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Effects of on- and off-year
management practices on the
soil organic C fractions and
microbial community in a Moso
bamboo (Phyllostachys edulis)
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On- and off-year management practices are usually adopted in Moso bamboo

(Phyllostachys edulis) forests to achieve higher productivity. However, little is

known about the effects of these management practices on soil C

sequestration and microbial community structure. In the present study, soil

nutrient content, organic C fractions, and bacterial and fungal communities

were comparatively investigated in on- and off-year bamboo stands. The

results showed that soil organic C (SOC), alkali-hydrolyzable N (AN), and

available P (AP) in the on-year were significantly lower (p ≤ 0.05) than those

in the off-year. Among the different soil organic C fractions, easily oxidizable

organic C (EOC), microbial biomass C (MBC), Ca-bound SOC (Ca-SOC), and

Fe/Al-bound SOC (Fe/Al-SOC) also had significantly higher contents in the off-

year than in the on-year, with MBC and EOC decreasing by 56.3% and 24.5%,

respectively, indicating that both active and passive soil organic C pools

increased in the off-year. However, the alpha diversities of both soil bacteria

and fungi were significantly lower in the off-year soils than in the on-year soils.

The bacterial taxa Actinobacteria, Planctomycetes, WPS-2, Acidothermus,

Candidatus_Solibacter, Burkholderia-Caballeronia-Paraburkholderia, and

Candidatus_Xiphinematobacter were increased in off-year soils relative to

on-year soils. Meanwhile, fungal taxa Ascomycota, Mortierella, Hypocrea,

Cryptococcus, Clitopilus, and Ceratocystis were significantly increased in on-

year soils. Soil pH, SOC, AP, MBC, EOC, and Ca-SOC were significantly

correlated with bacterial and fungal communities, with soil pH being the

most important driving factor for the shift in bacterial and fungal

communities. Our findings showed that the studied bamboo forest
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possessed an inherent restorative ability in the off-year, which can reverse the

soil nutrient and C depletion in the on-years and ensure soil fertility in the

long term.
KEYWORDS

Bamboo, on- and off-year, C sequestration, bacteria, fungi
1 Introduction

Bamboo is a key forest resource and is mainly distributed in

tropical, subtropical, and temperate areas (Scurlock et al., 2000).

The total area of bamboo forests worldwide is approximately

31.5 million ha and accounts for approximately 0.8% of the

global forested area (FAO, 2010). In China, bamboo forests

cover more than 6 million ha, 73.8% of which are Moso bamboo

forests (Wang et al., 2013; Song et al., 2016a). Moso bamboo is a

large uniaxial bamboo; it completes its body size growth in 40

days, during which it increases its C storage 45 times. The annual

aboveground C sequestration rate in a Moso bamboo forest was

found to be 2.39 times greater (8.13 ± 2.15 Mg ha-1 yr-1) than

that in a Chinese fir forest (3.35 ± 2.02 Mg ha-1 yr-1) due to its

unique growth features (Yen and Lee, 2011). Therefore, it has a

high C sequestering capacity.

Moso bamboo forests have on-year and off-year periods,

depending on the production of new bamboo shoots. The On-

year period refers to the calendar year with high bamboo shoot

production, whereas the off-year period refers to the year with

lower bamboo shoot production (Li et al., 1998; Zhou et al., 2011;

Chen et al., 2018). During its growth, bamboo shoots grow from

March to May in the on-year and the leaves do not wither, while

in April-May of the off-year, Moso bamboo shoots rarely grow,

and all the leaves gradually turn yellow and wither, after which

new leaves start growing (Gratani et al., 2008; Song et al., 2016a).

Bamboo leaves are biennial, except in newly planted bamboo (Li

et al., 1998). In many cases, on- and off-years alternate, forming a

regular biennial cycle (Li et al., 1998). Moso bamboo forests are

usually managed according to the growth pattern of on- and off-

years. This management is called on- and off-year management

and includes digging the bamboo shoots and felling bamboo

plants in the on-year and nourishing the bamboo plants in the

off-year (Chen et al., 2018). Studies have shown that Moso

bamboo forests consume a lot of different nutrient elements in

the soil during different growth periods (Li et al., 2000; Wu et al.,

2006; Song et al., 2016a; Zhang et al., 2021a). Other studies have

shown that N, P, and K concentrations in Moso bamboo roots,

stems, and leaves change significantly during the bamboo shoot

growing season and leaf renewal (Ito et al., 2014; Umemura and

Takenaka, 2014). This indicates that in Moso bamboo forests,
02
different elements in the soil play different roles in different years.

On- and off-year Moso bamboo forests have diverse physiological

and ecological properties, which consequently have different

effects on soil nutrient uptake and utilization as well as on C

fraction cycling (Song et al., 2016b; Zhou et al., 2019). Studies had

been shown that soil organic C (SOC) content has an important

relationship with processes such as nutrient cycling and soil

microbial metabolism in forests (Ren et al., 2018; Yang et al.,

2021; Zhang et al., 2021b). The amount of the SOC pool and the

pace of mineralization, coupled with the activities of C-cycling

enzymes, are significantly impacted by the change in forest

management types (Lin et al., 2018). For example, Li et al.

