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Integrated analysis of multi-
omics and fine-mapping reveals
a candidate gene regulating
pericarp color and flavonoids
accumulation in wax gourd
(Benincasa hispida)
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Ying Chen2, Luzhao Pan1,3, Wei Xiao2, Yin Luo2, Baobin Mi2*,
Xiaowu Sun1* and Cheng Xiong1*

1College of Horticulture, Hunan Agricultural University, Changsha, China, 2Vegetable Research
Institute, Hunan Academy of Agricultural Sciences, Changsha, China, 3College of Horticulture,
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Wax gourd (Benincasa hispida), a popular fruit of the Cucurbitaceae (cucurbits)

family, contains many nutrients with health benefits and is widely grown in

China and other tropical areas. In this study, a wax gourd mutant hfc12 with

light-color pericarp was obtained through ethane methylsulfonate (EMS)

mutagenesis. Integrative analysis of the metabolome and transcriptome

identified 31 differentially accumulated flavonoids (DAFs; flavonoids or

flavonoid glycosides) and 828 differentially expressed genes (DEGs) between

the hfc12 mutant and wild-type ‘BWT’. Furthermore, BSA-seq and kompetitive

allele specific PCR (KASP) analysis suggested that the light-color pericarp and

higher flavonoid content was controlled by a single gene BhiPRR6

(Bhi12M000742), a typical two-component system (TCS) pseudo-response

regulator (PRR). Genetic analysis detected only one nonsynonymous

mutation (C-T) in the second exon region of the BhiPRR6. Weighted

correlation network analysis (WGCNA) identified the downstream target

genes of BhiPRR6, probably regulated by light and were intermediated in the

regulatory enzyme reaction of flavonoid biosynthetic pathway. Thus, these

results speculated that the transcription factor BhiPRR6, interacting with

multiple genes, regulates the absorption of light signals and thereby changes

the pericarp color and synthesis of flavonoids in wax gourd.
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Introduction

Wax gourd [Benincasa hispida (Thunb.) Cogn., 2n = 2x =

24] is an important vegetable of the Cucurbitaceae family widely

grown in the tropical and subtropical regions of the world (Xie

et al., 2019). The plant bears large fruit with a dark-green

pericarp and has high nutritional values, such as proteins,

carbohydrates, vitamins and minerals (Sreenivas et al., 2011).

As an important commodity value feature, peel color is a highly

variable trait controlled by a relatively complex genetic

mechanism, and mainly depends on the content and

composition of flavonoids (Li et al., 2013).

As one of the major components of wax gourd, the

flavonoids have attracted breeders and consumers for their

ability to improve metabolic disorders and antiangiogenic and

anticancer effects (Zoratti et al., 2014). Besides increasing the

nutritional value of the fruit, flavonoids act as indicators of

fruit quality also in wax gourd (Imran et al., 2019). Flavonoids

are polyphenolic secondary metabolites of plants with

different functions and include flavonols , flavones,

flavanones, flavan-3-ols, isoflavones, and anthocyanins. They

are generally found in plant-based foods, such as fruits,

vegetables, beans, and tea, in the bound (flavonoid

glycosides) or free form (flavonoid aglycones) (Azuma et al.,

2012). Several studies have shown flavonoids have high

nutritional functions in the reaction of the organism such as

the antioxidant, anti-inflammatory, and antitumor properties

(Jaakola and Hohtola, 2010). Notably, flavonoids play a

central role in fruit quality and economic value; they

influence the color, aroma, astringency, and antioxidant

properties of fruits. For example, flavonols provide

photoprotective effects , flavan-3-ols (precursors of

proanthocyanidins) influence fruit flavor (Sudheeran et al.,

2021), and the degree of co-pigmentation of anthocyanins and

flavanones affected the fruit color (Baranac et al., 1997).

Therefore, it is necessary to understand the factors that

regulate the biosynthesis of wax gourd flavonoids, which

may help develop and produce improved wax gourd varieties.

Flavonoids are synthesized through the phenylpropanoid

and flavonoid pathways. In recent years, the biosynthetic

pathway of flavonoids and the structural genes encoding the

flavonoid biosynthetic enzymes have been extensively studied

(Martens et al., 2010). In the early stages of the flavonoids

biosynthetic pathway, the phenylalanine ammonia-lyase (PAL),

chalcone synthase (CHS), chalcone isomerase (CHI), flavanone

3-hydroxylase (F3H), and coumadin CoA ligase (4CL) were

flavonoid biosynthetic enzymes to produced p-coumaroyl-CoA

(precursor substance) (Winkel-Shirley, 2002). Naringenin,

catalyzed by chalcone synthase (CHS) and chalcone isomerase

(CHI), is the core intermediate that leads to different flavonoid

subclasses from each branch in the pathway (Jaakola, 2013). The

biosynthesis of anthocyanins is a major branch of the flavonoid
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pathway, regulated by dihydroflavonol 4-reductase (DFR),

UDP-glucose: flavonoid 3-glucosyltransferase (UFGT), and

anthocyanin synthase (ANS) (Almeida et al., 2007).

Anthocyanin reductase (ANR) and leucoanthocyanidin

reductase (LAR) play central roles in proanthocyanidin

biosynthesis (Shi et al., 2020). Meanwhile, flavonol is

synthesized from dihydroflavonols by flavonol synthase (FLS).

Flavones use flavanones as substrate and are formed by flavone

synthase (FS) (Tomás-Barberán et al., 2001).

