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The flowering period is one of the important indexes of wheat breeding. The

early or late flowering affects the final yield and character stability of wheat. In

order to solve the problem that it is difficult to accurately and quickly detect the

flowering period of a large number of wheat breeding materials, a

determination method of flowering period for field wheat based on the

improved You Only Look Once (YOLO) v5s model was proposed. Firstly, a

feature fusion (FF) method combing RGB images and corresponding

comprehensive color features was proposed to highlight more texture

features and reduce the distortion caused by light on the extracted feature

images. Second, the YOLOv5s model was selected as a base version of the

improved model and the convolutional block attention model (CBAM) was

adopted into the feature fusion layer of YOLOV5s model. Florets and spikelets

were given greater weight along the channel and spatial dimensions to further

refine their effective feature information. At the same time, an integrated

Transformer small-target detection head (TSDH) was added to solve the high

miss rate of small targets in wheat population images. The accurate and rapid

detection of florets and spikelets was realized, and the flowering period was

determined according to the proportion of florets and spikelets. The

experimental results showed that the average computing time of the

proposed method was 11.5ms, and the average recognition accuracy of

florets and spikelets was 88.9% and 96.8%, respectively. The average

difference between the estimated flowering rate and the actual flowering

rate was within 5%, and the determination accuracy of the flowering period

reached 100%, which met the basic requirements of the flowering period

determination of wheat population in the field.
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1 Introduction

Flowering period reflects the growth of various crops. The

flowering period of wheat determines the growing period of

wheat, which marks the transition from nutrient consumption to

nutrient accumulation, and then influences the final yield and

the stability of traits (Wang et al., 2020; Velumani et al., 2020;

Zhu et al., 2021). Different varieties of wheat have different

flowering periods and flowering traits, and the flowering

situation is also changed of the same wheat varieties grown at

different locations (Liu et al., 2015). The genotypic performances

of different varieties under such conditions as diverse

environments and planting practices can be determined by

recording the flowering period of wheat. At present, the

flowering period of a large number of wheat breeding

materials and germplasms is mainly determined by manual

estimation of the proportion of florets to spikelets, which is

labor-intensive, time-consuming, and subjective (Zhang et al.,

2020). Therefore, it is necessary to study an efficient and accurate

detection technology to replace manual labor and provide

critical information for the development of wheat germplasms.

The technology of plant phenotype monitoring has been

called the fourth revolution in agricultural production (Sishodia

et al., 2020). Efficient, automated, and versatile phenotypic

techniques are important tools for accelerating the breeding

process and improving genetic gain (Zhao et al., 2019).

Phenotypic acquisition built on machine vision is a fast, low-

cost, non-destructive technique that can achieve accurate

extraction of target traits (Hu et al., 2019; Ajlouni et al., 2020;

Zhang et al., 2020). With the development of imaging equipment

and image processing algorithms, machine vision technology has

made tremendous advances in detecting plant flowering periods.

At present, many research results on flowering detection of fruit

trees, shrubs, and other plants. Xiong et al. (2021) realized the

instance segmentation of lychee flowers based on the DeepLab

V3 network model. The recognition accuracy of the network

model reached 87.0%, and the detection time of a single image

was 67ms. Zhao et al. (2020) proposed a tomato flowering

detection method based on the cascading convolutional neural

network to identify tomato flowers at different flowering stages.

The average recognition accuracy of the proposed method was

82.8%, and the detection time of a single image was 12.5ms.

Most of the above studies were conducted on fruit trees and

shrub plants with low planting density and large differences in

flower characters, leaves and background. In a complex field

environment, Milicevic et al. (2020) solve the problem of mutual

occlusion among corn plants by installing hundreds of

automatic cameras in the experimental field to collect images

parallel to the top of each corn. In order to realize the detection

of corn flowering, the main spike of the tassel was segmented

based on the image processing method, and the recognition

accuracy of complex targets was improved by using the cross-

entropy loss function of dynamic scaling. The average
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recognition accuracy of the maize tassel was improved to

91.1%. Cai et al. (2021) proposed a method to determine the

flowering period of the sorghum based on multi-temporal spike

counting to realize flowering period detection in the field

environment. The YOLOv5 model was used to detect and

count sorghum spikes, and the average recognition accuracy

was 86.2%. The proposed method was able to accurately detect

sorghum spikes and calculate the flowering period. However, the

above studies did not rule out the possibility that the influence of

light conditions on the determination. When the reflection of the

wheat spike was obvious, the recognition accuracy would

be affected.

Over the years, scholars have explored some computer vision

detection methods to study the flowering period of wheat.

Sadeghi-Tehran et al. (2017) presented an automated method

to detect wheat heading and flowering stages. The bag-of-visual-

word technology was used to identify the flowering of wheat ears

in digital images and determine whether the wheat in the image

is in the flowering stage. The accuracy rate offlowering detection

was 85.45%. Ma et al. (2020) proposed a two-stage segmentation

method based on superpixel clustering and the fully

convolutional network (FCN) to realize the segmentation of

wheat spikes of the wheat canopy image at the flowering period.

The accuracy of flowering spikes segmentation was 83.7%. The

above studies were to realize the recognition of flowering wheat

by importing color and texture features into the Support Vector

Machine (SVM) for training, or using the convolutional neural

network to train labeled flowering ears and non-flowering ears.

However, the existing research only identified the flowering and

non-flowering wheat ears and did not determine the flowering

period of wheat in the field, which could not provide objective

and comprehensive data.

The flowering period of wheat in the field is mainly

determined by the proportion of florets to spikelets. Compared

to other crops, the florets and spikelets of wheat have small

morphological structures and the color differences are not

obvious (Bommert et al., 2005; Cheng et al., 2016), which

increased the difficulty of detection. In particular, there are the

following difficulties to realize flowering time detection of wheat

populations in the field environment: Firstly, the environmental

background is complicated, and common image pretreatment

methods cannot globally suppress noise from light, wheat awns,

leaves and soil; secondly, when wheat enters the flowering

period, the leaf extension is large, and the spikelets will

overlap with each other. Finally, florets and spikelets belong to

small-scale targets in the population of images, and the scale

changes drastically according to the different shooting distances.

