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Environmental pollutants like heavy metals are toxic, persistent, and

bioaccumulative in nature. Contamination of agricultural fields with heavy

metals not only hampers the quality and yield of crops but also poses a

serious threat to human health by entering the food chain. Plants generally

cope with heavy metal stress by regulating their redox machinery. In this

context, nitric oxide (NO) plays a potent role in combating heavy metal

toxicity in plants. Studies have shown that the exogenous application of NO

donors protects plants against the deleterious effects of heavy metals by

enhancing their antioxidative defense system. Most of the studies have used

sodium nitroprusside (SNP) as a NO donor for combating heavy metal stress

despite the associated concerns related to cyanide release. Recently, NO-

releasing nanoparticles have been tested for their efficacy in a few plants and

other biomedical research applications suggesting their use as an alternative to

chemical NO donors with the advantage of safe, slow and prolonged release of

NO. This suggests that they may also serve as potential candidates in mitigating

heavy metal stress in plants. Therefore, this review presents the role of NO, the

application of chemical NO donors, potential advantages of NO-releasing

nanoparticles, and other NO-release strategies in biomedical research that

may be useful in mitigating heavy metal stress in plants.
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GRAPHICAL ABSTRACT

Heavy metal toxicity reduces plant growth and productivity. Since traditionally used NO donors do not provide a sustained NO-release, there-
fore heavy metal toxicity can be mitigated by novel NO-delivery techniques.
Introduction

Industrialization and the increasing human population have

led to the exploitation of natural resources for anthropogenic

activities leading to ecological imbalance. Heavy metal

contamination in soil and water is one of the major examples

of such human-centric activities that pose a serious threat to the

environment (Chen et al., 2022b). However, natural

phenomenon like volcanic eruptions and weathering of rocks

also contributes to the contamination of soil and water bodies

with heavy metals. Contamination of heavy metals in

agricultural soil leads to decreased growth and productivity of

crops and their bioaccumulation in crops poses serious health

hazards as they enter the food chain (Emurotu and Onianwa,

2017). Due to their persistent, bioaccumulative, and toxic nature,

these are known as major environmental pollutants

(Tchounwou et al., 2012).

Recently, agricultural lands contaminated with heavy metals

have gained much attention because of their detrimental effect

on the agro-ecosystem. Any adverse effect on the agro-ecosystem

directly affects various active and dynamic physical, chemical,

and biological activities involved in plant growth and

productivity. A principal consequence of heavy metal toxicity

in plants is the overproduction of reactive oxygen species (ROS)

leading to oxidative stress (Romero-Puertas et al., 2019).

However, certain heavy metals like Cadmium (Cd) may not

induce ROS production in plants but act as pro-oxidants and

suppress the availability of antioxidants (Singh and Shah, 2015;

Loix et al., 2017). Thus, heavy metals disturb the equilibrium

between the production and scavenging of ROS resulting in
Frontiers in Plant Science 02
oxidative stress (Demecsová and Tamás, 2019). While heavy

metals induce the production of ROS, nitric oxide plays an

important role in stimulating the antioxidant signaling response

in plants, thus alleviating the toxic effects of ROS (Terrón-

Camero et al., 2019; Sharma et al., 2020).

Nitric oxide (NO) is a versatile and key molecule known for

its role in enhancing plant tolerance to abiotic stresses like

drought, salinity, heavy metals, and extreme temperatures

(Simontacchi et al., 2015; Begara-Morales et al., 2019; Nabi

et al., 2019). Additionally, it plays an important role in various

growth and developmental processes in plants such as

germination, root development, photomorphogenesis (Corpas

and Palma, 2020). Nitric oxide not only activates the

antioxidative machinery but also activates the synthesis of

phytochelatins which helps plants to cope with the deleterious

effects of ROS (Groß et al., 2013). It is also documented that both

endogenous and exogenous NO contribute to stress tolerance in

plants (Wei et al., 2020). Moreover, the exogenous application of

NO (in the form of NO donor) is highly dose-dependent and

varies from plant to plant. A detailed account on the dose-

dependent application of different NO donors in various plants

has been reviewed by Terrón-Camero et al. (2019).

In the last decade, several studies described the use of

different NO donors to understand the effects and the

mechanism of NO under heavy metal stress in plants (Gill

et al., 2013; Singh and Shah, 2014; Imran et al., 2016; Hashem

et al., 2018; Li et al., 2019; Piacentini et al., 2020b; Ahmad et al.,

2021b). These studies support the notion that the exogenous

application of NO donors counterbalances the toxic and

detrimental effects of heavy metals on overall plant physiology.
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Despite the vast application of exogenous chemical NO donors

in plants, these are generally unstable and prone to

decomposition by high light or temperatures leading to rapid

and uncontrolled release of NO which reduces their efficacy

(Seabra and Durán, 2010; Seabra et al., 2015). Furthermore, all

the NO donors have different molecular weights, different rates

of absorption by the plants, and different rates of NO release in

planta. In addition, some of these NO donors are known to

release toxic byproducts along with NO. For example, Sodium

Nitroprusside (SNP) is known to release cyanide once absorbed

by the plants (Norris and Hume, 1987). Therefore, efforts have

been made in developing biomaterials that can release NO in a

controlled, efficient, and bio-safe manner. In this context,

nanotechnology offers major advantages like easy and efficient

encapsulation for better storage and controlled release of such

chemicals to the targeted sites.