In addition to the structural genes encoding the enzymes of

the flavonoid pathway, transcriptional factors regulate the

expression of genes encoding these enzymes in each synthesis

step. Many transcription factors have been found to regulate the

flavonoid pathway (Yan et al., 2021). In general, the

transcription factor R2R3-MYB interacts with bHLH (MYC-

like basic helix-loop-helix) protein to form a complex with

WD40 protein (MBW complex), which regulates the

coordinated transcription of structural genes of the flavonoid

biosynthetic pathway (Hichri et al., 2011). In apple (Malus ×

domestica Borkh.), MdMYB73 regulates the accumulation and

vacuolar acidification of anthocyanins by directly activating the

vacuolar transporters (MdVHA-B1, MdVHA-E, MdVHP1, and

MdtDT) (Hu et al., 2017). In tomato (Solanum lycopersicum),

SlMYB14 was involved in the regulation of flavonoid

biosynthesis, and played a role in maintaining plant active

oxygen homeostasis (Li et al., 2021). In mango (Mangifera

indica L.), MiMYB1 acts as a critical regulator of anthocyanin

biosynthesis and regulates the light-dependent red coloration

(Kanzaki et al., 2020). PpMYB17, a bHLH or WD40 cofactor in

the MBW complex, activates the structural genes PpCHS,

PpCHI, PpF3H, and PpFLS involved in flavonoid biosynthetic

pathway, and was positively regulates flavonoid biosynthesis in

pear (Pyrus spp.) fruits (Premathilake et al., 2020). Studies have

also reported other transcription factors that regulate flavonoid

synthesis. For example, SQUAMOSA MADS-box gene, a critical

regulatory factor in bilberry (Vaccinium myrtillus) fruits, is

involved in anthocyanin biosynthesis (Jaakola et al., 2019). In

muskmelon (Cucumis melo), a CmKFB gene negatively regulates

flavonoid accumulation (Feder et al., 2015). In recent years,

metabolome and transcriptome analysis have shown that R2R3-

MYB, bHLH51 and WRKY23 were candidate key transcription

factors that regulate the biosynthesis of flavonoids in cucumber

peel (Chen et al., 2021). In wax gourd, a single gene locus on

chromosome five controlled peel color (Jiang et al., 2015).

However, the transcription factors that regulate the flavonoids

synthesis of wax gourd have not been reported.

Ethyl methanesulfonate (EMS), as a chemical mutagen, has

been widely used in plant mutagenesis breeding and functional

genome research due to its high mutagenesis efficiency, easy

operation and wide mutagenesis range. Therefore, EMS

mutagenesis can not only obtain deletion or gain-of-function

mutants, but also help to understand the role of specific amino
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acid residues in protein function (Yuan et al., 2014). BSA

(Bulked Segregant Analysis), also known as mixed grouping

analysis or cluster segregation analysis, is very suitable for

analyzing mutants induced by EMS mutagenesis. Two

materials with significant differences are used as parents, and a

segregated population is constructed by hybridization. About 30

plants with extreme phenotypes were selected to construct two

mixed pools. The difference region obtained by sequencing and

analysis of the two mixed pools was the candidate region, and

the target gene may exist in this region (Kurlovs et al., 2019). In

this study, EMS mutagenesis generated a wax gourd mutant

hfc12 with light peel color and high flavonoid content. The

transcriptome sequencing (RNA-seq) and the metabolome

(liquid chromatography with tandem mass spectrometry, LC–

MS/MS) of the hfc12 mutant and WT ‘BWT’ were analyzed to

understand the regulation of flavonoid biosynthesis. A single

gene BhiPRR6 (pseudo-response regulator, Bhi12G000742)

located on the chromosome 12 was fine-mapped by genetic

BSA-seq analysis, which regulated the flavonoid biosynthesis in

wax gourd. WGCNA was carried out to explore the correlation

of the candidate gene with target genes in regulating the

flavonoid pathway. To conclude, this study clarified the role of

BhiPRR6 gene in wax gourd fruit flavonoid biosynthesis and

revealed its regulatory network. The findings will provide a

theoretical basis of molecular genetic improvement in

wax gourd.
Materials and methods

Plant materials, EMS mutagenesis, and
mutant analysis

Wax gourd wild-type (WT) inbred line “BWT” was treated

by 0.8% EMS to construct a mutant library, and a wax gourd

mutant hfc12 with high flavonoid content was generated. The

‘BWT’ and hfc12 plants as parents to obtain an F1 population

and then were further self-crossing to establish the F2 mapping

population (486 individuals), including 361 ‘BWT’ and 125

hfc12 individuals, respectively. At the same time, F1 and hfc12

were backcrossed to obtain 238 individuals BC1 population. All

wax gourd varieties were planted in the Changsha experimental

station (N 28°11′49″, E 112°58′429″) of the Hunan Vegetable

Research Institute of Agricultural Science at the Apr. of 2018,

Changsha, China. The flavonoid content, carotenoid content,

chlorophyll a (Ca), and chlorophyll b (Cb) of the parents and F2
population were determined at the same time. The flavonoid

contents of wax gourd pericarp were determined by colorimetry

using the Plant Flavonoids test kit (A142-1-1, Nanjing Jiancheng

Bioengineering Institute). The carotenoid content, chlorophyll a

(Ca), chlorophyll b (Cb) was determined by visible

spectrophotometry using a Plant Carotenoid detection kit
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(BC4330, Beijing Solarbio Science & Technology Co., Ltd.).