Therefore, to achieve an accurate determination of the

flowering period in wheat, firstly, we proposed an image

enhancement method based on feature fusion, which reduces

the light distortion of wheat images and highlights more texture

features. On this basis, an improved YOLOv5s model was

proposed to optimize the extraction efficacy of obscured wheat
frontiersin.org
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spikes, and solve the problem of the high detection rate of small

target leakage in wheat population images. Finally, the accurate

and fast detection of florets and spikelets was achieved, and the

ratio of florets to spikelets was used to determine the flowering

period. It can provide data support for wheat stable

yield improvement.
2 Materials and methods

2.1 Data acquisition

The images were taken at the Agricultural Experimental

Station in Shandong Agricultural University, Taian, China [36°

9′52″N, 117°9′21″E]. During the shooting period, the weather

was mostly sunny, with less cloudy and rainy days. The image

data were acquired by the data acquisition platform as shown in

Figure 1A. The Jierui Weitong DW800_2.9mm camera(Lens: no

distortion, wide angle 2.8mm; Angle: Oblique 45 degrees;

Shutter speed: 1s) was mounted on the side of the Phenotype

platform, 1m above the ground. The camera manufacturer is

Shenzhen Jerui Weitong Electronic Technology Co., LTD, and

the origin is Shenzhen, China. Subsequently, the acquired image

of 4000x3000 pixels was clipped to 800x600 pixels to improve

the operation efficiency, and the middle five images were

retained to avoid blurring of florets and spikelets. The

cropping method is shown in Figure 1B. To ensure the

accuracy of the experiment, 4570 wheat images of wheat

including different varieties (including TKM33, SN48, JM44,

and SN27), flowering periods, planting densities, shooting

angles, weather conditions, and light intensities were collected.
Frontiers in Plant Science 03
2.2 YOLOv5 model

The convolution neural network (CNN), as a neural network

based on the principle of biological visual neural perception,

includes convolution computations and a kind of feedforward

neural network with a deep structure (Chen et al., 2021; Li et al.,

2021). Object detection methods based on deep learning are

developing rapidly and can be roughly divided into two types:

the two-stage detection method based on candidate region and

the one-stage detection method based on regression (Huang

et al., 2021; Yun et al., 2022). Among them, the YOLO (You

Only Look Once) series was an essential part of one-stage

detectors (Redmon et al., 2016). In the task of target detection,

YOLO could obtain global-context information by looking at the

input images only once.

YOLOv5 is one of the YOLO series models, which achieves a

better balance between accuracy and speed than the previous

version. The YOLOv5 framework is composed of input, feature

extraction module (Backbone), feature fusion module (Neck),

and output (Prediction). The backbone network is responsible

for feature extraction targets, and the Neck network generates

feature pyramids for object scaling. The prediction network

adopts three scales of head: small (80×80×128), medium

(40×40×256), and large (20×20×512) for final detection.

YOLOv5 is divided into YOLOv5n, YOLOv5s, YOLOv5m,

YOLOv5l, and YOLOv5x models according to the depth and

width of the network. The overall structure of these five models

is the same. The width of the network determines the number of

convolution kernels, which is the learning ability of the network

to extract features. The depth of the network determines the

number of components at each level, that is, the ability to fuse
A B

FIGURE 1

Wheat image data acquisition. (A) Field phenotype acquisition platform. (B) Image cropping method.
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features and the speed of model convergence. Considering that

this paper is applied to the detection of the wheat flowering

period in the field with high real-time requirements, a network

model based on improved YOLOv5s is proposed.
2.3 Determination method of flowering
period based on improved YOLOv5s

The determination method of the wheat flowering period is

mainly divided into two steps. The first step is to accurately

identify florets and spikelets based on the improved YOLOv5s

model. Then the ratio of florets to spikelets was used as the

flowering rate. When the flowering rate was over 50%, the time

of image capture was read and recorded to complete the

determination of the flowering period. The determination

process of the flowering period is shown in Figure 2.

There are three major improvements from the original

YOLOv5s to the improved model are described below: (1) A

feature fusion (FF) method that combining RGB images with

corresponding comprehensive color features (CCF) was

proposed, attenuating the distortion of the extracted feature

image caused by light and highlighting more texture features. (2)

The convolutional block attention module (CBAM) (Woo et al.,

2018) was inserted into the original YOLOv5s network. The

CBAM assigned a large weight to floret and spikelet features by

combining the channel attention module and spatial attention

module. It can learn target features well and suppress non-

targets features to improve detection accuracy. (3) Considering

that the target scale changed dramatically and a large number of

small targets in the wheat dataset, an integrated Transformer

small-target detection head (TSDH) was added to combine with

the other three detection headers of the original YOLOv5s

network for accurate spikelet and floret detection.
Frontiers in Plant Science 04
2.3.1 Feature fusion method
Compared with rice, corn, and other crops, the background

of wheat population images in the field is more complex, the

morphological structure of florets and spikelets is small, and the

color difference between them is also not palpable (Bommert

et al., 2005; Feng et al., 2022; Huang et al., 2022). Converting

RGB images to common color spaces such as HSV or Lab does

not solve the global noise caused by light, wheat awns, leaves,

and soil. Therefore, in the previous study, a comprehensive color

feature (CCF) method that can be adjusted adaptively according

to the light intensity and clarity of images was proposed by

comparing the data feature of different color spaces and different

color indices (Liu et al., 2022). In this study, the adaptive

adjustment CCF method was used to reduce the influence of

light and enhance the differences of florets, spikelets and

other targets.

As shown in Figure 3A, the accuracies of the original

YOLOv5s model in identifying florets and spikelets were only

60.7% and 80.3%. The detection results of the original YOLOv5s

model showed that the main reason for the low recognition

accuracy is a relatively uniform degree of feature standard

extracted from RGB images. However, different wheat varieties

have different traits, and there is a lack of high-weight added-

value eigenvectors that can highlight the characteristics of florets

and spikelets in the process of model classification. Due to the

small floret target and high noise in the field environment, the

original YOLOv5s model would greatly increase the probability

of missing recognition and misidentification when raising the

detection threshold. This made a huge difference between

precision and recall. The characteristics of florets and leaf

reflective spots are similar under natural conditions, which led

to misrecognition and the reduced detection ability of the

original YOLOv5s model for florets. As shown in Figure 3B,

wheat leaves were mistaken for florets. Therefore, more
FIGURE 2

Determination process of wheat flowering period.
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dominant traits need to be provided decision support for the

detection layer.