Recently, the application of nano-NO donors as potential

alternatives to chemical NO donors has gained much attention.

Studies have reported that the application of nanomaterials

enhances the level of endogenous NO, promotes growth, and

mitigates environmental stress in plants (Oliveira et al., 2016).

Evaluation of the potential of nanoparticles as NO donors have

recently begun for agricultural and biomedical purposes. This

review aims at discussing the potential advantages of NO-

releasing nanomaterials in plants and their usefulness in

mitigating heavy metal stress in plants. The review also offers

thoughtful insights on the prospects of applying other NO

delivery platforms that are so far used in biomedical research

but may be useful in plant science as well.
Heavy metal toxicity and the role of
nitric oxide in mitigating heavy
metal stress in plants

Heavy metals are serious environmental pollutants due to

their acute and chronic toxic effects and widespread occurrence.

The most hazardous heavy metals and metalloids in the

environment include chromium (Cr), Nickel (Ni), Copper

(Cu), Zinc (Zn), cadmium (Cd), Lead (Pb), Mercury (Hg), and

Arsenic (As). The toxicity caused by these heavy metals on living

organisms depends on the dose and duration of exposure (Chen

et al., 2022a). However, certain heavy metals like cd, Pb, and Hg

may be toxic even at very low concentrations. Heavy metal

toxicity in plants leads to several physiological and

morphological changes, responsible for the decline in growth

(Chen et al., 2022a). For instance, plants exposed to cadmium

showed reduced water and nutrient uptake and a decline in the

rate of photosynthesis along with other morphological

symptoms like chlorosis, inhibition of growth and browning of

root tips that ultimately lead to cell death (Wojcik and

Tukiendorf, 2004; Mohanpuria et al., 2007). It has been
Frontiers in Plant Science 03
reported that heavy metals can lead to oxidative deterioration

of biological molecules causing DNA fragmentation, lipid

peroxidation, and protein oxidation. They can alter the

content of antioxidants and may change the antioxidative

enzyme activity (Sharma and Dietz, 2009).

The role of nitric oxide in mitigating the toxicity induced by

heavy metals is well known and thoroughly studied. Nitric oxide

(NO) is a key molecule involved in several physiological and

biochemical processes in plants. NO is involved in root hair

development (Lombardo et al., 2006), enabling plant-microbe

interaction during nitrogen fixation (Pande et al., 2021),

regulating a balance between auxin and reactive oxygen

intermediates (Yu et al., 2014), and for maintaining iron

homeostasis (Graziano and Lamattina, 2007). NO also plays a

vital role in enhancing the immune response (Tada et al., 2008;

Wang et al., 2009) and hypersensitive cell death response

(Romero-Puertas et al., 2007; Yun et al., 2011). As a signaling

molecule, NO plays a protective role in alleviating abiotic stress

conditions (Zhang et al., 2007; Cantrel et al., 2011) including

mitigation of heavy metal toxicity in plants (Singh et al., 2016;

Nabi et al., 2019; Wei et al., 2020) as shown in Figure 1. Most of

the studies on heavy metal toxicity in plants indicate that NO

reduces the ROS levels by enhancing the levels of antioxidative

enzymes (Wang et al., 2010b; Nabi et al., 2019; Terrón-Camero

et al., 2019). During heavy metal stress, NO regulates the

excessive production of ROS by forming less stable

peroxynitrite from the superoxide radical (O2
.-) (Groß et al.,

2013). Moreover, NO also regulates the antioxidant enzyme

activity in the cell to control the ROS levels during heavy metal

stress (Begara-Morales et al., 2019; Khator et al., 2021).

Accumulation of NO also leads to the reduction of heavy

metal uptake by metal transporters in the roots (Zhao et al.,

2013; Singh et al., 2016).

Other studies on heavy metal toxicity suggested the role of

nitric oxide in controlling the stomatal aperture (Nabi et al.,

2019), in modifying proteins through S-nitrosylation or tyrosine

nitration (Saxena and Shekhawat, 2013), and also in minimizing

the mobility of heavy metals by enhancing the expression of

phytochelatins in plants and thus reducing the heavy metal

toxicity in plants (Groß et al., 2013).

Nitric oxide interacts with different biomolecules like

phytohormones in response to heavy metal stress in plants.

