influence can be established as a

new approach for plant propagation. Although he did not

succeed in his experiments, his practice of regeneration of

artificial embryos from vegetative cells supported the concept

of totipotency (Thorpe, 2007). Haberlandt (1902) was successful

at tuning the survival of in vitro-grown tissue, while cell division

under in vitro conditions was first observed by Hannig (1904)

and regeneration from callus tissue was first documented by

Simon (1908). However, Gautheret (1934) demonstrated the

first true plant tissue cultures using cambial tissue of

Acer pseudoplatanus.

Regeneration of plants via tissue culture is dependent on two

primary concepts, which are totipotency and developmental

plasticity. According to Skoog and Miller (1957), totipotency can

be explained as the ability of a plant cell to differentiate, proliferate,

and eventually grow into a plantlet under optimal culture

conditions and under hormonal influence. In general, cells from

young tissues and meristems are totipotent in nature; however,

differentiated cells also occasionally exhibit totipotency (Debnath,

2007a). On the other hand, plasticity is the capability of the plant

tissues to adjust their metabolism, growth pattern, and development

in order to survive under various environmental conditions. Plant

tissue culture, which is also known as in vitro cell culture, is an

important area of basic and applied science studies. Due to the

availability of several in vitro propagation techniques, since

approximately mid-1960s to 1980s, these techniques have gained

a huge popularity to solve various biological, agricultural,

horticultural, and forestry problems (Thorpe, 2007).

During the in vitro culture process, an individual cell, tissue,

or organ of a plant can be used as an explant. Explants are then

cultured in an artificial medium containing macro- and

micronutrients, a carbohydrate source, vitamins, plant growth

regulators (PGRs), and a chelating agent depending on media

type. Under the optimum hormonal stimuli and appropriate

environment, explants develop into an identical copy of the

source plant under aseptic conditions, which is called a clone

(Altman and Loberant, 2010). Clones can be regenerated during

in vitro propagation via organogenesis by forming either shoot

or root meristems and/or somatic embryogenesis (SE) where

shoot and root meristems form simultaneously (Steward et al.,

1970). Organogenesis follows the pathway of shoot proliferation

from a pre-existing bud followed by adventitious shoot

regeneration (Steward et al., 1970). In a tissue culture system,

plants produce hundreds of identical copies within a short

period. The commercial use of micropropagation techniques

includes the maintenance of pathogen-free germplasm,

production of nuclear stock, and yearlong production of

clones of hybrid and parental lines (Debnath, 2014). In recent

years, for the large-scale commercial micropropagation of elite

varieties, industries have implemented micropropagation

techniques. Consequently, many tissue culture laboratories

were set up around the globe especially in developing

countries due to cheaper labor costs (Kumar and Reddy,
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2011). In vitro propagation of blueberry was first reported in the

early 1970s using rhizome explants without the help of any PGR

(Barker and Collins, 1963) in White’s medium (White, 1943).

However, the first report on the use of micropropagation

techniques for commercial purposes was in the 1970s by

Boxus (1974) in strawberry. Some other major discoveries

were chemical and hormonal regulation of plant regeneration

(Skoog and Miller, 1957), the application of in vitro propagation

techniques in basic and applied science (Komamine et al., 1992),

regeneration of virus-free plantlets, haploid culture (Nitsch and

Nitsch, 1969), plantlet formation from protoplast culture

(Cocking, 1960), secondary metabolite production (Kaul and

Staba, 1965), and cell culture in a liquid medium in a bioreactor

(Noguchi et al., 1977). Skoog and Miller (1957) hypothesized the

effect of auxin–cytokinin on plant morphogenesis. The authors

concluded from their experiment on tobacco pith culture that

the auxin–cytokinin ratio is the deciding element for shoot and

root formation. Skoog and Miller (1957) hypothesized that the

culture medium supplemented with a higher concentration of

cytokinin gives rise to shoot, and an increased concentration of

auxin induces root formation, whereas a balanced ratio of auxin

and cytokinin leads to the formation of a callus.

Micropropagation in berry crops is being used for year-

round propagation of virus-free (indexed) clones, which can be

used as a first step in a nuclear stock crop production system

(Debnath, 2018). Softwood or rhizome cuttings of desirable

clones can be used to establish new blueberry stands as they

are comparatively easy to root; however, their flowering ability

makes the establishment process very slow for plantings

(Debnath, 2014). With the intervention of micropropagation

techniques, this problem can be largely avoided (Smagula and

Lyrene, 1984). Many of the small fruit crops have been

traditionally produced via plant tissue culture techniques to

attain rapid fruit-bearing condition and to maintain genetic

fidelity (Debnath, 2018). Especially in the case of lowbush

blueberry, micropropagated plants develop similar spreading

behaviors as seedlings. In addition to that, they exhibit

consistent productivity behaviors similar to the rooted cuttings

(Frett and Smagula, 1983). Furthermore, in vitro propagation

methods match the traditional way of introducing new desirable

characters into the progeny and multiplying them in a short

period of time (Meiners et al., 2007). Propagation in vitro has

been reviewed in berry crops (Debnath, 2018; Debnath and

Keske, 2018; Debnath and Arigundam, 2020; Debnath and

Goyali, 2020).

There are three ways of propagation in vitro: axillary shoot

proliferation, adventitious shoot regeneration, and SE. Shoot

proliferation from axillary buds is one of the most common

pathways of organogenesis to attain true-to-type clones from the

donor plants due to low chances of genetic alterations (Debnath,

2018). It does not involve cell differentiation; rather, it follows

the natural pathway of plantlet formation from pre-existing

meristems (Novikova and Zaytseva, 2018). Meristem tissues
Frontiers in Plant Science 03
are comparatively less prone to mutations or genetic alteration

than unorganized tissues such as callus; however, the chance of

changes occurring during in vitro culture still persists (Baránek

et al., 2015). Berry crop micropropagation via axillary shoot

proliferation has been reported by various authors both on

semisolid media (Chauhan et al., 2019; de Oliveira Prudente

et al., 2019; Kopper et al., 2020; Kryukov et al., 2022) and in

liquid media using bioreactor systems (Arencibia et al., 2013a;

Arencibia et al., 2013b; Debnath, 2017a; Arigundam et al., 2020;

Ghosh et al., 2021a; Kryukov et al., 2022).