Figure 4 shows that both shallow and deep features after

convolutional extraction have distortion features (red marked

box) caused by the light and redundant features (green marked

box) that increase model convergence time during training. To

solve the above problems, the main methods available are to

reduce the number of convolution cores or to fuse images in

multiple sources to increase the extraction of effective features.

However, the former is suitable for situations where the
Frontiers in Plant Science 05
background of image data is highly controllable, such as

indoor environment or image data collected through a

standardization process, but not for complex field

environments (Liu et al., 2021; Zhao et al., 2021; Bai et al., 2022).

Therefore, a feature fusion (FF) method combing RGB

images and corresponding CCF was presented to solve the

above difficulties, and subsequent feature extraction and

feature fusion are performed based on the fused images. The

feature fusion method workflow, illustrated schematically in

Figure 5, mainly contains three steps: (1) The R, G, and B
A B

FIGURE 3

Identify situation of the Original YOLOv5s model. (A) precision-recall curve of florets and spikelets(floret 0.607 mAP@0.5, spikelet 0.803
mAP@0.5). (B) misidentification of florets(red box).
FIGURE 4

Partial feature map extracted by the Original YOLOv5s model (Red marked box: distortion features. Green marked box: redundant features).
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channels in RGB images and the channel information of the

CCF are extracted and transmitted to the input layer of the

convolutional neural network. (2) In the feature extraction stage

of the YOLOv5 model, the shallow and deep features of the two

image sources input in step 1 are extracted. (3) The input

features are addressed by independent convolution, pooling,

and full connection networks, and the extracted features are

stitched with equal weight.

In Figure 5, the main function of the convolution layer is to

extract local features from the pixel information of input images.

The scale of features extracted by the convolution kernel is

relatively large, and using the above features for target

classification will produce a large amount of computation and

affect the inference speed. Therefore, secondary extraction of

image features using a pooling layer reduces the feature

parameters. Considering that the background of the field

image is complex and noisy, pooling the extracted features

with kernel sizes of 3, 5, and 7 to better preserve the feature

texture and improve the generalization of the model. The same

gradient descent algorithm as pre-training was used for model

training, and the parameters of the convolution layer and

pooling layer in the convolutional neural network were

updated by back propagation.

Compared with Figure 4, the proposed feature fusion

method attenuated the distortion of the extracted feature

image caused by light and highlights more texture features. It

is likewise easier to classify florets and spikelets in shallow

features with clearer details, and the results are shown

in Figure 6.
2.3.2 Convolutional block attention module
The complementarity between RGB images and

corresponding CCF was enhanced by the feature fusion

method in the previous section. The feature fusion method
Frontiers in Plant Science 06
eliminated the influence of background noise and extracted

more characteristics of florets and spikelets in complex

environments, but increased the input image from three to

four dimension. The attention mechanism was integrated into

the YOLOv5s model to improve the model, could make the

network more focused on spikelets and florets, and avoid too

many features affecting the computational power and

convergence speed of the model. The Convolutional block

attention module (CBAM) is one of the most effective

attention mechanisms and consists of channel attention

module and spatial attention module. It can enhance the

ability of the model to extract image features and suppress

invalid background information by redistributing the originally

uniform distribution resources according to the importance of

the detection target. So, the CBAM was adopted into the feature

fusion layer of YOLOV5s model. The calculation process of the

CBAM is shown in Equation (1).

F0 = MC Fð Þ⊗ F

F00 = MS F0ð Þ⊗ F0 (1)

In the above formula, F represents the input eigenvector,MC

is the channel attention feature map, F′ represents the channel

attention module outputs feature vectors, MS is the spatial

attention feature map, and F″ represents the spatial attention

module outputs feature vectors.

CBAM links the channel attention module and spatial

attention module in series. The channel attention module first

compressed the input feature map by average pooling and

maximum pooling, and then sent it to the shared multi-layer

perceptron (MLP) structure for processing. Finally, the channel

attention map was generated by the sigmoid function to solve

the problem of what is the target. The spatial attention module

used convolution and the sigmoid function to process the input

feature map and ultimately determined where to pay attention.
FIGURE 5

The overall schematic diagram of feature fusion method.
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Compared with separate channel attention network SENet and

spatial attention network STN, the CBAM does not increase too

much computation (Zhao et al., 2022). It is a lightweight module

that can be integrated into the most well-known CNN

architecture and can be trained in an end-to-end manner. The

CBAM only needs to give a feature mapping at the convolution

layer, then it will infer attention mapping in turn along two

independent dimensions, channel, and space. The attention map

is then multiplied by the input feature to perform adaptive

feature refinement. Therefore, the CBAM is a simple but efficient

attention module, and its module structure is shown in Figure 7.

The CBAM was added after the C3 module of the neck to

update feature mapping weights after each residual convolution

in the feature fusion stage. It can effectively improve the accuracy

of the improved YOLOv5s in florets and spikelets target

detection by weighting the feature map weights of different

channels and spatial dimensions.
Frontiers in Plant Science 07
2.3.3 Multi-detection heads structure
integrated transformer

After normalizing the coordinate dimensions in the acquired

dataset, the length and width size distributions and pixel area

distribution of each labeled target were collected for statistics.

The result is shown in Figure 8. Without data enhancement, the

pixel area of 9325 labeled boxes is less than the minimum

detection box size of YOLOv5s, accounting for about 10% of

all labeled boxes.

It was found that the whole image of the wheat field

contained many tiny examples due to the small size of florets

and spikelets analyzing the labeled data. So, an up-sampling

operation was inserted into the neck of YOLOv5s and a

detection head was embedded to detect tiny targets. The

improved microscale layer generated a feature map by

extracting the underlying spatial features and fusing them with

deep semantic features, which made the network structure more
FIGURE 7

The overall structure of convolutional block attention module: MaxPool represents the maximum global pooling; AvgPool represents global
average pooling; MLP represents a multi-layer perceptron with shared weights; Conv indicates convolution operation.
FIGURE 6

Partial feature map extracted based on feature fusion method.
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extensive and detailed. Combined with the other three detection

heads, the improved YOLOv5s four-head structure can alleviate

the negative effects caused by the large size distortion of florets

and spikelets.