(2012b) found that fertilization affected SOC sequestration in

paddy soils between no-till and conventional tillage practices. Li

et al. (2013) showed that SOC stocks and water soluble organic C,

hot-water soluble organic C, microbial biomass C (MBC) and

readily oxidizable C concentrations decreased with time under

intensive management relative to conventional management

practices in Moso bamboo forests. However, studies on the

effects of on- and off-year management practices on the

C sequestration in Moso bamboo forests have rarely

been conducted.

The physical, chemical, and biological components of soil

depend on soil organic C (Bhogal et al., 2009; Esmaeilzadeh and

Ahangar, 2014). C intake via litter breakdown, root turnover,

animal feces, and other sources, along with C outflow through

soil respiration, determines the level of SOC at any given time (Cui

et al., 2005). According to several studies, particular SOC fractions

are sensitive indicators of evaluating the advantages and

disadvantages of various management strategies and are crucial

for maintaining soil quality, such as soil active organic C (Chan

et al., 2001; Yang et al., 2005). Soil active organic C is a highly active

component of SOC with a high turnover rate and is easily utilized

by soil microbes. Based on the concept of soil structure hierarchy,

different levels of soil structure organization are supported by

different forms of SOC. For this reason, some studies have

suggested that compared to the general SOC, soil active organic

C, as assessed by various approaches, is more susceptible to

environmental changes (Dıáz-Raviña et al., 1993; Holt, 1997). Soil

MBC is the most active component of soil organic matter, and its

proportion in the soil carbon pool is small, generally accounting for
frontiersin.org

https://doi.org/10.3389/fpls.2022.1020344
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Huang et al. 10.3389/fpls.2022.1020344
only 1%-4% of the SOC (Sparling, 1992), but it is a large source and

stock for effective soil nutrients (Fan and Hao, 2003). MBC is an

easily available nutrient pool and a driving force for organic matter

decomposition and C and N mineralization in soils, and is closely

related to the nutrient cycle of C, N, P and S in soils (McGill et al.,

1986). Compared with SOC, MBC responds quickly to changes in

soil management practices such as tillage and straw culture and can

be an early indicator of changes in SOC and an indicator of changes

in active organic C (Wang et al., 2004; Ferreira et al.,

2016).Therefore, studying active organic C pools would help

elucidate the mechanisms involved in the turnover of SOC pool

under different management practices.

Soil microorganisms respond differentially to soil C

dynamics as a consequence of the differences in plant diversity

and organic matter content among different land-use change

types (Li et al., 2012a; Deng et al., 2016). However, the direction

and magnitude of these responses are poorly understood. For

example, Fontaine et al. (2007) showed that high amounts of

plant residue inputs may lower the efficiency with which

microorganisms consume C or degrade soil organic matter,

consequently reducing the soil C storage. In contrast, some

studies have demonstrated that increasing plant variability or

plant residue inputs can enhance the soil C storage from new C

by modifying soil microbial proliferation (Lange et al., 2015;

Tardy et al., 2015). Nonetheless, contradictory findings have

indicated that soil microorganisms are involved in crucial

ecological processes in a changing environment, such as C and

N cycling. Furthermore, several microbial species, including

Ascomycota, Basidiomycota, and Proteobacteria species,

contribute to the breakdown of soil organic matter, resulting

in changes in SOC fractions and, eventually, soil CO2 outflow

(Goldfarb et al., 2011; Tardy et al., 2015). However, it is unclear

how changes in SOC fractions can be effectively explained by

changes in microbial assemblages (Deng et al., 2016; Xiao

et al., 2017).

Therefore, understanding the nutrient and C dynamics

during on- and off-year management practices is not only

important for shedding light on the sustainable management

of bamboo forest ecosystems, but also for improving the

prediction of C balances when assessing the effects of on- and

off-year management practices on the SOC pool. The present

study aimed to evaluate the effects of on- and off-year

management practices on the SOC quality and microbial

functionality in a Moso bamboo forest. Our specific goals were

to: (1) comparatively investigate the effects of on- and off-year

management practices on soil C fractions and pertinent soil

properties; (2) describe the shift in soil bacterial and fungal

community structure under on- and off-year management; and

(3) investigate the relationships between the change in the

bacterial and fungal community and the shift in C fractions

and assess the land-use sustainability of the on- and off-year

management model.
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2 Materials and methods

2.1 Site description

The study site was located in Tianhuangping Town, Anji

County, Zhejiang Province, China (30°29′ N, 119°42′ E). The
area has a mid-latitude subtropical monsoon climate, with an

average annual temperature of 17°C and an average annual

rainfall of approximately 1300 mm. The average annual sunlight

duration is 1946 h, with 230 frost-free days (Li et al., 2014). The

study area has a low, mountainous and hilly landscape. The soil

of the sample site was classified as ferric luvisol (FAO, 1990),

which is slightly acidic, and the soil matrix was determined to be

a mixture of silt and fine sand (Yang et al., 2019).