De novo adventitious shoot regeneration can occur two ways:

directly without any involvement of callus, or indirectly via

callus formation. However, direct shoot regeneration is the more

preferable technique for mass propagation as the chances of

somaclonal variance are scarce (Debnath, 2018; Novikova and

Zaytseva, 2018). During the indirect regeneration process,

shoots originate from the surface of the callus tissue and thus

have a better chance to be genetically transformed (Arencibia et

al, 2013b). According to Ammirato (1985), adventitious shoot

regeneration can initiate from unipolar organs either through

shoot or with root meristem (organogenesis; Figure 1, Ghosh

et al, 2021a) or from bipolar organs simultaneously containing

shoot and root meristem (SE; Figure 2, Ghosh et al., 2018). The

adventitious shoot regeneration technique has been successfully

employed for mass propagation of berry crops using semisolid

(Qiu et al, 2018; Schuchovski et al., 2020) and liquid media in

bioreactors (Debnath, 2014; Arigundam et al., 2020). While

working with blackberry (Rubus fruticosus), blueberry (V.

corymbosum), and kiwiberry (Actinidia argute), Hunková et al.

(2022) regenerated shoots from petioles and internodal

segments; Verma et al. (2022) reported plant regeneration

through adventitious shoot formation from hypocotyl and leaf

explants of Lycium barbarum (Goji), on a semisolid medium.

SE is explained as the process of formation of embryos from

differentiating somatic cells. Somatic embryos and zygotic

embryos are remarkably similar both temporally and

morphologically, although they develop independent to the

physical constraints of the maternal tissues (Zimmerman,

1993). Somatic embryos are bipolar and contain radicals,

hypocotyl, cotyledons, and the usual embryonic organs (von

Arnold et al., 2002). Similar to zygotic embryos, somatic

embryos also develop globular-shaped, heart-shaped, and

torpedo-shaped embryos followed by formation of shoot and

root meristem simultaneously (Zimmerman, 1993). Like

organogenesis, SE can be direct from an explant or indirect,

involving callus formation (Williams and Maheswaran 1986).

Microspores, ovules, embryos (zygotic and somatic), and

seedlings are a few examples of explants that are commonly

used in direct embryogenesis (von Arnold et al., 2002). The

morphological differences between direct and indirect SE are still

not clear. However, according to an older hypothesis, direct SE

starts from pre-destined embryonic cells while indirect SE is

induced from undetermined unorganized callus tissues.
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However, calluses developed during the indirect SE process can

be either embryogenic or non-embryogenic (von Arnold

et al., 2002).

The initial description of SE was reported on carrot callus

culture (Steward et al., 1958), and since then, carrot has been

used as the principal model system to study the early regulatory

and morphogenic processes occurring during SE (Zimmerman,

1993). SE is a unique developmental pathway that is well

recognized as a plantlet regeneration pathway from cell culture

systems (Zimmerman, 1993). There are few available detailed

reports on SE in blueberries (Ghosh et al., 2017; Ghosh et al.,

2018). However, studies are available on SE in grapes (Nakajima

and Matsuta, 2003; Dhekney et al., 2016; Forleo et al., 2021),

strawberry (Biswas et al., 2009), Arbutus unedo (strawberry tree;

Martins et al, 2022) and L. barbarum (Verma et al., 2022) on

semisolid media. Reports on SE in berry crops are scarce in a

bioreactor system.
Liquid media and bioreactors for
propagating berry crops

Micropropagation of berry crops using liquid media in a

bioreactor system is one of the most developed techniques of

mass propagation. Over time, automated bioreactors have

become an important tool for the success of large-scale
Frontiers in Plant Science 04
commercial production of tissue culture plants (Debnath,

2014). Haberlandt (1902) first used sucrose supplemented in

Knop’s liquid medium for propagating individual bract cells of

Lamium purpureum (Preil, 2005). Kohlenbach (1959) used

mesophyll cells of Macleaya as an explant to develop cell-

forming organs, somatic embryos, and cell clusters 60 years

after Haberlandt’s experiment. Liquid media have been used in

stationary and temporary immersion bioreactors (TIBs) to

induce organogenesis and SE (Ziv, 2005). Paek et al. (2005)

described bioreactors as a sterilized, independent unit that works

on the principal of inflow and outflow of the liquid medium.

Automated bioreactors are capable of easily managing the

microenvironment conditions such as aeration, agitation, and

dissolved oxygen level during the intensive culture process (Paek

et al., 2005). The environment of the culture room is also

responsible for determining the microenvironment inside the

bioreactor (Morini and Melai, 2003). Bioreactors also provide a

better control of the gaseous exchange of plants, pH of the

medium, and temperature (Levin and Tanny, 2004). Keeping the

above-mentioned factors in mind, two types of bioreactors have

been developed: (a) agitated and (b) non-agitated bioreactors

(Debnath, 2011a).

Levin and Vasil (1989) introduced bioreactor systems for

mass propagation of various horticultural crops: ever since,

agitated and non-agitated bioreactors have been used

successfully for various ornamental and vegetative crops such
FIGURE 1

In vitro organogenesis in half-high blueberry cv. “Patriot”. (A) Callus formation after 4 weeks of culture on a semisolid medium (SSM) with 2.3 µM
ZEA (bar = 2 cm), (B) bud initiation from callus (arrows) after 8 weeks of culture on SSM with 9.2 µM zeatin (bar = 2 cm), (C) shoot regeneration
after 12 weeks of culture on SSM with 9.2 µM zeatin (bar = 2 cm), (D) shoot elongation and root formation (arrows) after 16 weeks of culture on
SSM with 9.2 µM zeatin (bar = 2 cm), (E) shoot elongation after 16 weeks of culture in a temporary immersion bioreactor (TIB) containing a
liquid medium with 9.2 µM zeatin (bar = 3 cm), and (F) 1-year-old hardened-off plants in a greenhouse (bar = 8 cm).
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as oriental lily (Lian et al., 2003) and potato (Piao et al., 2003).