The newly added detection head is located at the end of the

neck of YOLOv5s. After multiple up-sampling, the resolution of

the feature map is lower, and blurred small targets will be

missed. Inspired by Vision Transformer (Dosovitskiy et al.,

2020), the C3 module originally connected to the newly added

detection head was replaced with the Transformer encoder

module shown in Figure 9. In the first step, the feature map

with the input scale of W×H was divided into 1 × 1 pixel blocks,
Frontiers in Plant Science 08
and the positions of each pixel block in the feature image were

sequentially entered into the encoder. Transformer encoders are

composed of two sub-layers. The first is the multi-head attention

layer, and the second (MLP) is the fully-connected layer. Each

sub-layer is connected using residual connections. To improve

model generalization and reduce computation costs, the dropout

layer is behind each sublayer. Different eigenvectors in the

encoder containing spatial location information were

transferred to the dropout layer through the attention module

of the feed-forward neural network. The dropout layer discarded

the low-weight features and then transmitted the valid features

to the full connection layer to complete the classification task.
FIGURE 9

The diagram of transformer encoder structure.
A B

FIGURE 8

Labeled data distribution: (A) size distribution. (B) area distribution.
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The ability to capture global information and upper-level

features can be enhanced by integrating Transformer small-

target detection header. Furthermore, it can exploit the self-

attention mechanism to explore the potential of feature

representation (Zhu et al., 2021). The overall structure of the

improved network is shown in Figure 10.

Multiple convolution and up-sampling operations are

required while adding a detection head. To avoid slow model

convergence and gradient explosion caused by the increase of

feature dimensions, the maximum pooling layer (SPP) was

embedded in front of the second, third, and fourth detection

heads. The added maximum pooling layer can ensure the

integrity of the overall image features while reducing

parameters. Table 1 presents the parameters of the improved

YOLOv5s model.

2.3.4 Determination of flowering period
The actual flowering period could not be accurately

determined by the ratio of the flowering spikes to the no-

flowering spikes. Because one flower or ten flowers on a single

wheat spike can be counted as a flowering spike, the true

flowering condition of the single wheat spike cannot be fully

judged, thus affecting the determination of the wheat flowering

period. The agronomic criterion for the current wheat flowering

period identification is that the inner and outer glumes of the

florets in half of the spikelets in the plot are opened and the

pollen is dispersed. At present, the flowering period of a large

number of wheat breeding materials is mainly determined by

manual estimation of the proportion of florets to spikelets

(Zhang et al., 2020; Wang et al., 2020). So this study

determined the flowering period of a plot based on the

flowering rate, which is the ratio of the spikelets to florets in

all images obtained by the community. When the flowering rate
Frontiers in Plant Science 09
exceeded 50%, the plot was determined to be in flowering period,

otherwise, it was determined to be heading period.
2.5 Experimental training and
evaluation indicators

The dataset in this paper is composed of spikelets and florets,

and the field environment is relatively complex. The effect will be

better if there are public datasets with similar detection tasks to

use the transfer learning training model. However, no similar

detection task dataset was found at present, so transfer learning

was not performed. For a fair comparison between the models,

each model was trained from scratch. The learning rate was

based on cosine annealing attenuation strategy (Loshchilov and

Hutter, 2016), as shown in Equation (2), and the number of

iterations was 300.

nt = nimin +
1
2

nimax − nimin

� �
1 + cos

Ti

T
P

� �� �
(2)

In the above formula, nimin, n
i
max represent the minimum and

maximum of the i-round learning rate, Ti represents the

cumulative number of samples during the i-round training,

and T represents the total number of samples.

The comprehensive recognition accuracy and real-time

performance of the model under the five categories of florets,

spikelets, and background were measured using three indicators:

precision P, recall rate R, F1-score, accuracy, and mean average

precision mAP, as shown in Equations (3-7).

P =
TP

TP + FP
(3)
FIGURE 10

Schematic diagram of improved YOLOv5s network structure.
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TABLE 1 Improved layer parameters of YOLOv5s network.

Layer Module stack Output size Source Input dimension Output dimension Convolution

0 Focus 1 320 -1 3 32 3×3

1 Conv 1 160 -1 32 64 3×3

2 C3 1 160 -1 64 64 [1, 3]

3 Conv 1 80 -1 64 128 3×3

4 C3 1 80 -1 128 128 [1, 3]

5 Conv 1 40 -1 128 256 3×3

6 C3 3 40 -1 256 256 [1, 3]

7 Conv 1 20 -1 256 512 3×3

8 SPP 1 20 -1 512 512 [3, 5, 7]

9 Trans 1 20 -1 512 512 —

10 Conv 1 20 -1 512 256 1×1

11 Upsample 1 40 -1 256 256 —

12 Concat 1 40 -1, 6 256 512 —

13 C3 1 40 -1 512 256 [1, 3]

14 CBAM 1 40 -1 256 256 —

15 Conv 1 40 -1 256 128 1×1

16 Upsample 1 80 -1 128 128 —

17 Concat 1 80 -1, 4 128 256 —

18 C3 1 80 -1 256 128 [1, 3]

19 CBAM 1 80 -1 128 128 —

20 Conv 1 80 -1 128 64 1×1

21 Upsample 1 160 -1 64 64 —

22 Concat 1 160 -1, 2 64 128 —

23 Trans 1 160 -1 128 128 —

24 CBAM 1 160 -1 128 128 —

25 Conv 1 80 -1 128 64 3×3

26 Concat 1 80 -1, 20 64 128 —

27 SPP 1 80 -1 128 128 [3, 5, 7]

28 C3_1 1 80 -1 128 256 [1, 3]

29 CBAM 1 80 -1 256 256 —

30 Conv 1 40 -1 256 128 3×3

31 Concat 1 40 -1, 15 128 256 —

32 SPP 1 40 -1 256 256 [3, 5, 7]

33 C3_1 1 40 -1 256 512 [1, 3]

34 CBAM 1 40 -1 512 512 —

35 Conv 1 20 -1 512 256 3×3

36 Concat 1 20 -1, 10 256 512 —

(Continued)
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R =
TP

TP + FN
(4)

F1� score =
2PR
P + R

(5)

mAP =
1
co

N

k=i

P kð ÞR kð Þ (6)

Accuracy =
TP + TN

TP + FN + FP + TN
(7)

Among them, TP represents the number of spikelets and

florets correctly identified by the model, FP represents the

number of false recognition of the background as spikelets and

florets, FN represents the number of spikelets and florets not

identified, TN represents the number of background correctly

identified by the model, C represents the sample category, N

represents the threshold of citations.