The on- and off-year Moso bamboo forest was originally a

natural evergreen broad-leaved forest, which was transformed

into a pure Moso bamboo forest through human modification

and nurturing after the mid-1960s. Subsequently, on- and off-

year management practices started to be implemented. The

shrub layer under the Moso bamboo forest mainly consisted of

three species: bilberry, hickory pepper, and raspberry. The herb

layer consisted of five species, namely dog’s spine fern, hare’s

umbrella, lox, white flower septoria, and Baoduo grass.
2.2 Experimental design and
soil sampling

A 20 m × 10 m sample plot with the same slope, slope surface,

and elevation was set up in each on- and off-year Moso bamboo

forest sample plot. Using the S-shaped sampling method, 10 sample

points were set up at opposite locations of the two sample plots, and

five Moso bamboo were selected near each sample point. Their

rhizosphere soil was collected and mixed into one sample, and this

process was repeated 10 times to collect a total of 20 soil samples.

Fresh soil samples were sieved through a 2 mm sieve, partially air-

dried for the determination of soil physicochemical properties and

organic C fractions, and partially stockpiled at -80°C for soil

microbial community characterization.
2.3 Basic soil properties

Soil pH was determined with a pH meter with a soil to water

ratio of 1:2.5 (w/v). Soil alkali-hydrolyzable N (AN) was

determined by the alkali-diffusion method (Bremner et al.,

1996). Soil available P (AP) was determined with 0.03 mol·L-1

NH4F and 0.025 mol·L-1 HCl using the method described by

Bray and Kurtz (1945). Soil available K (AK) was extracted using

1 mol·L-1 ammonium acetate solution and determined using a

flame photometer (XP BWB, UK). Soil organic C (SOC) was
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determined using a TOC analyzer (Multi N/C 3100, Analytik

Jena, Germany).

2.4 Extraction and analysis of the
SOC fraction

Referring to the categorization technique of organic carbon

fractions employed by Gai et al. (2021), five C fractions (namely

easily oxidized organic C (EOC), dissolved organic C (DOC),

MBC, Ca-bound soil organic C (Ca-SOC), and Fe/Al-bound soil

organic C (Fe/Al-SOC)) were recovered from the SOC pool

using chemical procedures. Oxidation with 333 mmol·L-1

KmnO4 was used to measure EOC (Blair et al., 1995). In brief,

the air-dried soil containing 30 mg of C was weighed into a 50-

mL centrifuge tube, and 25 mL of 333 mmol·L-1 KmnO4 solution

was added, shaken at 200 rpm for 1 h, and then centrifuged at

4000 rpm for 5 min. The absorbance of the diluted solution was

measured spectrophotometrically at 565 nm after diluting the

supernatant by a ratio of 1:250 with deionized water. Finally, the

EOC content was calculated based on the absorbance. DOC was

extracted using 0.5 mol·L-1 K2SO4 and determined by a TOC

analyzer (Bolan et al., 1996). The chloroform fumigation and

extraction method was used to determine MBC (Vance et al.,

1987). The technique outlined by Xu and Yuan (1993a) was used

to determine the contents of Ca-SOC and Fe/Al-SOC in the

samples. In brief, 2 g of air-dried soil was weighed and placed in

a 100-mL centrifuge tube, and 20 mL of 0.5 mol·L-1 Na2SO4

solution was added, shaken at 180 rpm for 2 h, left for 24 h, and

then centrifuged for 10 min at 3000 rpm. After repeating the

above procedure several times, the supernatant was collected. A

TOC analyzer was used to detect the amount of Ca-SOC in the

supernatant. Finally, 20 mL of 0.1 mol-L-1 NaOH and 0.1 mol·L-

1 Na4P2O7·10H2O were combined with the residue, centrifuged,

and the content of Fe/Al-SOC in the supernatant was

determined again by a TOC analyzer.

2.5 Bacterial and fungal
communities analysis

According to the manufacturer’s protocol, DNA was

extracted from the soil samples using the E.Z.N.A.® Soil DNA

Kit (D5625, Omega, Inc., USA). The 341F-805R (5′-
CCTACGGGNGGCWGCAG-3′/5′-GACTACHVGGGTAT

CTAATCC-3′) and ITS1FI2-ITS2 (5′-GAACCWGCGG

ARGGATCA-3′/ 5′-GCTGCGTTCTTCATCGATGC-3′) primer

sets were used to amplify the bacterial 16S V3-V4 region and

fungal ITS2 genes. Amplicon synthesis, library construction, and

Illumina NovaSeq sequencing (2 × 250 bp) were performed by LC-

Bio Technology Co., Ltd. (Hangzhou, China). FLASH (Magoc and

Salzberg, 2011) was used to construct paired-end 16s and ITS1

sequences, which were subsequently quality-trimmed and length-

filtered using Fqtrim. DADA2 (Callahan et al., 2016) was used to

construct the amplicon sequence variant (ASV) table, which was
Frontiers in Plant Science 04
then allocated to the proper taxon using the QIIME 2 plugin

(Bolyen et al., 2019). Taxonomy was assigned against the SILVA

(release 132, https://www.arb-silva.de/documentation/release-132/)

(Quast et al., 2012) and Unite (V8 released on 02.02.2019) databases

(Abarenkov et al., 2010). The samples were rarefied to 51,038

sequences for bacterial communities and 38,330 sequences for

fungal communities.