Micropropagation of berry plants using liquid medium in

bioreactors has been investigated in few berry crops (Debnath,

2007; Debnath, 2008; Debnath, 2009a; Debnath, 2009b;

Debnath, 2011a; Debnath, 2011b; Arencibia et al., 2013a;

Arencibia et al., 2013b; Debnath, 2014; Debnath, 2017a;

Arencibia-Rodrıǵuez et al., 2018; Arigundam et al., 2020;

Kryukov et al., 2022). A two-step procedure for cloudberry

(Rubus chamaemorus L.) micropropagation using a liquid

medium in plastic airlift bioreactors was reported by Debnath

(2007). Strawberry shoot culture was obtained in commercially

available TIBs using leaves from five cultivars as explants in

Murashige and Skoog (MS) medium supplemented with 9 µM

thidiazuron (TDZ) and 2.5 µM indole-3-butyric acid (IBA)

(Hanhineva et al., 2005). Debnath (2008) optimized the shoot

regeneration and proliferation protocol in strawberry cv.

“Bounty” using a liquid medium in a TIB system coupled with

a semisolid medium (SSM) with 2–4 µM TDZ. Similarly,

micropropagation of two lowbush blueberry genotypes and

one cultivar was established using TIB in combination with a

SSM and 1, 2, or 4 µM zeatin (ZEA) (Debnath, 2009b).

Adventitious shoots of three lowbush blueberry genotypes

“PB1,” “QB1,” and “QB2” were regenerated in a liquid

medium supplemented with 1.2–2.3 µM thidiazuron (TDZ) in
Frontiers in Plant Science 05
a bioreactor (Debnath, 2011b). Arencibia et al. (2013b) reported

micropropagation of three raspberry cultivars “Meeker,”

“Amity,” and “Heritage” using shoot tip cultures (~5 cm) in a

liquid media in a TIB supplemented with various sucrose

concentrations. In vitro multiplication of raspberry cultivars

“Festival,” “Heritage,” and “Latham” has been reported by

Debnath (2014) in TDZ-supplemented media. Adventitious

shoot regeneration of wild lingonberry clones were obtained

using stationary bioreactors and TIBs with liquid media

supplemented with 9.1 µM TDZ and 1.8 µM ZEA (Arigundam

et al., 2020). Organogenesis in half-high blueberry cv. “Patriot” is

shown in Figure 1 using a semisolid and a liquid medium in a

TIB (Ghosh et al., 2021a). Clapa et al. (2021) micropropagated

raspberry cultivars “Maravilla” and “Willamette” in TIB

containing a liquid MS medium supplemented with 0.5 mg/L

6-benzyladenine (BA). Kryukov et al. (2022) used bioreactor

micropropagation in strawberry cultivar “Murano” and

grapevine cultivar “Traminer Pink” in combination with a

semisolid medium. Shoots were proliferated in the semisolid

medium followed by proliferation in a liquid medium containing

2 mg/L BA. The authors reported a 300-fold fresh mass increase

after a 6-week cycle in TIB with a propagation increase rate of

approximately 5 and 20 for grape and strawberry, respectively

(Kryukov et al., 2022).
FIGURE 2

In vitro propagation via somatic embryogenesis in half-high blueberry cv. “Northblue”. (A) Young leaf cultured on a medium with 9 µM TDZ, (B)
globular embryo development (arrows) after 4 weeks of culture in a 9 µM TDZ-supplemented medium, (C) germination of somatic embryos and
shoot and root apex development (arrow) after 10 weeks of culture with 9 µM TDZ (scale bar = 0.5 cm), (D) root elongation (arrows) in a
nutrient medium containing 2.3 µM TDZ, after 4 weeks of culture in a glass jar (scale bar = 2 cm), (E) development of rooting system (arrows) in
a nutrient medium with 2.3 µM TDZ after 6 weeks of culture in a glass jar (scale bar = 2 cm), and (F) 1-year-old hardened-off plants in a
greenhouse (scale bar = 5 cm).
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The epigenome of plants

Plant studies have provided a significant contribution in

epigenetic research. In 1929, Heitz observed the difference

between euchromatin and heterochromatin based on several

cytological analyses (Heitz, 1929). Carl von Linne in the 18th

century described “peloric” mutants with changed floral

symmetry that was due to silenced epialleles mimicking the

DNA sequence of the expressed alleles, as described by Cubas

et al. (1999). A year after, Soppe et al. (2000) showed that

epialleles can make changes in developmental switches. In

Arabidopsis thaliana, the FWA gene is prominent evidence of

this phenomenon. Paramutation in maize and tomato is another

epigenetic phenomenon, which displays non-Mendelian

epigenetic inheritance (Chandler et al, 2000). Later,

paramutation has also been detected in mammals, flies, and

plants (Cao et al., 2021). Understanding the paramutation

phenomenon led several scientists who had been using plants

as a model system to study epigenetic regulations. With the

discovery of transposable elements in maize in the 1940s by

McClintock and others, various connections were made between

genetic and epigenetic regulations (Lisch, 2009). Mobilization of

transposable elements has also been used as a technique to

introduce epigenetic mutations in plant systems. Usually,

engineered transgenes are used as silenced marker genes to

screen mutations in epigenetic regulators and that is how the

use of transgenic techniques in plant development proved to be

advantageous in epigenetic research (Pikaard and Scheid, 2014).
Molecular components of
epigenetic regulation in plants

More than 130 protein-encoding genes have been found to

control epigenetic regulators in plants to date (Pikaard and

Scheid, 2014). During plant development, epigenetic

regulations play an important role as they help the plant to

maintain the stability and integrity of their gene expression

profiles. There are several reported studies focusing on alteration

of DNA methylation and histone modifications during the de-

differentiation pathway in the tissue culture system (Ruffoni and

Savona, 2013). Although there is an ever-developing flow of

information on epigenetic modifiers, based on current

knowledge, they are discussed in the following sections.
DNA methylation

DNA methylation is one of the most studied epigenetic

modifications. DNA methylation is a chromatin modification

that does not alter genetic sequence but regulates gene
Frontiers in Plant Science 06
expression by suppressing the transcription factor and DNA

association (Smith and Meissner, 2013). DNA methylation can

be present in various forms depending on the targeted

nucleotide during the modification process (Ratel et al., 2006).