The segregation ratios in the F2 and BC1 populations were

analyzed with the Chi-square (c2) goodness of fit test using R.
Transcriptome analysis

Total RNA was extracted from the frozen wax gourd

pericarp of parents ‘BWT’ and hfc12 collected at 40 days after

pollination (DAP, 40DAP mature stage: Pericarp color change

stage) were using TransZol Kit (TransGen Biotech, Inc., Beijing,

China). The libraries (200–250 bp) of each sample were

generated and sequenced on an Illumina HiSeq™ X-Ten

platform for paired-end reads (BGI, Shenzhen, China). The

quality of reads obtained was checked using the Fastqc

program (Brown et al., 2017). Trimmmatic (v0.36) was used to

trim the adapter sequences and remove low-quality reads

(Bolger et al., 2014). The filtered reads were mapped to the

wax gourd reference genome (B. hispida var. B227) (Xie et al.,

2019) using the Salmon (v1.2.0) tool (Patro et al., 2017). TPM

(Transcripts Per Million) was used to quantify the gene/

transcript levels. DESeq2 was used to identify the DEGs with

the criteria of |log2Fold Change| ≥ 1 and a false discovery rate

(FDR) < 0.05 (Love et al., 2014). Gene Ontology (GO) was

annotated using Plant Transcriptional Regulatory Map online

software (http://plantregmap.gao-lab.org/), and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment was analyzed by Kobas3.0 online software. Both GO

and KEGG were conducted using clusterProfiler (R, v3.12) with

the corrected P-value ≤ 0.05 (Yu et al., 2012). The expression level

of the genes in the whole tissue period were obtained from

CuGenDB (http://cucurbitgenomics.org/) (Xie et al., 2019).
Metabolite profiling

Samples were extracted from the frozen wax gourd pericarp

of ‘BWT’ and hfc12 collected at 40 DAP with each three

biological replicates. The biological samples were placed in a

freeze dryer (Scientz-100F) for vacuum freeze drying. Using a

grinder (MM 400, Retsch) with a zirconia bead for 1.5 min at

30 Hz. Using ultra-performance liquid chromatography (UPLC;

SHIMADZU Nexera X2) and tandem mass spectrometry (MS/

MS) (Applied Biosystems 4500 QTRAP) to analyzed. A widely

targeted metabolomics method was used based on the self-built

database MWDB (Metware Biotechnology Co., Ltd. Wuhan,

China) (http://www.metware.cn/). The metabolites were

qualitatively analyzed based on the secondary spectrum

information. The isotope signal is removed during analysis,

including repeated signals of K+, Na+, NH4+, and the repeated

signals of fragment ions that are other larger molecular

weight substances.
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Unsupervised PCA was performed using the statistics

function prcomp of the R statistical software (www.r-project.

org). The hierarchical cluster analysis (HCA) results of samples

and metabolites were presented as heatmaps with dendrograms.

Pearson correlation coefficients (PCC; r) between the samples

were calculated using the cor function in R and presented as a

heatmap. Both HCA and PCC were carried out using the

pheatmap (R, v1.0.12). For HCA, normalized signal intensities

of metabolites (unit variance scaling) were visualized as a color

spectrum. Significantly regulated metabolites between ‘BWT’

and hfc12 were determined by VIP ≥1 and an absolute Fold

change ≥ 2 or Fold change ≤ 0.5. VIP values were extracted from

the orthogonal projections to latent structures discriminant

analysis (OPLS-DA) result, with score plots and permutation

plots, generated using MetaboAnalystR (R, v3.0) (Pang et al.,

2020). The data were log-transformed (log2) and mean-centered

before OPLS-DA. A permutation test (200 permutations) was

performed to avoid overfitting. Identified metabolites were

annotated using KEGG Compound database (http://www.kegg.

jp/kegg/compound/), annotated metabolites were then mapped

to KEGG Pathway database (http://www.kegg.jp/kegg/pathway.

html). Pathways with significantly regulated metabolites mapped

to were then fed into metabol i te sets enrichment

analysis (MSEA).
Bulked segregant analysis RNA
sequencing and linkage analysis

The DNA samples of the parental lines ‘BWT’ and hfc12

were prepared as two pools for sequencing with each three

biological replicates. From the F2 population, 25 pericarps of wax

gourd at 40 DAP for each plant with extremely high flavonoid

content and 25 extremely low flavonoid content individuals were

selected to construct two separation pools. In addition, DNA

samples were extracted from individual plants in each pool and

mixed in equimolar amounts to form wild-type mixed pools

(low flavonoid content) and mutant mixed pools (high flavonoid

content) for constructing genomic libraries. Four cDNA libraries

(dominant mixed pool, recessive mixed pool, and two parent

pools) were constructed using Truseq Nano DNA HT sample

preparation kit (Illumina, USA). These four libraries were

sequenced and evaluated on the Illumina HiSeq 4000 platform

(Changsha, China) to generate 2×150 bp paired-end reads with

an insert size of about 350 bp. The sequencing depth of the two

mixed pools were 25×, and the sequencing depth of the two

parent pools were 10×. Fastqc was used to evaluate the quality of

the reads, and Trimmomatic to remove the adaptors and low-

quality reads (Bolger et al., 2014; Brown et al., 2017). Hisat2 was

used to map the clean reads to the wax gourd reference genome.

SAMtools (v0.1.18) software was used to perform SNP calling

with 90% loci depth coverage (Ramirez-Gonzalez et al., 2012).

Further, Burrows-Wheeler Aligner (BWA) was used to align
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(Genome analysis toolkit, v4.0) was used to detect SNPs and

InDels. ANNOVAR was used to annotate the SNPs and InDels

based on the GFF3 file of the wax gourd reference genome. In

addition, the SNP-index algorithm was used to identify

candidate regions of the genome related to flavonoid content,

and calculated the difference in allele frequency between large-

capacity pools (Takagi et al., 2013). D (SNP index) was the

difference in SNP-index between the dominant mixed pool and

the recessive mixed pool. The points with an SNP/InDel index

less than 0.3 were filtered out of both pools. According to the

SNP △(SNP-index) >0.5 and Euclidean distance (ED), the

candidate regions related to the flavonoid content are selected

with 95% confidence. Join Map software (v4.0) was used to

construct the genetic linkage map with five SNPs as the window,

and two SNPs as the step size.
Fine-mapping analysis

Mapping function was used to calculate the genetic map

distance (cM) of the F2 population 486 individuals from the

recombination frequency (Voorrips, 2002). Based on the

reference genome, Kompetitive Allele Specific PCR (KASP)