2.6 Statistical analysis

IBM SPSS (version 22.0; Chicago IL, USA) was used for the

statistical analysis of soil chemical properties and organic C

fractions. Significant differences among the soil samples were

tested using an independent samples t-test, with p ≤ 0.05

determined as significant. Data are presented as mean ± SD.

The ‘microeco’ package in R was used to compute alpha indices

and perform the principal coordinate analysis (PcoA) (Liu et al.,

2021), and the ‘vegan’ (Oksanen et al., 2019) package in R was

used to perform the redundancy analysis (RDA) and assessed the

effects of soil factors on the bacterial and fungal communities.

The significant soil parameters were determined using the

‘envfit’ function in the vegan package. Spearman correlation

analysis and Mantel test were performed using the ‘ggcor’

package in R (Huang et al., 2020). Random forest model

(Breiman, 2001) was used to identify the key predictors of soil

microbial communities using the ‘randomForest’ (Liaw and

Wiener, 2002) package in R, and the significance of the model

and each predictor were determined using the ‘rfUtilities’ (Evans

and Murphy, 2019) and ‘rfPermute’ (Archer, 2016) packages,

respectively. Linear regressions were visualized using the R

‘basicTrendline’ package (Mei et al., 2018).

3 Results

3.1 Soil properties

On- and off-year changes significantly affected the pH, SOC,

AN, AP, and AK contents of rhizosphere soil in the Moso

bamboo forest (p ≤ 0.05; Table 1). Soil pH and AK were

significantly higher (p ≤ 0.05) in the on-year Moso bamboo

stands than in the off-year Moso bamboo stands, whereas the

opposite trend was observed for SOC, AN, and AP (p ≤ 0.05).

3.2 Soil organic C fractions

SOC fractions were significantly different between on- and off-

year stands (p ≤ 0.05) (Table 1; Figure 1). Soil EOC and MBC

contents were significantly higher in the off-year Moso bamboo

stands than in the on-year Moso bamboo stands (p ≤ 0.05). The

MBC/SOC was 1.65% for off-year moso bamboo stands and 0.93%

for on-year moso bamboo stands, with significant differences

between them (p ≤ 0.05). However, difference in the DOC

content between the two years was not significant (p > 0.05;
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Figure 1A). In contrast, DOC was generally much lower than EOC,

accounting for 9.9% to 13.6% of the corresponding EOC.

The on- and off-year management practices significantly

affected the passive C pool composition (p ≤ 0.05) (Figure 1B).

Thus, Fe/Al-SOC was much higher than the corresponding Ca-

SOC (specifically, 16.37 to 18.08 times higher). In general, the

Ca-SOC and Fe/Al-SOC contents were significantly higher in

the off-year Moso bamboo stands than in the on-year Moso

bamboo stands (p ≤ 0.05).
3.3 Bacterial and fungal community
alpha diversities

The Chao1 and Shannon indices were used to evaluate the

alpha diversities of bacterial and fungal communities (Figure 2).

Compared with the off-year, the on-year significantly increased

the Chao1 and Shannon indices of bacterial and fungal

communities (p ≤ 0.05).
3.4 Compositions of bacterial and fungal
communities

The most abundant bacterial phylum in the investigated soil

samples was Acidobacteria, accounting for an average of 38.83%

of the total sequences, followed by Proteobacteria,
Frontiers in Plant Science 05
Actinobacteria, Chloroflexi, Verrucomicrobia, Planctomycetes,

Gemmatimonadetes, WPS-2, Rokubacteria, and Bacteroidetes,

accounting for 30.95%, 8.56%, 7.45%, 4.10%, 3.90%, 1.45%,

1.17%, 1.05%, and 0.52% of the total sequences, respectively

(Figure 3). Within the fungal communities, Basidiomycota and

Ascomycota were the dominant taxa, accounting for 52.57% and

33.60% of the total sequences, respectively. At the genus level, 13

bacterial and 12 fungal genera with an average relative

abundance of > 0.5% were detected (Table 2).

At the phylum level, the abundances of the bacterial phyla

Rokubacteria, Gemmatimonadetes, and Verrucomicrobia were

significantly increased (p ≤ 0.05) while those of WPS-2,

Planctomycetes, and Actinobacteria were significantly

decreased (p ≤ 0.05) in the on-year samples compared with

those in the off-year samples (Figure 3). The bacterial genera

Candidatus_Udaeobacter, Bradyrhizobium, and Adurb.Bin063-1

were significantly increased (p ≤ 0.05), whereas Acidothermus,

Candidatus_Sol ibacter , Burkholder ia-Cabal le ronia-

Paraburkholderia, and Candidatus_Xiphinematobacter were

significantly decreased (p ≤ 0.05) in the on-year samples

relative to those in the off-year samples (Table 2). Regarding

the fungal communities (Figure 3; Table 2), compared to those in

the off-year samples, the relative abundances of Ascomycota,

Mortierella, Hypocrea, Cryptococcus, Clitopilus, and Ceratocystis

in the on-year samples were significantly increased (p ≤ 0.05),

whereas that of Basidiomycota was significantly decreased

(p ≤ 0.05).
TABLE 1 Soil basic properties at the on- and off-year Moso bamboo forests.