It is a post-replicative mechanism and generates several

methylated bases such as 5-methylated cytosine (5-mC), N6-

methyladenine (6-mA), and N4-methylcytosine (4-mC) (Wion

and Casadesús, 2006). 5-mC is available mostly in higher plants

and mammals, unlike 6-mA and 4-mC, which are predominant

in bacteria, protists, and lower eukaryotes (Wion and Casadesús,

2006). In the case of plants, cytosine methylation usually takes

place within CG, CHG, or CHH motifs (H = A/T/C). However,

in the case of mammals, promoters are usually present in CpG

islands, although CpG islands are not easily detectable in plants.

Cytosine methylation takes place randomly within the protein-

coding regions of highly expressive genes, at their differentially

regulated promoters in plants (Zilberman et al., 2007), and they

also occur mainly in the repetitive parts of the genome such as in

transposable elements and silenced rRNA gene repeats (Pikaard

and Scheid, 2014).

Various DNA cytosine methylation enzymes such

as methyltransferases (METS) and domain rearranged

methyltransferases (DRMs) mediate the DNA methylation

process (Rival et al., 2008). DNA methyltransferases facilitate the

formation of newly methylated cytosines at the previously

unmethylated cytosines or maintain a preexisting methylation

pattern (Li and Zhang, 2014). In eukaryotes, there are three

families of DNA methyltransferases that are conserved, and these

three families are present in modern plants and are homologs of

mammalian DNA methyltransferases such as Dnmt1, Dnmt2, and

Dnmt3 (Li and Zhang, 2014). DNA methyltransferase 1 (MET 1),

which is a plant equivalent of Dnmt1, carries out CG motif

maintenance and contributes to de novo methylation of CG

contexts (Zhang et al., 2018). On the other hand, plant homologs

of Dnmt2 process the methylation activity of transfer RNA (Goll

et al., 2006). DRMs, which are the plant equivalent of mammalian

Dnmt3 groups, primarily carry out de novo cytosine methylation.

Among others, DRM 2 catalyzes cytosine methylation of all CG,

CGH, and CHH contexts and predominantly takes part in RNA-

directed DNAmethylation pathways (Pikaard and Scheid, 2014). In

contrast to mammals, plants have an exclusive family of cytosine

methyltransferase, which binds to the methylated histones at their

chromodomains. Chromomethylase 1 (CMT 2) plays an important

role inmaintaining CHHmethylation at the central part of the large

transposons while CMT 3 is one such enzyme, which is mainly

responsible for CHG maintenance methylation (Zemach et al.,

2013). CMT 3 also takes part in the balancing act between

repressive DNA methylation and histone modification by

dimethylating histone 3 protein on lysine 9 (H3K9me2), thus

maintaining the cross talk between both epigenetic states in

plants (Law and Jacobsen, 2010).
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Histone modifications

Similar to any other organism, plants have several enzymes

that post-translationally modify various histone proteins

affecting gene regulation. In plants, these enzymes are

generally encoded by large gene families (Berr et al., 2011).

Histone modifications usually occur in two ways, namely,

acetylation and methylation. Histone acetylation and histone

methylation are reversible epigenetic marks, as enzymes like

histone acetyltransferase (HAT) mediate “writer” activities, and

histone deacetylase (HDAC) acts as an “eraser” of the acetylation

phenomenon; similarly, histone lysine methyltransferases

(HKMTs) also reverse the methylation phenomenon by

methylating a specific lysine on histones, thus promoting or

inhibiting the transcription process (Cheng, 2014). Plants have

several HAT and HDAC gene families (Chen and Tian, 2007).

The genes included in the HAT family can be classified into five

subfamilies depending on their structure and substrate profiles

(Earley et al, 2007). However, only two HDAC gene families

have been identified to date: HDA1 and HDA6. While the

function of HDAC1 is still unclear, HDAC6 is responsible for

interacting with MET1, as well as the maintenance of CG and

CHG methylation. HDAC6 is also responsible for transposon

silencing, repression of rRNA genes, and nucleolar dominance

(Pikaard and Scheid, 2014). Aufsatz et al., 2007 also found that

HDAC6 actively takes part in seed maturation, flowering time

control, and stress responses in plants.
In vitro propagation and epigenetic
variation

Plant tissue culture techniques have been developed and

improved over time for numerous plant species. Many

researchers have incorporated micropropagation techniques

into many basic and applied aspects of plant science for years

(Lee and Phillips, 1987). According to Cassells and Curry (2001),

there are few well-described physiological, genetic, and

epigenetic problems that are associated with a plant cultured

in vitro such as recalcitrance, hyperhydricity, and somaclonal

variation (Miguel and Marum, 2011). Variation that emerged in

tissue culture plants has been termed “somaclonal variation”

(Larkin and Scowcroft, 1981). Due to its origin, somaclonal

variation is also referred to as tissue culture-induced variation

(TCIV). Mutations are referred to as heritable genetic variations

that emerged without any intervention by genetic recombination

or segregation (Van Harten, 1998). Mutations can be induced

either physically, chemically, or by tissue culture (Predieri, 2001;

Roux, 2004). However, mutagenesis due to tissue culture is

different because of physical and chemical agents, and is

unclear in the long term (Larkin, 1998). In vitro propagation

techniques such as callus induction, embryo formation, and
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regeneration can be exceptionally stressful to the plant cells

(Lörz et al, 1988). TCIV can occur due to two reasons: epigenetic

(developmental) and genetic (heritable variation) causes (Lörz

et al, 1988). Epigenetic variations are more often transient and

inheritable even though the plant material is asexually

propagated (Duncan, 1996). However, these variations can last

for many generations, and phenotypic variants involve changes

in the expression of specific genes (Hartman and Kester, 1983).

In multicellular organisms, genetic and epigenetic mechanisms

are involved in coordinated gene expression. DNA methylation,

chromatin modification, and non-coding RNA biosynthesis

mediate epigenetic regulation (Bond and Finnegan, 2007).