was used to accurately determine SNPs and InDels biallelic

genes at specific sites (Semagn et al., 2014). The CTAB

method was used to extract DNA from all peel samples of 486

F2 individuals for KASP analysis. The quality and quantity of the

extracted DNA were verified by agarose gel electrophoresis and

NanoDrop ND-2000 spectrophotometer, and the primers were

designed by Primer5 (Table S4). The 200 bp sequence upstream

and downstream of the SNPs were used to design the KASP

primers, and the SNPs were typed based on the specific matching

of primer end bases. KASP method and mix were to refer to

PARMS SNP detection reagent manual (Gentides Biotech Co.,

Ltd (Wuhan) Synthesis), and were carried out on LightCycle® 96

Real-Time PCR System (Roche, Basel, Switzerland) in a 10mL
reaction mixture. The selected genes and their primer sequences

were listed in Table S4.
Real time fluorescence quantitative PCR

The qRT-PCR method was used to quantify the transcript

abundance in the 40 DAP pericarp of the wax gourd plants.

Reverse transcription was carried out using the HiScript®IIQ RT

SuperMix for qRT-PCR (+gDNA wiper) (Vazyme Biotech Co.

Ltd, Piscataway, NJ, United States). Primers were designed using

Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/), with the PCR

product size set at a range of 80–150 bp. The qRT-PCR was

carried out on LightCycle® 96 Real-Time PCR System (Roche,

Basel, Switzerland) in a 20mL reaction mixture by using ChamQ

Universal SYBR qPCR Master Mix (Vazyme Biotech Co. Ltd,
frontiersin.org

http://www.r-project.org
http://www.r-project.org
http://www.kegg.jp/kegg/compound/
http://www.kegg.jp/kegg/compound/
http://www.kegg.jp/kegg/pathway.html
http://www.kegg.jp/kegg/pathway.html
http://bioinfo.ut.ee/primer3-0.4.0/
https://doi.org/10.3389/fpls.2022.1019787
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xie et al. 10.3389/fpls.2022.1019787
Piscataway, NJ, United States). Three biological replicates and

three technical replicates were maintained. Actin was used as the

reference gene. The 2-DDCt method was used to calculate the

relative expression level of the genes. The selected genes and

their primer sequences were listed in Table S4.
Correlation analysis

The WGCNA package in R language was used to construct a

co-expression network and analyze the correlation of gene

modules. RNA-seq FPKM data were used to perform

WGCNA analysis (Langfelder and Horvath, 2008). The DEGs

along DAFs with PCC ≥0.90 or ≤0.90 were selected for

subsequent WGCNA with default parameters. Cytoscape was

used to generate style and statistical a co-expression plot (Smoot

et al., 2011). The DEGs in co-expression network were also

subjected to GO and KEGG enrichment analysis, same method

as above Transcriptome analysis of Materials and Methods part.
Results

Phenotypic characterization of ‘BWT’
and hfc12

EMS was used to mutate theWT wax gourd variety ‘BWT’ to

construct a mutant library. After multiple generations of

screening, a mutant hfc12 plant with light-pericarp color was

obtained. Phenotypic analysis revealed that the F2 generation

fruit peel of hfc12 at 40 DAP was light green compared with the

‘BWT’ (Figure 1A). However, the hfc12 color of the stem, leaves,

and flowers was not significantly different from that of the

‘BWT’; no significant difference was observed in the peel

thickness also. The concentration of polyphenols and other

compounds in the fruits of the hfc12 and ‘BWT’ was analyzed.

The flavonoid content (4.71 mg/g) in the hfc12 was significantly

higher than that of ‘BWT’ (2.85 mg/g). Besides, the content of

chlorophyll a (5.52 mg/L) in the ‘BWT’ was significantly higher

than that of hfc12 (3.38 mg/L), and the content of chlorophyll b

(3.83 mg/L) in the ‘BWT’ was significantly higher than that of

hfc12 (1.65 mg/L). No significant difference was observed

between the hfc12 and the ‘BWT’ in carotenoid concentration

and content (Figure 1B).
Identification and functional analysis
of DEGs

To further understand the flavonoid response patterns of

‘BWT’ and hfc12 at the transcriptional level, genes related to

higher flavonoid levels were identified from wax gourd.

Transcriptome sequencing (RNA-seq) was performed using
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40 DAP. After deleting the adaptors and low-quality reads from

the raw data, 55.05 Gb clean data were generated from the six

samples. The number of reads per sample ranged from 20.27

million to 28.85 million, with an average of 22.80 million (Table

S1). Approximately 95% of the clean reads were mapped to the

wax gourd (B. hispida cv. B227) reference genome. Furthermore,

the correlation coefficient and principal component analysis

(PCA) suggested a high degree of similarity between the

biological repeats (Figure 2A). A total of 828 DEGs were

identified between ‘BWT’ and hfc12 at 40 DAP, including 286

upregulated and 542 downregulated genes (Figure 2B).

GO analysis was performed to identify the primary

biological functions of all the DEGs between ‘BWT’ and hfc12

with the corrected P-value < 0.05. All DEGs were assigned GO

terms of the three major categories: cellular component,

molecular function, and biological process (Figure 2C). DEGs

were primarily assigned in cell part, cell, organelle, and

membrane in the cellular component category. In the

molecular function category, catalytic activity and binding

were significantly assigned. In the biological process category,

56% of DEGs were primarily assigned in the metabolic processes

(GO: 0008152), specially. Cellular process, response to stimulus,

biological regulation, and regulation of biological process were

also highly assigned in the biological process category.