Treatment pH (H2O) SOC (g·kg-1) MBC/SOC (%) AN (mg·kg-1) AP (mg·kg-1) AK (mg·kg-1)

Off-year 4.72 ± 0.05b 29.13 ± 2.90a 1.66 ± 0.67a 218.19 ± 30.67a 5.76 ± 1.03a 315.47 ± 54.79b

On-year 4.95 ± 0.05a 22.94 ± 2.35b 0.92 ± 0.61b 192.75 ± 22.31b 4.53 ± 0.36b 377.47 ± 40.31a
Different lowercase letters within columns indicate significant differences at p ≤ 0.05. Data are presented as mean ± SD, n = 10. SOC, soil organic C; MBC/SOC, the ratio of microbial
biomass C to soil organic C, namely, microbial quotient; AN, alkali-hydrolyzable N; AP, available P; AK, available K.
BA

FIGURE 1

Soil active organic carbon (A) and passive organic carbon (B) content in the on- and off-year Moso bamboo forest. Different lowercase letters
indicate significant differences among different distances by independent samples t-test (p ≤ 0.05). Error bars indicate standard deviation
(n = 10). EOC, easily oxidized organic C; DOC, dissolved organic C; MBC, microbial biomass C; SOC, soil organic C; Ca-SOC, Ca-bound
soil organic C; Fe/Al-SOC, Fe/Al-bound soil organic C.
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PcoA was used to show the similarities and differences

between the microbial taxa (Figure 4). Bacteria and fungi

accounted for 42.7% and 25.4% of the variation on the first

and second axis, respectively. Two different clusters were formed

for the on- and off-year soil samples concerning the bacterial and

fungal community compositions, indicating that on- and off-

year management practices in the studied bamboo forest caused

marked bacterial and fungal community shifts. ANOSIM also

confirmed significant differences in the bacterial (R = 0.955, p =
Frontiers in Plant Science 06
0.001) and fungal communities (R = 0.707, p = 0.001) between

the on- and off-year stands.
3.5 Correlations between soil
environmental factors and bacterial and
fungal community

We conducted RDA and Mantel test to evaluate relationships

between soil factors and microbial community structures (Figure 5).

RDA showed that the first and second axes accounted for 31.02% of

variance in bacterial communities (Figure 5A). Soil chemical

parameters including pH, SOC, AN, AP, AK, MBC, DOC, EOC,

Ca-SOC, and Fe/Al-SOC content significantly correlated with

bacterial communities (r2 = 0.910, 0.754, 0.797, 0.636, 0.430, 0.663,

0.304, 0.541, 0.588, and 0.531, respectively). The results of the

Mantel test indicated that bacterial community structures

significantly correlated with pH (r = 0.819, p ≤ 0.001), SOC (r =

0.533, p ≤ 0.001), AN (r = 0.232, p ≤ 0.01), AP (r = 0.337, p = 0.001),

AK (r = 0.275, p = 0.003), MBC (r = 0.241, p = 0.007), EOC (r =

0.376, p ≤ 0.001), Ca-SOC (r = 0.411, p ≤ 0.001), and Fe/Al-SOC (r =

0.220, p = 0.011) (Figure 5C).Within the in fungal communities, the

first two RDA axes accounted for 22.56% of variance (Figure 5B).

Soil pH (r2 = 0.865, p = 0.001), SOC (r2 = 0.831, p = 0.001), AN (r2 =

0.453, p = 0.007), AP (r2 = 0.547, p = 0.002), AK (r2 = 0.416, p =

0.012), MBC (r2 = 0.458, p = 0.005), EOC (r2 = 0.551, p = 0.004), Ca-

SOC (r2 = 0.622, p = 0.001), and Fe/Al-SOC (r2 = 0.594, p = 0.002)
FIGURE 3

Bacterial and fungal compositions at the phylum level in the on-
and off-year Moso bamboo forest soil. Bacterial and fungal phyla
with an average relative abundance of greater than 0.5%. *p ≤ 0.05.
BA

FIGURE 2

Alpha diversity indices of bacterial (A) and fungal (B) taxa for the on- and off-year soil samples from Moso bamboo plantations. ***p ≤ 0.001;
**p ≤ 0.01; ns, p > 0.05.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1020344
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Huang et al. 10.3389/fpls.2022.1020344
significantly affected fungal community structure. Furthermore,

results of Mantel test suggested that pH (r = 0.562, p ≤ 0.001),

SOC (r = 0.310, p = 0.002), AP (r = 0.186, p = 0.049), MBC (r =

0.241, p = 0.016), EOC (r = 0.339, p = 0.005), and Ca-SOC (r =

0.376, p = 0.001) had important effects on variations in fungal

communities (Figure 5C).