Rejuvenation is described as the restoration of juvenile traits in

an adult plant as a result of an epigenetic phenomenon. Many

woody perennial plant species lose the ability to rejuvenate with

increased maturity, which can impose a major problem in regard to

vegetative propagation (Welander, 1983). However, according to

Huang et al. (2012), a plant’s capability to rejuvenate can be gained

during the tissue culture process. During the tissue culture process,

plant cells go through callus formation (dedifferentiation) and

plantlet regeneration (redifferentiation), which create a highly

stressful condition for the plant material; thus, normal cellular

regulation gets disrupted (Guo et al., 2007). It has already been

determined that the degree of altered DNA methylation level is

related to differentiation, and during dedifferentiation and

redifferentiation, DNA methylation levels change drastically

(Huang et al., 2012). There are a few studies available on DNA

methylation during the tissue culture process. Goyali et al. (2015)

observed that tissue culture-regenerated lowbush blueberry plants

showed increased levels of antioxidant than their softwood cutting

counterparts. Later, molecular analysis with simple sequence repeat

(SSR) markers confirmed no genetic changes in the regenerants,

which further led the authors to consider the involvement of

epigenetic factors (Goyali et al., 2015). The first report of

epigenetic variation through tissue culture-induced altered DNA

methylation patterns was found in blueberry callus culture (Ghosh

et al., 2017). A higher percentage of total DNA methylation was

detected in callus tissues than in leaf tissues of three lowbush

blueberry clones as well as in a hybrid genotype produced using the

methylation-sensitive amplification polymorphism (MSAP)

technique (Ghosh et al., 2017). It was also found that methylation

events in in vitro-cultured calli were polymorphic compared to leaf

samples from greenhouse-grown plants (Ghosh et al., 2017). TCIV

arises due to changes in the microenvironment of the tissue culture

system such as continuous subculturing and tissue culture-induced

stress, and categorically includes molecular and physiological

changes in the regenerants (Figure 3). Evidently, the occurrence

of epigenetic variations such as DNA methylation is much more

common in the tissue culture system and is thought to be one of the

main causes of TCIV (reviewed by Ghosh et al., 2021b). Global

methylation analysis using the MSAP technique detected altered

DNA methylation patterns in tissue cultured plantlets of the

lowbush blueberry clone “QB 9C” and the cultivar “Fundy” than
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in softwood cutting plants (Goyali et al., 2018). Shoots of two

highbush blueberry cultivars, “Patriot” and “Chippewa”, derived

from semisolid media and bioreactor systems, showed higher levels

of methylation when compared with their greenhouse-grown donor

plants. Among these two tissue culture systems, explants from the

bioreaction system showed increased levels of methylation variation

and polymorphism than explants derived from the semisolid media

(Ghosh et al., 2021a). Cao et al. (2021) studied genomic DNA

methylation using whole genome bisulfite sequencing (WGBS) in

wild strawberry (F. nilgerrensis) at various tissue culture stages,

starting from use of the shoot tip explants to out planting and

acclimation. The authors found that the most obvious methylation

changes occurred in the transposable element region of the genome,

and the global methylation levels alternately increased and

decreased during the tissue culture process. Additionally, during

the dedifferentiation and redifferentiation stages of the tissue culture

process, differentially methylated regions were detected, which were

mostly transposable elements. This finding suggests that

dedifferentiation and redifferentiation processes were involved in

activation or silencing of transposable elements (Cao et al., 2021).

Sikdar et al. (2022) demonstrated the interaction between

cytosine methylation and secondary metabolites in tissue-
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culture shoots, lingonberry plants, and cutting propagated

plants under in vitro and ex vitro conditions. Through the

MSAP assay, the authors observed more methylation in tissue

culture shoots and plants than in the respective cutting

propagated donor plants, although higher levels of secondary

metabolites were observed in cutting propagated plants (Sikdar

et al., 2022).
Enhanced vegetative growth

Culture in vitro has significant influences on the growth and

morphology of the resulting plants. Increased vegetative growth,

branching, and rhizome production are often noted in tissue culture

(TC) plants compared to conventional cutting propagated plants in

berry crops. The variation in morphology between cutting

propagated and tissue culture plants of berry crops has been

reviewed elsewhere (Debnath et al., 2012; Debnath and

Arigundam, 2020; Debnath and Goyali, 2020). Strawberry TC

plants produced more crowns, leaves, runners, and berries than

conventional runner cutting plants, which might be due to the plant

growth regulator treatment used in culture media during in vitro
FIGURE 3

A hypothesized pathway of tissue culture-induced phenotypic variation due to activation of key epigenetic regulators.
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culture (Debnath, 2009a; Debnath, 2017b). TC strawberries were

more resistant to frost damage than the runner cutting plants

(Rancillac and Nourrisseau, 1988). Likewise, Dalman and Malata

(1997) observed that “Senga Sengana” TC strawberry plants were

better for overwintering than those of runner propagated plants,

although the opposite was true for the cultivar “Mari”, whereas for

the cultivar “Jonsok”, there was no difference between the in vitro

and ex vitro propagated plants. These results indicate that enhanced

vegetative growth, berry production, and the development of TC

plants over conventional cutting propagated plants, are genotype

dependent. TC red raspberry plants produced longer and more

numerous canes and more berries than those of root cutting

propagated plants in the cultivar “Festival” but not in “Latham”

(Debnath, 2014). Increased vegetative growth and rhizome

production in TC plants were also reported in lingonberry

(Debnath, 2005, 2006) and blueberry (Debnath, 2007). Cranberry

TC plants had more runners, uprights, and leaves per upright than

those of cutting propagated (CP) plants (Debnath, 2008).

Micropropagated lowbush blueberry plants produced less flower

buds than conventionally propagated plants (Jamieson and

Nickerson, 2003).

Working with wild and cultivated lowbush blueberries over

5 years, Goyali et al. (2013) reported that TC plants produced a

higher number of stems and branches with denser and larger

shoots than the CP plants. Under field conditions, TC plants had

longer canes with more berries and higher yields than the root

cutting plants for the red raspberry cultivar “Festival” but not for

“Latham” (Debnath, 2014). However, Naing et al. (2019)

reported that meristem-derived micropropagated plants did

not differ from those of conventionally propagated strawberry

plants in terms of growth and fruit quality. The authors

proposed that a low level of cytokinin (0.5 mg L−1 kinetin) in

the culture medium might have produced phenotypically similar

plants during micropropagation (Naing et al., 2019). Similarly,

Arigundam et al. (2020) did not find any phenotypic difference

between micropropagated and cutting propagated lingonberry

plants. Cutting propagated lingonberry plants produced more

vigorous growth but with less number of shoots, leaves, and

rhizomes per plant compared to leaf and node culture-derived

TC plants under greenhouse conditions (Sikdar et al, 2022). The

juvenile characteristics of TC plants may be the reason for

increased rhizome production, which is of great help for the

quick establishment and early production of berry crops under

field conditions (Debnath et al., 2012).
Variation in bioactive compounds

Micropropagation of Vaccinium berry plants has been an

area of interest for plant scientists due to possible implications for

improving phytochemical properties. This technique has been used

in several medicinal plant species to elevate the levels of phenolic

components with antioxidant activities (AAs) to satisfy industrial
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pharmaceutical needs (Giri and Zaheer, 2016). It was found earlier