Furthermore, KEGG pathway analysis revealed that DEGs

were associated with 32 common metabolic and biological

pathways (Figure 2D). DEGs were preferably enriched in the

metabolic pathways, biosynthesis of secondary metabolites,

plant hormone signal transduction, protein processing in

endoplasmic reticulum. Besides, DEGs were significantly

enriched (− log10(Corrected_P_Value) >0.1) in sesquiterpenoid

and triterpenoid biosynthesis, and brassinosteroid biosynthesis

Photosynthesis, MAPK signaling pathway - plant, fructose and

mannose metabolism, and carbon fixation in photosynthetic

organisms were also enriched.
Identification and enrichment analysis of
DAFs in the fruits

TRAP-MS/MS was performed to compare the differences in

flavonoid composition between the ‘BWT’ and hfc12 wax gourd

fruit frozen pericarp samples collected at 40 DAP (Figure S1A).

A total of 138 flavonoids were detected in all samples, including

29 flavonoid carbonosides, 26 flavonols, 51 flavonoids, 13

dihydroflavones, two chalcones, and eight isoflavones, eight

kinds of tannins and one kind of proanthocyanidins (Table

S2). Among them, a total of 31 DAFs were identified between

‘BWT’ and hfc12 (fold change ≥ 2 or fold change ≤ 0.5, and

variable importance in projection (VIP) ≥1), of which 28 were

upregulated and three were downregulated. These DAFs were

either flavonoids or flavonoid carboglycosides. Twelve
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flavonoids were identified in DAFs (Figure 3A). Besides, one

chalcone, two flavanols, three flavonols, three isoflavones, three

dihydroflavonol, and seven flavonoid carbonosides were also

among the DAFs. Of which, chrysoeriol-7-O-(6’’-acetyl)

glucoside and isorhamnetin-3-O-(6’’-acetylglucoside) were the

highest upregulated in the hfc12, with a log2FC value of 11.09

and 10.72, respectively. Orientin-7-O-glucoside, chrysoeriol-7-

O-(6’’-malonyl) glucoside, and quercetin-3-O-(4’’-O-glucosyl)
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rhamnoside were the three downregulated metabolites in the

hfc12, with a log2FC value of -1.18, -1.07, and -1.06,

respectively (Figure 3B).

Furthermore, KEGG enrichment analysis revealed that the

DAFs were enriched with flavone and flavonol biosynthesis

(ko00944), flavonoid biosynthesis (ko00941), isoflavonoid

biosynthesis (ko00943), and secondary metabolite biosynthesis

pathways (ko01110). These observations indicated that the hfc12
BA

FIGURE 1

Phenotypic characterization and physiological indicators of WT and hfc12. (A) Phenotypic characterization of fruits at 40 DAP (a), flowers (b),
stems (c), and leaves (d) of WT (left) and hfc12 (right). (B) Physiological indicators including peel thickness (a), carotenoid concentration (b),
carotenoid content (c), chlorophyll a content (d), chlorophyll b content (e), and flavonoid content (f) of ‘BWT’ (left) and hfc12 (right). Asterisks
indicate significance according to the t-test (**P< 0.01).
B

C

DA

FIGURE 2

RNA-seq transcriptome analysis of WT and hfc12. (A) PCA plot of DEGs between ‘BWT’ and hfc12. (B) Differentially expressed genes (DEGs) at
40 DAP of WT and hfc12. (C) GO enrichment analysis of DEGs. Blue bars for cellular component, green bars for molecular function, and red
bars for biological process. (D) KEGG analysis of DEGs.
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plant have mutations in the flavonoid metabolism pathway,

probably affecting fruit development and peel color

changes (Figure 3C).
Mapping of wax gourd hfc12

The F2 (n = 486) population isolated from the cross between

the WT ‘BWT’ and hfc12 mutant the was used for genetic

analysis and primary mapping. Genetic population analysis

and chi-square test revealed that the low flavonoid content

(361 individuals, dark-green pericarp) and the high flavonoid

content (125 individuals, light-green pericarp) traits of the F2
generation were separated at a ratio of 3:1, and that of the

backcross population at a ratio of 1:1 (Table 1), consistent with

the Mendelian independent genetic rules. These observations

indicated that a single recessive nuclear gene controls the trait

related to high flavonoid content.
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Four parental DNA pools (dominant pool, recessive pool,

dominant progeny pool, and recessive progeny pool) were

constructed, and the WT pool and mutant pool were mixed to

construct a genomic library for BSA-seq. Genome-wide BSA-seq

using these DNA pools resulted in 67 Gb of data. The two

parental lines generated 0.76 million paired-end reads of ‘BWT’

and 0.61 million paired-end reads of hfc12. The sequencing

depths were 10.47× and 10.05×, and the genome coverage rates

were 95.60% and 95.93% in the ‘BWT’ and hfc12, respectively.

Similarly, the alignment of the dominant sexual progeny pool

and recessive progeny pool were 20.01× and 18.92× of

sequencing depth, and genome coverage of 95.67% and

95.93%, respectively (Table S3). Statistical analysis suggested

that the sequencing data were reliable for BSA-seq analysis. A

total of 21,548 SNPs were identified between the ‘BWT’ and the

hfc12 libraries (base quality value ≥ 20, mapping quality value ≥

20, base depth (two F2 mixed pools) ≥ 2 and ≤ 60, and base depth

(parents) ≥ 2 and ≤ 60). There were two regions on the whole
TABLE 1 Genetic analysis and flavonoids content of wax gourd hfc12.