The randomForest analysis was also conducted to identify the

main soil factors responsible for bacterial and fungal communities.
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(Figure 6) Soil pH was the most important predictors of bacterial

and fungal communities (percentages of increased mean square

error (%IncMSE): 13.39% and 14.12%, respectively), followed by

SOC (%IncMSE: 9.25% and 8.99%, respectively), Ca-C (%IncMSE:

8.51% and 8.20%, respectively), and MBC (%IncMSE: 6.95% and

6.40%, respectively). The linear model showed that the soil pH was

positively correlated with bacteria (R2 = 0.894, p ≤ 0.0001) and fungi

communities (R2 = 0.792, p ≤ 0.0001; Figure 7).
BA

FIGURE 4

Principal coordinate analysis of soil bacterial (A) and fungal (B) communities in the on- and off-year Moso bamboo plantations.
TABLE 2 Relative abundances of the dominant bacterial and fungal genera in the on- and off-year Moso bamboo forest soil.

Phylum Genus Off-year On-year p-Value

Bacteria

Actinobacteria Acidothermus 4.73% ± 1.36% 3.33% ± 0.76% 0.011

Acidobacteria Candidatus_Solibacter 3.77% ± 0.39% 3.26% ± 0.25% 0.003

Proteobacteria Acidibacter 3.65% ± 0.65% 3.27% ± 0.31% 0.114

Acidobacteria Bryobacter 1.96% ± 0.29% 1.98% ± 0.41% 0.906

Verrucomicrobia Candidatus_Udaeobacter 0.72% ± 0.30% 2.88% ± 0.81% 0.000

Proteobacteria Burkholderia-Caballeronia-Paraburkholderia 1.74% ± 0.61% 1.23% ± 0.30% 0.031

Proteobacteria Rhodoplanes 1.17% ± 0.18% 1.18% ± 0.17% 0.931

Proteobacteria Bradyrhizobium 0.85% ± 0.15% 1.28% ± 0.39% 0.006

Verrucomicrobia Candidatus_Xiphinematobacter 1.02% ± 0.33% 0.73% ± 0.20% 0.030

Proteobacteria Pajaroellobacter 0.87% ± 0.26% 0.82% ± 0.22% 0.627

Acidobacteria Candidatus_Koribacter 0.67% ± 0.20% 0.84% ± 0.34% 0.187

Verrucomicrobia ADurb.Bin063-1 0.46% ± 0.16% 0.81% ± 0.23% 0.001

Fungi

Basidiomycota Camarophyllopsis 8.02% ± 16.87% 0.91% ± 2.12% 0.217

Zygomycota Mortierella 2.70% ± 1.53% 5.41% ± 1.77% 0.002

Ascomycota Cladophialophora 2.26% ± 1.68% 2.63% ± 0.58% 0.524

Basidiomycota Clavulinopsis 2.71% ± 2.54% 2.17% ± 5.65% 0.785

Ascomycota Hypocrea 1.38% ± 1.27% 2.67% ± 1.11% 0.026

Basidiomycota Entoloma 1.82% ± 2.18% 1.84% ± 2.20% 0.987

Basidiomycota Cryptococcus 0.93% ± 0.62% 1.92% ± 0.83% 0.007

Basidiomycota Clitopilus 0.45% ± 0.27% 2.15% ± 1.52% 0.006

Ascomycota Ceratocystis 0.03% ± 0.03% 1.67% ± 1.75% 0.016

Basidiomycota Agaricus 1.69% ± 3.89% 0.00% ± 0.01% 0.204

Basidiomycota Conocybe 0.02% ± 0.03% 1.31% ± 4.01% 0.335

Basidiomycota Trechispora 0.92% ± 1.26% 0.26% ± 0.34% 0.141
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BA

FIGURE 6

The randomForest analysis showing the relative contribution of soil properties in determining soil bacterial (A) and fungal (B) communities in the
on- and off-year Moso bamboo forests. The bacterial and fungal community data represent alpha indices (Shannon and Chao1) and relative
abundance of keystone taxa. **p ≤ 0.01; *p ≤ 0.05; ns, p > 0.05. %IncMSE: percentage of increased mean square error. SOC, soil organic C; Ca-
C, Ca-bound soil organic C; MBC, microbial biomass C; EOC, easily oxidized organic C; AP, available P; AN, alkali-hydrolyzable N; Fe/Al-C, Fe/
Al-bound soil organic C; AK, available K; DOC, dissolved organic C.
B

CA

FIGURE 5

Redundancy analysis of soil bacterial (A) and fungal (B) communities and measured soil properties in the on- and off-year Moso bamboo forests.
Spearman’s correlation analysis and Mantel tests for microbial communities (C). SOC, soil organic C; AN, alkali-hydrolyzable N; AP, available P;
AK, available K; MBC, microbial biomass C; DOC, dissolved organic C; EOC: easily oxidized organic C; Ca-C, Ca-bound soil organic C; Fe/Al-C,
Fe/Al-bound soil organic C.
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4 Discussion