The higher the value of P, R, and mAP, the higher the

accuracy of object detection, and the average run time (ms/

frame) was the average time the model takes to process the

wheat image.
3 Results and discussion

The florets identification and the determination of the

flowering period of wheat populations in the field have yet to

be studied. To verify the effectiveness and adaptability of the

improved YOLOv5s model under different conditions,

quantitative and qualitative tests were conducted on the

improved YOLOv5s model and the original YOLOv5s model

in the test set images. And the performance differences between

the improved model and other models were studied by

comparing with other advanced and non-deep learning

methods. Afterward, an ablation experiment was conducted to

explore the optimization effect of various improvement

strategies applied in the YOLOv5s model, enabling better

detection capability in this work. Finally, the actual

performance of the model for flowering determination of

wheat population in the field was further tested, and the field

phenotype acquisition platform was invoked as the carrier to

conduct field experiments.
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3.1 Quantitative test

From 457 images in the test set, 20 images with different

panicles, different varieties, shooting angles, and different

planting densities were selected for calculation and analysis as

shown in Figure 11. Florets and spikelets were counted by

manual method and model respectively, and the classification

accuracy was calculated. The statistical results are shown in

Table 2. The confidence threshold was placed at 50%. The

original YOLOv5s model is represented by model 1, and the

improved YOLOv5s model is represented by model 2.

Table 2 shows that the improved YOLOv5s model and the

original YOLOv5s model have high recognition accuracy in

images with low planting density and low background noise

(such as No. 2, 5, 12, and 16). Comparing images No. 4, 7, and 8,

when the degree of occlusion is small and the target is obvious,

the original YOLOv5s model has poor adaptability to the

distortion of wheat morphology. The improved YOLOv5s

model has higher detection accuracy for distorted florets and

spikelets, and the recognition accuracy rate was 87.7% and

91.5%. When the influence of light is strong (such as images

No. 6, 14, and 19), the recognition accuracy of the original model

for florets and spikelets was only 63.9% and 81.2%, and the

recognition accuracy of the improved model was 83.7% and

94.1%. For wheat images with large differences in characters

(such as images No. 1, 11, 17, 18, and 20), compared with the

original YOLOv5s model, the recognition accuracy of florets and

spikelets by the improved YOLOv5s model was improved by

12.8% and 8.3% respectively.

For a more intuitive reflect the recognition effect of the

model, the evaluation criteria for 457 images in the test set are

shown in Table 3. The improved YOLOv5s model has a

detection precision of 95.3%, recall rate of 86.2%, mAP of

92.9%, and an average detection time of 11.5ms for a single

image. Although the detection time was increased by 38.8%

compared with the original YOLOv5s model, the number of

video frames detected per second was 86Fps, which is suitable

for the current mainstream visible light cameras.
3.2 Qualitative tests

The effectiveness and adaptability of the improved YOLOv5s

model under various conditions were proved by quantitative
TABLE 1 Continued

Layer Module stack Output size Source Input dimension Output dimension Convolution

37 SPP 1 20 -1 512 512 [3, 5, 7]

38 C3_1 1 20 -1 512 1024 [1, 3]

39 Detect 1 20,40,60,120 23,28,33,38 — — —
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experiments. In order to test the recognition effect of the model

in various situations more intuitively, some images were selected

for qualitative tests. As shown in Figure 12, this section divides

some photos in the test set into five categories for qualitative

tests: strong influence of light effect, severe angular distortion,

blurred target area, serious occlusion, and population phenotype

enrichment. All of the above are important factors affecting the

robustness of the model in field image detection (Hu et al., 2019;

Ajlouni et al., 2020).

Under the influence of strong light, the surface reflection of

spikelets is serious, and the visual effect at the texture and

endpoint of the leaves is similar to the color characteristics of

the floret, which can easily cause misrecognition. The

recognition situation when the local or global light is strongly

affected is shown in Figure 12A. Only once had the leaf been

misidentified as the spikelet, as indicated by the blue box in the

figure. It can be seen from the recognition effect that the

improved model had good adaptability to light, and there was
Frontiers in Plant Science 12
no missing detection of wheat spikes and false detection offlorets

due to light reflection.

Wheat at the flowering period just shifts from vegetative

growth to reproductive growth, the stem is soft and the

accumulation of dry matter in the spike increases, causing the

wheat to show signs of lodging. The angle or shape distortion of

the collected images caused by the skew of the spikelet is shown

in Figure 12B. According to the results, the improved YOLOv5s

model had a beneficial effect on the detection of floret targets

under distortion. However, when the tilt angle of spikelets is

large, the spikelets are too dense, leading to a small number of

spikelet targets with large distortion would be missed. The black

box in the figure shows missing spikelets.

Phenotypic acquisition platform with large bumps and

undulations during driving, as well as excessive wind speed

during photographing, would cause blurring of the collected

image information. Shown in Figure 12C is the recognition effect

of fuzzy targets, in which the model prediction performance was
A

B

D

C

FIGURE 11

Twenty images with different numbers of spikes, different varieties, different shooting angles and planting densities. (A) The numbers 1 to 5
correspond to the picture. (B) The numbers 6 to 10 correspond to the picture. (C) The numbers 11 to 15 correspond to the picture. (D) The
numbers 16 to 20 correspond to the picture.
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better for distant blurred targets but less effective for near targets

with larger target sizes. By detecting the fuzzy images in the test

set, the recognition accuracy of florets and spikelets was 86.4%

and 90.7%, respectively, reduced by 2.5% and 6.1% compared

with the average recognition accuracy of the improved model.

The improved YOLOv5s model had no significant reduction in

recognition accuracy due to image blurring and has good

adaptability to target blurring.

Different wheat varieties have distinct traits. It was noted

that some varieties of wheat had long and dense awns, which was
Frontiers in Plant Science 13
the main factor to produce image noise by comparing different

wheat varieties. Some wheat varieties had a serious overlap of

spikes due to the high number of tillers. The recognition of

serious occlusion overlaps is shown in Figure 12D. As shown in

Figure 12D-2, the improved YOLOv5s model had higher

accuracy in identifying the wheat varieties with severe overlap.