Type Population WT hfc12 Theoretical
ratio

Actual
ratio

c2 Dominant/
Recessive

WT
flavonoids

range (mg/g)

hfc12
flavonoids

range (mg/g)

WT
flavonoids

mean (mg/g)

hfc12
flavonoids

mean (mg/g)

F2 486 361 125 3:1 2.9:1 0.13 R 2.36-3.28 3.97-5.84 2.73 4.78

BC1 238 116 122 1:1 0.95:1 0.15 R - - - -
cc2 <c20.05(1)=3.84, P>0.05.
B

C

A

FIGURE 3

Metabonomic analysis of WT and hfc12. (A) Heatmap of DAFs between WT and hfc12. The columns represented samples, and the rows
represented the differential metabolites. The differential metabolite cluster tree was shown on the left side of the plot. The different colors
indicated the values obtained after standardization of the relative content (red represents high content, green represents low content). (B) Bar
chart of DAFs. (C) KEGG enrichment scatter plot of DAFs.
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genome of the recessive pool with D (SNP index) values above

0.5 and close to 1, which were located in the 25-30 Mb range of

chromosome 12, and a total of 456 candidate sites for the target

region have been obtained.
Fine-mapping and candidate
gene analysis

All F2 individuals from ‘BWT’ × hfc12 were used for KASP

molecular markers for genotyping. Based on the genotypes and

phenotypes, a total of 78 recombinant plants were identified for
Frontiers in Plant Science 08
further population location. Finally, fine-mapping places the

hfc12 locus in the genomic region, flanked by markers 24.16 Mb

(SNP12G24166107) to 35.90 Mb (SNP12G35908349), a 11.7Mb

on chromosome 12 (Figure 4A). According to the wax gourd

reference genome ‘Benincasa hispida var. B227’ database, 11

predicted genes were annotated in the candidate region,

including nine intron mutations, two 5’ UTR mutations, one

3’ UTR mutation, and one coding sequence (CDS) mutation

(Table S5). Nine polymorphic SNP markers were further

developed from 24.16 Mb to 35.90 Mb region, and the

mutation site was finally restricted to the 452.366 kb region

(SNP12G25509139 to SNP12G25961505) on chromosome 12 by
B

C

D E

A

FIGURE 4

Cosegregation analysis and genetic variation in BhiPRR4 of wax gourd hfc12. (A) Gene location and mutation site in wax gourd. BSA-seq
generated the SNP distribution D(SNP index)] plot; the vertical axis represents the chromosome, and the red vertical line represents the location
of the hfc12 SNP. The highest point shown is the locus 25 Mb to 30 Mb on chromosome 12. Based on F2 plants with extreme phenotypes, the
genetic map was drawn on the 452.366 kb region (SNP12G25509139 to SNP12G25961505). (B) Bhi12G000742 (BhiPRR6) mutation of C to T in
the SNP on the positive strand (G to A on the negative strand) of the second exon (red line). The yellow rectangle and the black line represent
the exons and introns, respectively. (C) Schematic representation of BhiPRR6 promoter 2000 bp upstream of the CDS region. Cis-elements are
shown in rectangles with different colors. (D) Multiple sequence alignment of BhiPRR6 proteins with watermelon, melon, cucumber, and
Arabidopsis. (E) Different tissue expression levels of genes in the candidate interval.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1019787
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xie et al. 10.3389/fpls.2022.1019787
multiple KASP molecular markers. Within this interval, there

were a total of 219 SNPs, and involving 5 genes (Figure 4E).

However, only one SNP (SNP12G25876073) is located in the

gene CDS region and co-segregated with the phenotypes among

the F2 population, resulting in non-synonymous mutations

between WT and hfc12 (Figure 4B). PCR amplification and

sequencing identified the SNP-25876073 was located in the

second exon of Bhi12G000742 (BhiPRR6). A C-T mutation

was detected at 1060 bp of mutant hfc12 CDS region; CTT

was mutated to TTT (+), and Glu (E) to Lys (K) (-) (Figure 4B).

Annotation and protein homology comparison found that

the candidate gene was a typical two-component response

regulator PRR family gene. The analysis identified the gene as

BhiPRR6, 1802 bp long with five exons and four introns. It had

theoretical pI (isoelectric point) and Mw (molecular weight) of

6.88 and 67180.10, respectively, and was located on chromosome

12 (25876073–25877875). The promoter region (2000 bp

upstream) of BhiPRR6 had 26 cis-elements, including typical

ARE, AT-rich element, ethylene-responsive element (ERE), and

salicylic acid-responsive element (TCA-element). It also

included various typical MYB cis-acting elements such as

MRE, MYB, MYB-like sequence, MYC, and MYB-binding site

(Figure 4C). Besides, BhiPRR6 was highly homologous to the

watermelon (Citrullus lanatus subsp. vulgaris cv. 97103)

CLCG01G005950, the muskmelon (Cucumis melo L. cv.

DHL92) MELON3C005336 (CmPRR5, LOC103504590), the

cucumber (Cucumis sativus L. var. sativus cv. 9930)

Csa5G576720, and the Arabidopsis AT1G68210 (APRR6). The

closest homology was found between BhiPRR6 and the

watermelon CLCG01G005950 gene, with a bootstrap value of

89 (Figure 4D). Analysis of the expression levels offive candidate

genes in the KASP regions showed that BhiPRR6 was highly

expressed in fruits and leaves (Figure 4E).
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Correlation analysis of BhiPRR6 in
flavonoids biosynthetic pathways

WGCNA was performed using RNA-seq data to study the

correlation pattern among the genes in wax gourd. All 971 co-

expressed genes with BhiPRR6 as the hub gene were clustered

into eight main modules (marked in different colors) (Table S6).

Genes in the same module were highly related and co-expressed.

The turquoise module had the maximum number of DEGs

(258), followed by the blue (148), brown (145), and yellow (144)

modules (Figure S1D). Co-expression analysis suggested a high

correlation between 78 genes and BhiPRR6, with a strict edge

weight (topological overlap matrix, TOM ≥ 0.30). Among them,

F-box family protein (Bhi11G001950), glycerol-3-phosphate

acyltransferase 1 (GPAT1, Bhi05G001763), acyl carrier protein

4 (ACP4, Bhi02G000477), and CBL-interacting protein kinase 1

(CIPK1, Bhi12G001773) showed a high degree of connectivity,

indicating certain biological functions. Bhi10G001402,

Bhi06G000135, Bhi09G001849, and Bhi05G000810 showed the

highest co-expression with the hub gene BhiPRR6 (Figure 5A).