that micropropagated berries have a higher level of antioxidants in

comparison to conventionally propagated blueberries (Debnath and

Goyali, 2020). However, micropropagated lingonberry plants had

less chlorophyll a and b contents in the leaves compared to cutting

propagated plants (Arigundam et al., 2020). The reason behind the

different levels of bioactive compounds during plant tissue culture

can be due to the use of PGR in the growth media, which may be

involved in the up- and downregulation of genes engaged in

secondary metabolite production pathways (Zifkin et al., 2012).

Blueberries are popularly known as a “super fruit” because of

their high levels of in vitro antioxidant properties due to the ample

presence of polyphenolic compounds (Kalt et al., 2020). However,

the antioxidant capacities of these phenolic compounds were not

directly accessible under in situ conditions due to their low

bioavailability (Williamson and Clifford, 2010). In blueberries, the

antioxidant capacity depends on the presence of polyphenolic and

flavonoid compounds, their redox potential, and structures (Prior

et al., 1998). It was previously proven that there was a strong and

positive correlation between the total phenolic (TPC) and

anthocyanin content (TAC) and AA in blueberries (Goyali et al.,

2013, 2015). However, the relationship between TPC and AA was

much more stronger than TAC and AA (Moyer et al., 2002).

Moreover, Ghosh et al. (2018) reported that in half-high blueberry

plants, TPC andAAwere strongly related in comparison to the total

flavonoid content (TFC) and AA. Nonetheless, quantification of

total AA in a plant is a complex process as it is influenced by the

linkage of different phytochemicals and works synergistically or

antagonistically in the presence of various environmental factors

(Hassimotto et al., 2005).

It was proven that the type of cytokinin and concentration in

the culture media affects the biosynthesis pathways of secondary

metabolites (Debnath and Goyali, 2020). Phenolic compounds

are the most commonly found secondary metabolites in plants,

and are derivatives of phenylalanine. Cytokinin concentration is

positively correlated with the level of transcription of gene-

encoding enzymes such as ammonia lyase, chalcone synthase,

chalcone isomerase, and dihydroflavonol reductase involved in

the flavonoid biosynthesis pathway, and is thus indirectly

correlated to the TAC in Arabidopsis (Deikman and Hammer,

1995). In addition, various environmental factors like low

concentrations of nutrients and light increase phenylalanine

ammonia lyase activity, which is an important regulatory

factor of plant metabolic pathways (Taiz and Zeiger, 2006). It

was found that the lowbush blueberry clone “QB9C” and the

cultivar “Fundy” were affected by micropropagation techniques

and “QB9C” fruits showed a higher content of secondary

metabolites and AA than “Fundy” regenerants (Goyali et al.,

2013). Later, Goyali et al. (2015) reported increased levels of

TPC, TAC, TFC, total proanthocyanidins (TPAC), and AA in

the tissue culture regenerants of the lowbush blueberry clone

“QB9C” and the cultivar “Fundy”, in comparison to stem cutting

counterparts. Georgieva et al. (2016) studied the TPC, AA, and
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ferric-reducing capacities of in vitro- and ex vitro-grown

lingonberry, bilberry, raspberry, and strawberry fruit extracts.

The authors found a high content of AAs in all three types of in

vitro-grown berries in comparison to berries collected from the

ex vitro condition. Bioreactor- and agar-gelled media-derived

strawberries of the cultivar “Bounty” exhibited a higher content

of TAC and AA than strawberries grown using conventional

runner cuttings. Even though there was a significant difference in

the AAs of the fruits collected from two different pathways of

tissue culture and conventional cuttings, the inter-simple

sequence repeat (ISSR) marker assay did not show any

heterogeneities in their amplification profiles. These results

confirmed the clonal fidelity of the micropropagated plants,

yet suggest the occurrence of somaclonal variation as a reason

for increased TAC and AA levels (Debnath, 2009a). Similar

results were also reported in lingonberry wild clones, where the

clonal fidelities of TC plants were confirmed by expressed

sequence tag (EST)–SSR, EST–polymerase chain reaction

(PCR), and ISSR markers; however, variation was observed

between the chlorophyll contents of TC and CP plants

(Arigundam et al., 2020).
Detection of DNA methylation in
tissue culture-derived berry plants

There are various technologies available to evaluate the role of

epigenetic changes in a crop improvement program such as the use

of modern genome editing tools like CRISPR/Cas9, zinc finger

nucleases, transcription activator like-nucleases, epigenetic

recombinant inbred lines, and RNA-directed DNA methylation

(Arencibia et al., 2019). However, the study of global DNA

methylation can be employed in a small-scale tissue culture set

up to understand the alteration of the epigenetic status of

regenerants. DNA methylation studies can be approached from

various standpoints as there are different methods available to detect

tissue culture-induced DNA methylation and localization of

methylated cytosine in a particular region of the genome. Among

them, the most popular are detection by MSAP, high-performance

liquid chromatography (HPLC), high-performance capillary

electrophoresis (HPCE), and WGBS. MSAP is based on the

sensitivity of two restriction enzymes (MspI and HpaII) to

identify methylated cytosine bases (Cedar et al., 1979). This is a

modification of the amplified fragment length polymorphism

(AFLP) technique (Vos et al., 1995), which was developed by

Reyna-Lopez et al, (1997) to detect DNA methylation in

dimorphic fungi. The MSAP technique has been used in tissue

culture regenerants to detect global methylation in only a few berry

crops including blueberry (Ghosh et al., 2017; Goyali et al., 2018;