However, in Figure 12D-1, the noise produced by over-dense

wheat awns of this variety caused the hidden florets and spikelets

to be missed detection. The black box in the figure shows the

missed detection of florets and spikelets.
TABLE 3 Detection results of improved YOLOv5s model test on the test dataset.

Models Recognition accuracy Running time/s

YOLOv5s
P = 0.719
R = 0.637

mAP = 0.705
3.79

Improved YOLOv5s
P = 0.953
R = 0.862

mAP = 0.929
5.26
TABLE 2 Counting statistics results.

No.
Number of florets Number of spikelets

Manual count Model 1 Model 2 Manual count Model 1 Model 2

1 48 34 39 57 50 54

2 7 5 5 46 40 43

3 69 38 47 121 94 106

4 52 31 43 107 86 99

5 15 12 13 94 88 98

6 43 28 36 129 117 128

7 38 24 35 50 39 45

8 32 22 29 44 34 40

9 80 42 73 86 73 79

10 52 38 44 110 95 107

11 139 87 103 226 192 211

12 16 11 11 62 55 59

13 36 21 27 134 118 132

14 38 22 33 115 98 112

15 81 54 72 148 117 137

16 52 37 48 68 66 66

17 58 31 42 216 173 190

18 91 67 78 273 237 256

19 146 95 121 214 159 191

20 188 131 155 335 276 309

(Model 1 represents the original YOLOv5s model. Model2 represents the improved YOLOv5s model.).
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In the plots with high planting density, the acquired images

contain rich phenotypic information of the population, as shown

in Figure 12E. The area of pixels occupied by the region of

interest would tend to be less and is prone to small target missing

when the image contains too much phenotypic information. The

improved YOLOv5s model can accurately determine the region

of interest and detect florets as well as spikelets, as seen by the

identification effect.
3.3 Comparative experiments of different
object detection algorithms

This study was compared with other advanced deep learning

and non-deep learning methods to investigate the performance

differences between the improved YOLOv5s model and other

models. To guarantee the reliability of the results, the six

networks(i.e., YOLOv3, YOLOv7, Faster R-CNN, Cascade R-

CNN, superpixel segmentation, Improved YOLOv5s) were

trained using the training and validation datasets in the same
Frontiers in Plant Science 14
training environment. The training results are shown in Table 4,

and the improved YOLOv5s achieved the best performance in all

indicators, including the accuracy of florets and spikelets was

88.9% and 96.8%, F1-score of 90.52%, and mean average

precision of 92.9%. Taken together, the improved YOLOv5s

method presented had the best performance for detecting florets

and spikelets compared with other detection methods, which

proved the validity of the model proposed in this paper.
3.4 Ablation studies

In the previous section, quantitative and qualitative tests

were carried out for the detection of the improved YOLOv5s

model under various complex conditions and a quantitative

comparison was made with the detection result of the original

YOLOv5s model in the test set. The validity and adaptability of

the improved model were proved. As mentioned earlier, three

major improvements were made to the original YOLOv5s,

including image enhancement (e.g., feature fusion of RGB
TABLE 4 Indicators results of the six models on the test set.

Test indicators Accuracy of spikelets (%) Accuracy of florets (%) F1-score(%) mAP_0.5 (%)

YOLOv3 61.0 28.0 54.0 45.5

YOLOv7 82.4 62.2 71.5 72.5

Faster R-CNN 76.8 71 67.2 57.3

Cascade R-CNN 71.0 57.0 66.4 56.7

Based on CCF and superpixel segmentation 76.3 70.6 / /

Improved YOLOv5s 96.8 88.9 90.5 92.9
A B D EC

FIGURE 12

Detection effect of improved YOLOv5s model in different complex situations (The pink and dark red boxes represent true positive; black boxes
represent false negative; blue boxes represent false positive). (A) strong light. (B) angle distortion. (C) blurred target area. (D) severe occlusion.
(E) population phenotype enrichment.
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images with the corresponding CCF; described in subsection

2.3.1) and some structural changes to the network (e.g., adding

the Convolution block attention module, and the integrated

Transformer small-target detection head; described in

subsections 2.3.2 and 2.3.3). Therefore, an ablation experiment

was conducted on the improved YOLOv5s model to explore the

contribution of the proposed improvement strategies to the

mode l de t ec t ion per fo rmance improvement . The

corresponding detection indicators for each optimization

strategy are presented in Table 5.

As shown in Table 5, the improved YOLOv5s model

proposed greatly enhanced various metrics of flowering

detection in field wheat relative to the original model. The

precision of the original YOLOv5s model was 71.9%, recall

rate of 63.7%, F1-score of 67.6%, and mAP at 50% confidence

of 70.5%. The P, R, F1-score, and mAP of the improved

YOLOv5s model were increased by 23.4%, 22.5%, 22.9%, and

22.4%, respectively compared with the original YOLOv5s model.

The mAP comparison test of the YOLOv5s prediction model

based on different improvement strategies is shown in Figure 13.

Among the three optimization strategies, the detection

model with the addition of feature fusion method improved

the P, R, F1-score, and mAP by 12.6%, 7.3%, 9.6%, and 8.3%,

respectively, compared with the original model. The effect of the

detection model integrating the feature fusion method is shown

in Figure 14A. It can be observed in the comparative test that the

improved feature fusion method greatly improves the accuracy

of the model, among which the recognition accuracy of florets

and spikelets was increased by 5.5% and 10.8%, respectively.

This is mainly because the feature fusion method reflects more

texture characteristics of the wheat field images. As the target of

florets is smaller than spikelets and the image background in

RGB images is more complex, making it is difficult to extract the

morphological features of florets. In addition, light points at the

tip of spikelets and leaves could also be misidentified as florets

under the influence of light, resulting in weak floret detection

performance of the original YOLOv5s model. Thus, the
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performance of model detection was greatly improved by

combining the feature fusion method.

The channel attention module and space attention module

were introduced on the basis of the feature fusion method, which

also improved the detection effect of the model. The precision,

recall rate, F1-score, and mAP of the improved model were

improved by 5.5%, 6.6%, 6.1%, and 8.1% respectively in the

validation set. Experimental results show that the performance

of the YOLOv5s model embedded with the convolutional block

attention module was greatly improved.