4.1 Effect of on- and off-year
management practices on SOC fractions

Large differences in the physiological and ecological traits of

Moso bamboo forests between on- and off-year stands have been

observed in several studies (Li et al., 1998; Volker and David, 2001;

Gratani et al., 2008). Results showed that SOC, AN, and AP were

significantly lower in the on-year Moso bamboo forest soil than in

the off-year Moso bamboo forest soil, whereas the opposite trend

was observed for AK (Table 1). This was probably because growing

bamboo shoots in the on-year Moso bamboo stands mainly took

up SOC, AN, and AP, whereas in the off-year Moso bamboo

stands, AK was mainly used for replacing bamboo leaves and

beeding bamboo shoots. Some studies have shown that SOC, N,

and P play important roles in bamboo shoot growth and material

growth in Moso bamboo, whereas K has significant effects on leaf

growth (Wu et al., 2006; Song et al., 2016a).

C pools such as EOC, DOC, and MBC are sensitive to land-

use type changes (Zhu et al., 2015; Gai et al., 2021). EOC was

found to be the component with the highest content in SOC

fractions in all bamboo soils as it has a slower turnover rate than

that of other unstable C forms (Xu et al., 2010). Compared to

those in the soil of off-year Moso bamboo stands, the EOC and

MBC in the soil of on-year Moso bamboo stands decreased by

24.5% and 56.3%, respectively. Decreased soil EOC may be

related to plant growth because it is highly available to plants

(Xiao et al., 2021). McGill et al. (1986) showed that MBC can be

used to represent SOC turnover and the nutrient cycle to a

certain extent. Thus, MBC may be a sensitive indicator of SOC
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changes caused by the differences in on- and off-year

management practices in Moso bamboo forests. The MBC is

directly involved in soil biochemical transformation processes

and is an important indicator of the role of soil microorganisms

(Naorem et al., 2021). MBC/SOC has been often used as an

indicator of how organic matter status changes land utilization

(Ferreira et al., 2016). The MBC/SOC was 1.66% for off-year

moso bamboo stands and 0.92% for on-year moso bamboo

stands, with significant differences between them (p ≤ 0.05)

(Table 1). This indicates that on- and off-year management

practices change the structure of SOC fractions and promote the

transformation of soil carbon, as well as indicating that the

carbon sequestration capacity of soil microorganisms in off-year

moso bamboo stands was significantly enhanced compared with

that in on-year moso bamboo stands. However, in the present

study, there was no significant difference between the DOC

contents of on- and off-year stands, which may be related to the

fact that DOC is the most active component of SOC and can be

recovered in a short time after depletion (Singh et al., 2017).

SOC stability has an important relationship with its

intermolecular chemical bonding (Kumada, 1987). Our results

showed that the Fe/Al-SOC content in the studied soils was higher

than the Ca-SOC content. This is because Fe/Al oxides are abundant

in acidic soils od southern China and mainly form Fe/Al-bonded

organic mineral complexes (Xu and Yuan, 1993b). Compared with

those in the off-year stands, the Fe/Al-SOC and Ca-SOC contents in

the on-year stands were significantly decreased. This indicated that

the investigated Moso bamboo forest also consumed the passive

organic C pool in the soil during bamboo shoot growth in the on-year

stands, while the low growth of the Moso bamboo in the off-year

stands facilitated the accumulation of passive organic C in the soil.
BA

FIGURE 7

Soil pH in relation to soil bacterial (A) and fungal (B) communities in the on- and off-year Moso bamboo forests. Shaded areas show the 95%
confidence interval of the fitted line.
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4.2 Effect of on- and off-year
management practices on soil bacterial
and fungal communities

A significant increase in both bacterial and fungal Chao1 and

Shannon indices was observed in the on-year soils compared to

those in the off-year soils (Figure 2), indicating that the on- and

off-year management practices in Moso bamboo forests not only

affected the diversity of soil bacteria and fungi, but also their

species numbers. Meanwhile, PcoA showed that in the analysis

of bacterial and fungal community compositions, two different

clusters were formed for the on- and off-year soil samples

(Figure 4). This indicated that the two management practices

change the soil bacterial and fungal community compositions.

Our results showed that Acidobacteria and Proteobacteria

were the dominant bacterial phyla in the soil of the study area

(Figure 3, 5A, C). Eichorst et al. (2018) showed that

Acidobacteria can use various carbohydrates as C sources and

also inorganic and organic N as N sources. Proteobacteria favor

C-efficient soil and may promote the increase in organic C

fractions and respiration (Fierer et al., 2007; Ren et al., 2018).

These results suggested that the two dominant phyla play vital

roles in the cycling of C and N in Moso bamboo plantations.

However, the relative abundances of these two bacterial phyla

did not differ significantly between the on- and off-year soils.

The relative abundance of Actinobacteria was lower in the on-

year soils than in the off-year soils (Figure 3). Some studies have

shown that Actinobacteria play an influential role in nutrient

cycling and organic matter decomposition (Narendrula-Kotha

and Nkongolo, 2017; Pei et al., 2018). This indicates that these

species promote nutrient cycling and depletion in off-year soils.