Ghosh et al, 2021a), grapes (Baránek et al., 2010), and lingonberry
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(Sikdar et al., 2022). The genomic DNA level of methylated cytosine

can be detected by enzymatic means, although this is not as sensitive

as the HPLC method because its resolution is restricted to the

cleavage sites of the endonucleases. The HPLC technique quantifies

DNAmethylation via fractionation of four main bases (A, T, G, and

C) (Fraga and Esteller, 2002). When options are available, HPCE

proves to be more beneficial than HPLC as it is faster, cheaper, and

comparatively more sensitive (Fraga et al., 2000). These methods

have not been used in berry crops to date, but have been used to

detect cytosine methylation in tissue culture regenerants in various

other crops such as oil palm (Jaligot et al., 2000), Acca sellowiana

(Fraga et al., 2012), triticale (Machczyńska et al., 2014), and apple

(Li et al, 2002). Because of these benefits, enzymatic methods are

commonly used, as they do not involve complex equipment or

skilled labor. Enzymatic isoschizomer-based methods do not

provide any details on the role of methyl cytosine in cell and

molecular biology. However, these details can be determined with

the use of bisulfite modification of methylated DNA. There are

various methods available based on the treatment of sodium

bisulfite to detect methylated cytosine located at specific locations

in DNA (Fraga et al., 2000). Sodium bisulfite converts unmethylated

cytosine to uracil, whereas methylated cytosine stays the same

(Furiuchi et al., 1970). WGBS provides genome-wide methylation

profiling without any interference; however, not much information

is available on the minimum required coverage and other factors

such as susceptibility, precision, and cost of the assay (Ziller et al.,

2015). WGBS has been used in wild strawberry (Cao et al., 2021)

and in blueberry tissue culture (Ghosh et al., unpublished results).
Conclusions

Micropropagation techniques for the improvement and

commercial production of berry plants are currently used as

alternative methods to satisfy market demand. In plants, gene

regulation is related to the level of DNA methylation, and this

epigenetic mechanism is intricately linked to growth and

development, as well as in vitro processes such as organogenesis

and SE. It is important to further explore the epigenomes of berry

plants to see if an epigenetic footprint remains within the

epigenome of regenerated plants due to different culture

environments. This can be done by identifying genes subjected to

differential methylation, identifying regions of differential

methylation, and by identifying the hypo/hypermethylated gene

sets involved in various biological and molecular functions under in

vitro and in vivo conditions using advance methylation detection

techniques. In a crop improvement program, it is important to

employ genome editing tools such as CRISPR/Cas9 to detect the

occurrence of undesirable traits due to epigenetic variation during

the tissue culture process as well as to apply various bioinformatic
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tools to predict the inheritance of altered epigenetic patterns in

regenerants. Enhanced vegetative growth and/or bioactive

components due to in vitro culture and propagation are of

significant importance for early field establishment and improved

berry production, and for increased health-promoting factors in

berry crop production and improvement programs.
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Fraga, M. F., Rodrıǵuez, R., and Cañal, M. J. (2000). Rapid quantification of
DNAmethylation by high performance capillary electrophoresis. Electrophoresis 21
(14), 2990–2994. doi: 10.1002/1522-2683(20000801)21:14<2990::AID-
ELPS2990>3.0.CO;2-I

Fraga, H. P. F., Vieira, L. N., Caprestano, C. A., Steinmacher, D. A., Micke, G. A.,
Spudeit, D. A., et al. (2012). 5-azacytidine combined with 2,4-d improves somatic
embryogenesis of acca sellowiana (O. berg) burret by means of changes in global
DNA methylation levels. Plant Cell Rep. 31 (12), 2165–2176. doi: 10.1007/s00299-
012-1327-8

Frett, J. J., and Smagula, J. M. (1983). In vitro shoot production of lowbush
blueberry. Can. J. Plant Sci. 63 (2), 467–472. doi: 10.4141/cjps83-054

Furiuchi, Y., Wataya, Y., Hayatsu, H., and Uketa, T. (1970). Chemical
modification of t-RNA-tyr yeast with bisulfite. Biochem. Biophys. Res. Commun.
41 (5), 1185–91. doi: 10.1016/0006-291x(70)90211-1

Gautheret, R. J. (1934). Culture du tissus cambial. Comptes Rendus
Hebdomadaires Des. Se´ances l’Acade´mie Des. Sci. 198, 2195–2196.

Georgieva, M., Badjakov, I., Dincheva, I., Yancheva, S., and Kondakova, V.
(2016). In vitro propagation of wild Bulgarian small berry fruits (bilberry,
lingonberry, raspberry and strawberry). Bulg. J. Agric. Sci. 22, 46–51.

Ghosh, Igamberdiev, A., Debnath, S. C. (2017). Detection of DNA methylation
pattern in thidiazuron-induced blueberry callus using methylation-sensitive
amplification polymorphism. Biol. Plant’ 61 (3), 511–519. doi: 10.1007/s10535-
016-0678-3

Ghosh,, Igamberdiev, A. U., and Debnath, S. C. (2018). Thidiazuron-induced
somatic embryogenesis and changes of antioxidant properties in tissue cultures of
half-high blueberry plants. Sci. Rep. 8 (1), 16978. doi: 10.1038/s41598-018-35233-6

Ghosh, A., Igamberdiev, A. U., andDebnath, S. C. (2021a). Half-high blueberry plants
from bioreactor culture display elevated levels of DNA methylation polymorphism.
Plant Cell Tiss. Organ Cult. 146 (2), 269–284. doi: 10.1007/s11240-021-02067-6

Ghosh, A., Igamberdiev, A. U., and Debnath, S. C. (2021b). Tissue culture-
induced DNA methylation in crop plants: a review.Mol. Bio. Rep. 48 (1), 823–841.
doi: 10.1007/s11033-020-06062-6

Giri, C. C., and Zaheer, M. (2016). Chemical elicitors versus secondary
metabolite production in vitro using plant cell, tissue and organ cultures: recent
trends and a sky eye view appraisal. Plant Cell Tiss. Organ Cult. 126 (1), 1–18.
doi: 10.1007/s11240-016-0985-6

Goll, M. G., Kirpekar, F., Maggert, K. A., Yoder, J. A., Hsieh, C. L., Zhang, X. Y.,
et al. (2006). Methylation of tRNA(AsP) by the DNA methyltransferase homolog
Dnmt2. Science 311, 395–398. doi: 10.1126/science.1120976