As presented in Figure 14B the detection accuracy of florets

and spikelets increased by 15.0% and 1.4% respectively, proving

the effectiveness of the improvement. High-density planting and

characteristic mapping of different traits are the main reasons for

model performance degradation, on complex field images. After

embedding the CBAM, the influence of occlusion and noise on

the model can be weakened by assigning weights to different

feature maps, and the useful target objects can be focused.

Therefore, the improvement effect was significant.

The range of receptive fields obtained by different size

detection heads also varies greatly, which reflects the ratio of

feature maps to the input image area. When the receptive field is

small, the number of elements in the original image is also small,

thereby weakening the detection effect of larger targets.

Conversely, when the receptive field is too large, the fine-

grained information such as the spatial structure of small

targets will be lost, leading to poor recognition effect of distant

targets. In order to improve the detection performance of the

model for small targets, the transformer detection head structure

was added for tiny object detection. Combined with the other

original three detection heads of YOLOv5s, the four-head

structure can alleviate the negative influence caused by drastic

changes in object size. After adding the integrated Transformer

small-target detection head, the smallest detection box contained

image size of 4x4 pixel, which solved the problem of high

detection rate of small targets in wheat group images. The

detection head structure added based on the above two types
TABLE 5 Detection indexes of the model with different optimization strategies.

Flowering detection of wheat in field

Feature fusion × √ √ √

Convolutional block attention model × × √ √

Multi-detection heads structure integrated transformer × × × √

P (%) 71.9 84.5 90.0 95.3

R (%) 63.7 71.0 77.6 86.2

F1-score (%) 67.6 77.2 83.3 90.5

mAP_0.5 (%) 70.5 78.8 86.9 92.9
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of improvement strategies improved the precision, recall rate,

F1-score, and mAP of the model by 5.3%, 8.6%, 7.2%, and 6.0%

respectively. As shown in Figure 14C, compared with the P-R

curves of the model before adding the integrated Transformer

small-target detection head, the improved model improved the

recognition accuracy of florets by 7.7% and spikelets by 4.3%.

The main improvement point is to optimize the recognition

accuracy of the model for long-distance florets and spikelets and

solve the problem of missing detection of long-distance tiny

objects. After adding the integrated Transformer small-target

detection head, although the performance index is less

improved, it is essential to realize the accurate identification of

florets and spikelets in field population images of wheat.
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3.5 Comparisons using different
attention methods

In this study, CBAM was integrated into the neck of YOLOv5

to improve the model. To evaluate the effectiveness of the CBAM,

several state-of-the-art attention methods were applied to the

improved YOLOv5s model for comparison. The selected attention

methods include Squeeze-and-Excitation Networks(SENet) (Hu

et al., 2018), Efficient Channel Attention(ECA-Net) (Wang Q. et

al., 2020), Normalization-based Attention Module(NAM) (Liu

et al., 2022), Coordinate Attention(CA) (Hou et al., 2021) and

Effective Squeeze-Excitation(eSE) (Lee and Park, 2020). The

evaluation metrics include P, R, F1-score, and mAP. The
FIGURE 13

The mean average precision comparison of YOLOv5s prediction model based on different improvement strategies.
A B C

FIGURE 14

The precision-recall curves of florets and spikelets by different models. (A) precision-recall curve of YOLOv5s-FF model(floret 0.662 mAP@0.5,
spikelet 0.911 mAP@0.5). (B) precision-recall curve of YOLOv5s-FF-CBAM model(floret 0.812 mAP@0.5, spikelet 0.925 mAP@0.5). (A) precision-
recall curve of YOLOv5s-FF-CBAM-TSDH model (floret 0.889 mAP@0.5, spikelet 0.968 mAP@0.5).
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evaluation performance index results are shown in Table 6.

Among the five attention mechanisms compared, the improved

YOLOv5s model based on CA had the best comprehensive

performance, the P of 85.2%, R of 71.8%, F1-score of 77.9%, and

mAP of 81.4%. The improved model based on CBAM improved

the P, R, F1-score, and mAP by 10.1%, 14.4%, 12.6%, and 11.5%,

respectively, compared with the CA. The high density of wheat

population in the field led to the shielding between wheat spikes,

leaves, wheat awn, and stalks. The CBAM started from two scopes,

channel and spatial, and allocated attention to two dimensions

simultaneously, which enhances the effect of attention mechanism

on model performance. The experimental results show that the

performance of the improved YOLOv5s model based on CBAM

had been greatly improved.
3.6 Flowering period experiment in field

The method proposed in this paper is based on the improved

YOLOv5s model to achieve accurate identification of florets and

spikelets, and to determine the flowering period of wheat based

on the ratio offlorets to spikelets. Hence, for the spikes of closed-
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flowering types, the presented method more likely will not work,

because the key morphological features for recognition of florets

(anthers) are enclosed. Therefore, the proposed method is

suitable for wheat cultivars with open-flowering types of

spikes, in which the stamens dangle from the florets.

Qualitative experiments showed that the improved model had

good adaptability to the images of different angles, densities, and

distances collected in the field. Since the camera can collect

phenotypic information by video or timing shooting, this

section will conduct the flowering period experiment in field to

detect the image data obtained by different acquisition methods

under different flowering conditions. The flowering rate was

calculated based on the number of detected florets and spikelets

to estimate the overall flowering situation of the plot and

determine the flowering period. And the collection method with

the highest reliability was selected for subsequent detection by

comparing with the flowering rate measured manually. The

artificial measurement of the flowering rate was calculated by

the five-point sampling method on the flowering of each wheat

spike in the plot. The field experimental process is displayed in

Figure 15. The area of each field plot was 1.2 × 1.2 m, and it took

about 12s for the acquisition platform to obtain data from a single
FIGURE 15

Field experiment process.
TABLE 6 Comparisons of different attention methods under the improved YOLOv5s.