We also found that the relative abundances of the genera

Acidothermus and Candidatus_Solibacter (both within the

phylum Acidobacteria) were also lower in the on-year soils

than in the off-year soils (Table 2 and Figure 3). This may be

related to the harsh environmental conditions of the off-year

soils. Most Actinobacteria species have a strong metabolic

capacity and ability to rapidly colonize selective substrates

(Narendrula-Kotha and Nkongolo, 2017), and some species

have been shown to be resistant to acidic and other extreme

environments (Barns et al., 2007).

Furthermore, results showed that Basidiomycota and

Ascomycota were the dominant fungal phyla in the studied

soils (Figure 3). Species belonging to these phyla are known to

metabolize organic matter in forest litter and rhizosphere

sediments, and their abundance is influenced by soil organic

matter dynamics as a result of plant residue decomposition

(Hannula et al., 2012; Bastida et al., 2013). The relative

abundance of Basidiomycota in the soil was higher in the off-

year stands than in the on-year stands, probably because of

their strong ability to survive in soil environments with

extreme pH or nutrient imbalances (Tedersoo et al., 2017),
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suggesting that soil quality actually improved during on-years.

However, the relative abundances of Cryptococcus and

Clitopilus within the phylum Basidiomycota were higher in

the on-year soils than in the off-year soils. This is because the

on-year period is when Moso bamboo plants require a lot of

organic matter and nutrients to grow, whereas the genera

Cryptococcus and Clitopilus have the ability to decay wood,

break down plant and animal manure, and develop a symbiotic

association with plant roots where they aid in the plant’s

absorption of water, mineral salts, and metabolites, while also

obtaining C and vital organic matter from the plant (Carris

et al., 2012; Dejene et al., 2017). The relative abundance of

Ascomycota was significantly higher in the off-year soils than

in the on-year soils. Species belonging to this phylum are

important decomposers in soils, as they can degrade litter

containing refractory lignocellulose (Vandenkoornhuyse

et al., 2002; Bastian et al., 2009; Angelini et al., 2012). Some

Ascomycota species can decompose plant residues and use

their easily degradable fraction to replenish soil C sources for

their own growth and to promote the accumulation of C in the

soil (Osono, 2007), as well as form a mutually reinforcing

relationship with plants. The shifts in Basidiomycota and

Ascomycota could explain the differences in SOC pools

between the on- and off-year soils.
4.3 The mechanism of on- and off-year
management practices affect soil SOC by
changing soil microbial communities

Soil microbial communities can be characterized by their

physicochemical properties (Rousk et al., 2010; Li and Liu, 2019;

Zhang et al., 2022). The different plant growth status and related

management measures in the on-year and off-year caused the

change in soil physicochemical properties, consequently, resulted

in the shift of soil microbial communities. In the present study,

RDA, the Mantel test, and random forest analysis showed that the

bacterial and fungal communities were mainly driven by soil pH

and other available nutrients. Rousk et al. (2010) found that soil

pH is correlated with bacterial and fungal communities. In this

study, pH significantly shaped the microbial communities,

meanwhile, the SOC fractions, SOC and Ca-SOC were

negatively correlated with the soil pH (Figure 5C), indicating

the pH might largely influence the SOC through the change of

microbial communities and their activities. Previous studies have

documented the effect of SOC on soil microbial communities

(You et al., 2014; Paulina et al., 2020), and this effect was partly

associated with the effect of SOC on other physicochemical

properties (Gao et al., 2019). In this study, we found that the

growth of Moso bamboo forest consumed a lot of soil nutrients in

the on-year, which caused soil nutrients depletion and pH

decrease at the beginning of the off-year. Actinobacterias and
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Basidiomycota could adapt to the harsh environmental conditions

in the off-year and have the ability to decompose apoplastic

matter, multiply (Narendrula-Kotha and Nkongolo, 2017;

Tedersoo et al., 2017; Pei et al., 2018), and could make a large

amount of apoplastic matter into organic matter and replenishing

it into the soil, so that the soil SOC content of the bamboo forest

can be greatly increased at the beginning of the on-year (Li and

Liu, 2019; Song et al., 2021; Liu et al., 2022).
5 Conclusions

This study showed that off-yearMoso bamboo forest management

significantly increased the content of SOC and its fractions (EOC,

MBC, Ca-SOC, and Fe/Al-SOC), indicating that this practice is

beneficial for soil C sequestration. Furthermore, off-year management

significantly decreased soil pH and AK, but increased AN and AP. The

bacterial and fungal communities were significantly affected by on- and

off-year management and best predicted by soil pH. The on- and off-

year management measures enabled the nutrients and microbial

communities in the Moso bamboo forest soil to be fully restored,

which is of great significance for the sustainable management of Moso

bamboo forests. Moreover, our findings revealed the characteristics of

SOC fractions and microbial community composition in Moso

bamboo soils under on- and off-year management practices. These

results provide fundamental theoretical basis for the sustainable

management and improvement of C sequestration in

forest ecosystems.
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