Goyali, Igamberdiev, A. U., Debnath, S. C. (2013). Morphology, phenolic
content and antioxidant capacity of lowbush blueberry (Vaccinium angustifolium
ait.) plants as affected by in vitro and ex vitro propagation methods. Can. J. Plant
Sci. 93, 6, 1001–1008. doi: 10.4141/cjps2012-307

Goyali,, Igamberdiev, A. U., and Debnath, S. C. (2015). Propagation methods
affect fruit morphology and antioxidant properties but maintain clonal fidelity in
lowbush blueberry. HortScience 50 (6), 888–896. doi: 10.21273/HORTSCI.50.6.888

Goyali,, Igamberdiev, A. U., and Debnath, S. C. (2018). DNA Methylation in
lowbush blueberry (Vaccinium angustifolium Ait.) propagated by softwood cutting
and tissue culture. Can. J. Plant Sci. 98 (5), 1035–1044. doi: 10.1139/cjps-2017-0297

Guo, W., Wu, R., Zhang, Y., Liu, X., Wang, H., Gong, L., et al. (2007). Tissue
culture- induced locus- specific alteration in DNA methylation and its correlation
with genetic variation in codonopsis lanceolata benth. et hook. f. Plant Cell Rep. 26
(8), 1297–1307. doi: 10.1007/s00299-007-0320-0

Haberlandt, G. (1902). Uber die statolithefunktion der starkekoner. Ber. Dtsch.
Bot. Ges. 20, 189–195.

Hanhineva, K., Kokko, H., and Kärenlampi, S. (2005). Shoot regeneration from
leaf explants of five strawberry (Fragaria× ananassa) cultivars in temporary
immersion bioreactor system. In Vitro Cell. Dev. Biol.-Pl. 41 (6), 826. doi:
10.1079/IVP2005714

Hannig, E. (1904). Zur physiologie pflanzlicher embryonen. i. ueber die cultur
von cruciferen-embryonen ausserhalb des embrysacks. Bot. Ztg 62, 45–80.

Hartman, H., and Kester, D. (1983). Techniquesofln vitro micropropagation in
plant propagation ch. 17 (New Jersey: Prentice Hall).
frontiersin.org

https://doi.org/10.17660/ActaHortic.1997.439.144
https://doi.org/10.17660/ActaHortic.1997.439.144
https://doi.org/10.21273/HORTSCI.40.3.760
https://doi.org/10.4141/P04-142
https://doi.org/10.1007/s11240-006-9188-x
https://doi.org/10.1007/s11240-008-9366-0
https://doi.org/10.1007/s11240-008-9366-0
https://doi.org/10.1002/elsc.200800095
https://doi.org/10.21273/HORTSCI.44.7.1962
https://doi.org/10.4141/cjps10131
https://doi.org/10.1016/j.scienta.2011.01.012
https://doi.org/10.1007/s11627-014-9632-2
https://doi.org/10.1007/978-3-319-25954-3_3
https://doi.org/10.1080/14620316.2016.1224606
https://doi.org/10.1080/14620316.2016.1224606
https://doi.org/10.17660/ActaHortic.2017.1156.11
https://doi.org/10.1007/978-981ribes10-8004-3_6
https://doi.org/10.1007/978-981ribes10-8004-3_6
https://doi.org/10.1016/j.heliyon.2019.e01493
https://doi.org/10.3390/agronomy10050744
https://doi.org/10.3390/molecules25040788
http://brunswickbooks.ca/Food-Futures/
https://doi.org/10.4141/cjps2011-194
https://doi.org/10.1104/pp.108.1.47
https://doi.org/10.1007/s11627-019-09970-w
https://doi.org/10.1007/978-1-4939-3061-6_11
https://doi.org/10.1016/S0065-2113(08)60256-4
https://doi.org/10.1111/j.1365-313X.2007.03264.x
https://doi.org/10.3390/horticulturae7110511
https://doi.org/10.2144/02333rv01
https://doi.org/10.1002/1522-2683(20000801)21:14%3C2990::AID-ELPS2990%3E3.0.CO;2-I
https://doi.org/10.1002/1522-2683(20000801)21:14%3C2990::AID-ELPS2990%3E3.0.CO;2-I
https://doi.org/10.1007/s00299-012-1327-8
https://doi.org/10.1007/s00299-012-1327-8
https://doi.org/10.4141/cjps83-054
https://doi.org/10.1016/0006-291x(70)90211-1
https://doi.org/10.1007/s10535-016-0678-3
https://doi.org/10.1007/s10535-016-0678-3
https://doi.org/10.1038/s41598-018-35233-6
https://doi.org/10.1007/s11240-021-02067-6
https://doi.org/10.1007/s11033-020-06062-6
https://doi.org/10.1007/s11240-016-0985-6
https://doi.org/10.1126/science.1120976
https://doi.org/10.4141/cjps2012-307
https://doi.org/10.21273/HORTSCI.50.6.888
https://doi.org/10.1139/cjps-2017-0297
https://doi.org/10.1007/s00299-007-0320-0
https://doi.org/10.1079/IVP2005714
https://doi.org/10.3389/fpls.2022.1042726
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Debnath and Ghosh 10.3389/fpls.2022.1042726
Hassimotto, N. M. A., Genovese, M. I., and Lajolo, F. M. (2005). Antioxidant
activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J. Agric.
Food Chem. 53 (8), 2928–2935. doi: 10.1021/jf047894h

Heitz, E. (1929). Heterochromatin, chromocentren, chromomeren. (Vorlaufige
mitteilung.). Berichte der Deutschen Botanischen Gesellschaft 47, 274–284.

Hewage, S. M., Prashar, S., Debnath, S. C., K., O., and Siow, Y. L. (2020).
Inhibition of inflammatory cytokine expression prevents high-fat diet-induced
kidney injury: Role of lingonberry supplementation. Front. Med. 7. doi: 10.3389/
fmed.2020.00080

Huang, H., Han, S., Wang, Y., Zhang, X., and Han, Z. (2012). Variations in leaf
morphology and DNAmethylation following in vitro culture of malus xiaojinensis.
Plant Cell Tiss. Organ Cult. 111 (2), 153–161. doi: 10.1007/s11240-012-0179-9

Huetteman, C. A., and Preece, J. E. (1993). Thidiazuron: a potent cytokinin for
woody plant tissue culture. Plant Cell Tiss. Organ Cult 33 (2), 105–119. doi:
10.1007/BF01983223
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