Model P (%) R (%) F1-score (%) mAP_0.5 (%)

YOLOv5s+FF+CBAM+TSDH 95.3 86.2 90.5 92.9

YOLOv5s+FF+SE+TSDH 83.1 71.0 76.6 80.0

YOLOv5s+FF+ESE+TSDH 85.3 71.4 77.7 81.2

YOLOv5s+FF+ECA+TSDH 84.2 71.6 77.2 81.0

YOLOv5s+FF+CA+TSDH 85.2 71.8 77.9 81.4

YOLOv5s+FF+NAM+TSDH 84.6 74.5 77.5 81.0
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plot. During the field experiment, the camera was mounted on the

side of the acquisition platform and tilted 45 degrees to obtain

wheat data. When the Angle of overhead shooting is too large, the

morphological structure of the distant spikelets and florets will be

too small to be recognized, resulting in decreased accuracy. Due to

this, the data obtained was partial plot images in the field. The

three data acquisition methods of 0.5s interval shooting, 1s

interval shooting, and video acquisition were used to determine

the flowering period for field wheat. Due to the different time

intervals of image data acquisition, the count of florets and

spikelets identified by the improved YOLOv5s model was

different under different acquisition methods. About 25 images

were acquired in a single plot using the 0.5s interval shooting

method, and about 13 images were acquired in a single plot using

the 1s interval shooting method. The spikelets and florets detected

under the three acquisition methods were superimposed

respectively, and the determination of the wheat flowering

period was performed based on the method mentioned in

subsection 2.3. There was overlap between two adjacent image

frames obtained. Repeated counting was used to reduce the

influence of objective factors such as wind, wheat leaf occlusion,

and the vibration of the acquisition platform during field data

collection, which would lead to the failure of detection of some

targets and decrease the accuracy. The comparison results of field
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experiments under different acquisition methods are shown in

Table 7. Therefore, the least number of florets and spikelets were

detected by the improved YOLOv5s model using the 1s interval

shooting method compared with the others.

Under different flowering conditions, the flowering rates

calculated manually of wheat and calculated by the improved

YOLOv5s model under different acquisition methods were

compared and analyzed. When the 0.5s interval shooting

method was used for data acquisition, the error between the

calculated flowering rate of the improved YOLOv5s model and

the actual flowering rate was 2.4%, 4.1%, 3.2%, and 1.4% as

shown in Table 7, respectively. It can be inferred that the 0.5s

interval shooting method has higher reliability than the other

two methods and it is used for subsequent detection. When the

actual flowering rate exceeds about 30%, the error was negatively

correlated with the actual flowering rate. When the actual

flowering rate was about 0 to 30%, the error was positively

correlated with the actual flowering rate. Inspection by analysis

result revealed that the order of wheat flowering was from

middle to top, and finally bottom. The middle spikelets

develop faster, bloom, and pollinate first, and the anther size is

similar to the bottom anther but slightly larger than the top

anther. At flowering rates approaching 30%, there will be more

apical florets of small size and not obvious, which is easy to cause
TABLE 7 The flowering period determination under different collection methods.

Collection
method

Manually calculate
flowering rate/%

Algorithm statistical results Calculation
error
(%)

Floret
count

Spikelet
count

Flowering
rate (%)

Flowering period deter-
mination

Video acquisition

9.3

2214 17407 12.7 heading period 3.4

0.5s interval
shooting

87 1261 6.9 heading period 2.4

1s interval
shooting

28 592 4.7 heading period 4.6

Video acquisition

32.4

7198 17951 40.1 heading period 7.7

0.5s interval
shooting

351 1240 28.3 heading period 4.1

1s interval
shooting

175 676 25.9 heading period 6.5

Video acquisition

57.7

15498 23482 66.0 flowering period 8.3

0.5s interval
shooting

891 1635 54.5 flowering period 3.2

1s interval
shooting

448 843 53.1 flowering period 4.6

Video acquisition

87.2

19813 20489 96.7 flowering period 9.5

0.5s interval
shooting

1265 1474 85.8 flowering period 1.4

1s interval
shooting

665 796 83.5 flowering period 3.7

(The manually calculated flowering rate as the actual flowering rate).
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florets to be missed identification, so the error increases. The

characteristics of florets become more obvious with the increase

in flowering rate, and the missed detection rate also decreases.

Therefore, the error is negatively correlated with the flowering

rate when the flowering rate exceeds about 30%.

The flowering rate calculated by video detection is higher

than that calculated manually in the three collection methods.

The dynamic characteristics of floret changed little while that of

spikelets changed strongly with the operation of the phenotypic

platform in the field by analyzing the detection video frame-by-

frame. In images with several frames apart, the continuous

capture of florets was better, and spikelets were missed, so the

calculated flowering rate was higher than that calculated

manually. Compared with the method with the smallest error

of 0.5s interval shooting, the error change of the detection results

of the method with the 1s interval shooting is similar to that of

the former. However, the prediction results were more likely to

be affected by accidental factors due to the lower collection

frequency, so the error is slightly greater than the detection

method collected once every 0.5s interval.
4 Conclusion

The flowering period of wheat is one of the key agronomically

valuable traits. To realize the real-time determination of the

flowering period of wheat images in the field, a determination

method based on the improved YOLOv5s model was proposed.

Finally, the accurate detection of florets and spikelets was

achieved, and the real-time determination of the wheat

flowering period was completed based on the ratio of florets and

spikelets. By fusing FF, CBAM, and TSDH, the improved

YOLOv5s model attenuated the distortion of the extracted

feature images caused by light, and solve the problem of

obscured florets, spikelets missed detection, and difficult to be

detected small targets in population images.

The proposed improved YOLOv5s model improved the

accuracy of floret and spikelet recognition, with accuracy of

88.9% and 96.8%, respectively. The average detection time of a

single image was 11.5ms. The average detection accuracy was

higher than 86.4% under the complex conditions of strong light,

drastic angular distortion, blurred target area, serious occlusion, and

abundant population phenotype. The effectiveness and adaptability

of the model in a variety of complex situations were proved. By

conducting an ablation experiment to investigate the contribution

of various strategies to model improvement. Among them, the

Feature fusion method, the CBAM, and the integrated transformer

multi-detection header structure showed an improvement in the

mean average accuracy of the model by 8.3%, 8.1%, and 6.0%,

respectively. Finally, the field experiment was carried out and the

overall flowering rate of the plot was estimated based on the

proportion of florets to spikelets. Compared with the results of

artificial measurement of the flowering rate, the error of the model
Frontiers in Plant Science 19
was less than 5% compared with the actual detection of the

flowering rate, and the determination accuracy of the flowering

period reached 100%, which meets the demand of practical

application and demonstrates the feasibility of the research.

Our future work will focus on how to improve the detection

speed of the model on the basis of ensuring the detection

performance. At the same time, an efficient and accurate

method for the whole growth period of wheat will be studied

and applied to the breeding process, so as to provide data

support for the improvement of the stable yield of wheat.
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