In particular, co-expressed genes were related to flavonoid

biosynthesis, including a structural gene 4CL (4-coumarate-CoA

ligase, Bhi11G001762), with a TOM value of 0.35. UDP-glucose:

flavonoid-3-O-glycosyltransferase (UFGT; Bhi09G002071,

Bhi03G000738, Bhi05G000029, and Bhi05G000624) and

photosystem I chlorophyll a/b-binding protein 6 (LHCA6,

Bhi02G001494) were also highly co-expressed with BhiPRR6. An

MYB1R1 (Bhi11G000031) also showed a high correlation with

BhiPRR6 involved flavonoid synthesis. A WD40 protein

(Bhi12G000575) and a 4CL structure protein (Bhi11G001234)

were also present in this network.

Furthermore, the expression levels of the co-expressed genes

were analyzed using RNA-seq data. The analysis divided 79
BA

FIGURE 5

Co-expression regulatory network and expression of BhiPRR6 and other interacting genes in wax gourd. (A) Co-expression network analysis
with BhiPRR6 as hub gene. The light-green circles represent the genes with the highest correlation (Topological overlap matrix, TOM > 0.52).
The dark-green circles represent the candidate genes that may regulate the synthesis of flavonoids with BhiPRR6 (Table S5). (B) The expression
pattern of BhiPRR6 and ten co-expressed genes by both Quantitative real-time PCR (qRT-PCR) and RNA-seq analysis.
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genes (hub gene and 78 co-expressed genes) into two categories

based on the expression pattern. Among them, most co-

expressed genes (74 genes) were similar to BhiPRR6, with

expression levels significantly high at 40 DAP of hfc12. In the

network, ten candidate co-expressed gene annotations may be

related to the flavonoid pathway, with the similar expression

pattern of BhiPRR6 (Figure 5A). RNA-seq and qRT-PCR were

performed to analyze the transcript level of BhiPRR6 and the co-

expressed genes in the mutant hfc12 and the WT ‘BWT’ parent

individuals. As shown in Figure 5B, the expression level of

BhiPRR6 was highest in hfc12, two times more than that in

WT. At the same time, ten co-expressed genes closely related to

BhiPPR6 were basically the same as their expression forms, and

they were all highly expressed in the mutant hfc12. Of which, the

highest expression was the Bhi09G001849 gene, and its

expression in the hfc12 was about four times that of the

‘BWT’. The qRT-PCR results were consistent with the RNA-

seq results, with an R2 above 0.80.
Discussion

Wax gourd is a globally preferred vegetable due to its high

nutritional value and health benefits. Among the different

bioactive components, flavonoids, such as anthocyanins,

flavonols, and flavan-3-ols, in the fruit have antiangiogenetic

and anticancer properties (Jiang et al., 2015). Much effort has

been made to elucidate the flavonoid biosynthetic pathway

and identify the regulatory factors. A previous study showed

that grape (Vitis vinifera L.) adapted to intense light by

increasing the expression of flavonoid biosynthetic genes in

the skin, leading to increased anthocyanin, proanthocyanidin,

and flavonol content (Dobre et al., 2014). In litchi (Litchi

chinensis), fruit bagging inhibited anthocyanin accumulation

and biosynthet ic genes encoding CHS, CHI, F3H,

dihydroflavonol 4-reductase (DFR), anthocyanin synthase

(ANS), and UFGT (Koyama et al., 2012). In this study, the

flavonoid content was high in the EMS-induced mutant

hfc12, indicating the existence of regulatory factors for

flavonoid content in wax gourd. Metabolites, including

flavonoid carbonosides, flavonols, isoflavones, flavanols,

dihydroflavonol , and chalcones, were found to be

differentially accumulated in the hfc12. Detailed analysis

revealed that the DAFs and DEGs between the ‘BWT’ and

hfc12 were significantly enriched in the flavonoid pathway

(Figure 2, Figure 3). These observations collectively suggested

that various DAFs and DEGs have related roles, and

transcription factors may potentially coordinate the

synthesis of flavonoids in wax gourd.

Fine-mapping identified a typical two-component system

(TCS) PRR transcription factor BhiPRR6 on chromosome 12

of wax gourd, with a C-T nonsynonymous mutation in the

positive chain CDS region (+), in the hfc12 with higher levels
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of flavonoids. The candidate gene BhiPRR6 was highly

homologous to APRR6 of Arabidopsis. The TCS signaling is

an important mechanism regulating various pathways in

prokaryotes and eukaryotes (Wei et al., 2011). This pathway

usually consists of three signal elements: histidine kinases

(HKs), response regulators (RRs), and histidine phosphate

transfers (HPs) (Stock et al., 2000). The HK protein could be

got phosphorylated, and this phosphate group gets

continuously transferred to the conserved Asp residues in

the RR receptor domain (Hwang et al., 2002). Phosphorylated

RR protein directly or indirectly regulates the activity of

downstream genes. The HP protein acts as a bridge in the

phosphate transfer between HK and RR (Grefen and Harter,

2004). These response modifiers are divided into three

subfamilies: type-A RRs with only receptor domains, type-B

RRs with receptor domains fused to DNA binding domains,

and PRR with atypical receptor domains (Huo et al., 2020).

Type-B RRs bind to multiple cis-elements in the promoters of

the target genes, such as mitogen-activated protein kinase

(MAPK), or other regulatory genes, thereby participating in

diverse regulatory responses (Wurgler-Murphy and Saito,

1997). The members of the PRR family have significant

sequence similarity with the RRs in the putative receptor

domain. They do not have a conserved D-D-K motif in the

receptor domain and lack conserved Asp residues but can be

used as the final product of two-component phosphorylation

in plants. In this study, as Figure 1 and Figure S1B shown,

BhiPRR6 was the highest expressed in fruit, and the flavonoid

content of the hfc12 was significantly higher than that of the

WT, indicating the importance of BhiPRR6 in regulating

flavonoid biosynthesis in wax gourd.

Several factors, such as light, regulate flavonoid synthesis.

Higher plants use sensory photoreceptors to accurately

perceive light from UV-B to far-red wavelengths and

chlorophyll and carotenoids of the photocomplex in

photosynthesis (Casal, 2013). One of the most important is

the superfamily of plant pigments, including photoreceptors

(PHYA, PHYB, PHYC, PHYD, PHYE) that absorb red/far-

red light and leuco pigments (CRY1, CRY2, CRY3) and

photosensitive proteins (PHOT1, PHOTO2) (Wagner et al.,

2005). In this study, the flavonoid content of the hfc12

significantly increased, accompanied by a substantially

lower chlorophyll a and chlorophyll b, indicating a close

association between flavonoid synthesis and light pigments

(Figure 1). Various transcription factors through differential

expression regulate the biosynthesis of different flavonoids in

response to specific light wavelengths (Zoratti et al., 2014).

Moreover, in higher plants, the light pigments may be a His

protein kinase (HKs). The light signals use the light-regulated

phosphorous transfer mechanism, probably using a separate

receptor protein RR as an intermediate (Huq et al., 2010).

Therefore, HPs and RRs play essential roles in light signaling

(Yeh et al., 1997). In Arabidopsis, ARR4 transcription factor
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acts as a signaling module in the light signal transduction

pathway (Haberer and Kieber, 2002). A study using GBS-

based BSA-seq analysis in pepper identified a candidate gene

CaPRR2 related to plastid development and pigment

biosynthesis, affecting the levels of chlorophyll a and

chlorophyll b and controlling the color of fruit (Lee

et al., 2020).

Furthermore, a typical MYB DNA-binding domain was

identified in the candidate gene BhiPRR6 sequence, and the

mutation occurred in this region, indicating it has a function

was similar with the MYB transcription factor. Studies have

shown that MYB transcription factors coordinate and regulate

flavonoid structural genes by activating or inhibiting their

expression. MYB transcription factors related to flavonoid

biosynthesis have been identified in various plants, with few

responsive to light. In mango (Mangifera indica L.), MiMYB1

at the transcript level regulates the light-dependent red

coloration of fruit skin (Kanzaki et al., 2020). Moreover, the

MYB transcription factor directly interacts with the MYB

recognition element (MRE) in the promoter region of the

structural genes (Yao et al., 2017). Studies have also reported

that MRE is essential for light-induced expression of structural

flavonoid genes, such as CHS (Takos et al., 2006). Typical MRE

cis-elements were found in the promoter region of the

candidate gene BhiPRR6. Other MYB typical cis-elements

also were found in the promoter region of BhiPRR6, such as

MRE, MYB, MYB-like sequence, MYC, MYB-binding site, and

Myc. Subsequent structural analysis revealed the typical TCS

and MYB-like functions of BhiPRR6 in regulating the light-

regulated pathway, leading to changes in flavonoid content of

wax gourd.

Subsequently, a co-expression network was constructed

using BhiPRR6 as hub gene to find why it can regulate the

synthesis of flavonoids in wax gourd and leads to the change

of peel color (Figure 5). Interestingly, many flavonoid-related

structural genes were identified as the co-expressed genes,

such as Bhi4CL and BhiUFGT; 4CL forms the backbone unit

for flavonoids, and UFGT acts in the last step of flavonoid

biosynthesis for glycosylation modification (Jaakola, 2013).

The co-expression plot also indicated the co-expression of

6LHCA6, MYB1R1, and WD40 with the hub gene BhiPRR6.

Among them, MYB-bHLH-WD40 ternary complex (MBW

complex) is a typical representative to positively regulate the

biosynthesis of anthocyanins and flavonoids (Xu et al., 2021).

The expression pattern of the co-expressed genes showed

consistency with that of BhiPRR6 and its associated target

genes, indicating that they are similarly regulated in this hfc12

(Figure S2). These observations in the hfc12 suggest that

BhiPRR6 binds to the co-expressed genes through various

cis-elements on the promoter. The MYB DNA-binding

domain of BhiPRR6 may regulate the conduction of light

signals and the function of downstream genes and thereby

inhibit flavonoid biosynthesis in wax gourd. In summary, it is
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collectively indicated that BhiPRR6 and the co-expressed

genes are highly expressed during the later stages of fruit

development, inhibiting the transmission of light signals and

leading to the reduction in flavonoids, which in turn leads to

changes in peel color. This study provided new insights into

the synthesis and regulation of flavonoids in wax gourd fruits

and laid the foundation for breeding wax gourd varieties with

higher levels of flavonoids.
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SUPPLEMENTARY FIGURE 1

(A). PCA plot of Metabonomic analysis. (B). Transcript levels of BhiPRR6 in
flower, fruit, leaf, root, and stem of wax gourd. (A). RNA-seq analysis. (C).
Soft threshold filter plot. The vertical axis on the left represented the
square of the correlation coefficient between log(k) and log(p(k)) in the

corresponding network. The higher the square of the correlation
Frontiers in Plant Science 12
coefficient, the closer the network was to the distribution without
network scale. The vertical axis of the right figure represented the mean

value of all gene adjacency functions in the corresponding gene module.
This study was used 7 as the soft threshold. (D). Co-express network-level

cluster analysis. The branches and different colors of the clustering tree
are used to indicate different gene modules. (E). GO enrichment analysis

of co-expressed genes. Blue bars for cellular component, green bars for
molecular function, and red bars for biological process. (F). KEGG analysis

of co-expressed genes.

SUPPLEMENTARY FIGURE 2

The expression heatmap of BhiPRR6 (red color) and all highly co-
expressed genes by RNA-seq analysis. All samples were collected at 40

DAP peels of wax gourd.
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