Nitric oxide regulates phytohormonal levels under heavy metal

stress conditions. NO is suggested to reduce AsIII toxicity by

regulating Jasmonic acid biosynthesis (Singh et al., 2017). It also

increases the levels of indole acetic acid (IAA), cytokinins and

gibberellic acid while decreasing the levels of ABA in order to

lower lead (Pb) uptake and transport (Sadeghipour, 2017).

The interaction between NO and phytohormones is mainly

influenced by NO-mediated post-translational modifications

(PTMs) under basal as well as induced conditions (Terrile et

al., 2012). Protein S-nitrosylation is the most prominent and

widely studied PTM among others. It is the selective but
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reversible redox-based covalent addition of a NO moiety to the

sulfhydryl group of cysteine (Cys) molecule(s) on a target

protein to form S-nitrosothiols. Our group has recently

reviewed a detailed account of phytohormonal regulation

through S-nitrosylation under stress (Pande et al., 2022).

However, in case of heavy metal stress this is still a potential

and important line of inquiry in future.
NO donors used for alleviating
heavy metal toxicity in plants

Exogenous application of NO is most commonly done by

supplementing NO donors. Direct application of exogenous

nitric oxide to plants is difficult due to its gaseous nature and

requires specific equipment (Rodrıǵuez-Ruiz et al., 2017).

Moreover, a short half-life (<6 s) of NO makes it difficult to be

supplied constantly at the tissue level (Seabra et al., 2015).

Therefore, NO is mainly delivered through donor molecules

(Wang et al., 2005; Barraud et al., 2009). The commonly used

NO donors include SNP, diethylenetriamine NONOate (DETA

NONOate), S-nitroso N-acetyl-DL-penicillamine (SNAP),

diethylenetriamine/nitric oxide (DETANO), S-nitrosothiols

(RSNO), S-nitrosocysteine (CysNO) and S-nitrosoglutathione

(GSNO). Recently, a study reported the synthesis and

application of N-nitrosomelatonin (NOMela) as a more

efficient NO donor than GSNO in Arabidopsis seedlings

(Singh et al., 2021a). However, specifically for heavy metal

stress tolerance the most commonly used NO donor is SNP
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(Bothof et al., 2020), treated alone or in combination with other

stress ameliorating agents as shown in Table 1.

However, due to the relatively unstable nature and

susceptibility to decomposition by heat or light, the release of

NO is uncontrolled, resulting in unpredictable and random

signaling and other physiological effects (Seabra et al., 2015).

This problem may be overcome by encapsulating the NO donor

molecules of slow and consistent release. Therefore, NO-

releasing nanoparticles may be considered as potential

alternatives to unstable chemical NO donors.
Nanoparticles used for alleviating
heavy metal toxicity in plants

Nanotechnological interventions in the field of agriculture

have paved a way for attaining the long-term goal of sustainable

agriculture by improving plant health and productivity under

varying environmental conditions (Pande and Arora, 2019). The

application and use of nanomaterials not only enhance plant

growth and productivity but also help in mitigating biotic and

abiotic stress in plants (Arora et al., 2012; Nayan et al., 2016;

Bhatt et al., 2020; Zhou et al., 2021). Nanoparticles offer various

advantages as compared to their macro counterparts, these

include higher surface activity (more surface area available for

reaction), enhanced catalytic efficiency, and unique optical and

magnetic properties (Wang et al., 2019). Such unique properties

add specialized functions to the nanoparticles making them

effective in repairing the damage by soil remediation (Liu
FIGURE 1

Sources of heavy metal contamination in agricultural land and the role of NO in mitigating heavy metal toxicity in plants. Anthropogenic
activities such as industrialization and mining leads to heavy metal contamination in agricultural soil. The oxidative stress caused by the heavy
metal toxicity is alleviated by endogenous or exogenously supplied nitric oxide which alleviates it. Nitric oxide is a versatile signaling molecule
activating the antioxidative enzymes, controlling stomatal aperture or modifying important proteins through post-translational modification,
minimizing mobilization of heavy metals through enhancing the phytochelatins, and thus reducing the toxicity caused by heavy metals.
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TABLE 1 Studies using NO donors for mitigating heavy metal stress in plants.

NO donor Plants Outcome
(stress alleviation)

Reference

SNP Glycine max Mitigation of mercury (Hg) stress. (Ahmad et al., 2021b)

Brassica juncea Detoxification of Cd stress. (Khator et al., 2021)

Musa acuminata Tolerance against osmotic stress. (Amnan et al., 2021)

Isatis cappadocica Improved tolerance to As stress. (Souri and Karimi,
2021)

Vicia faba Improved tolerance to As stress. (Ahmad et al., 2020)

Arachis hypogaea Inhibition of programmed cell death by aluminum (Al) (He et al., 2019)

Oryza sativa Modulation of As toxicity. (Praveen and Gupta,
2018)

Oryza sativa Improvement in Ni tolerance. (Rizwan et al., 2018)

Solanum lycopersicum Growth promotion under Cd stress. (Ahmad et al., 2018)

Spirodela intermedia Alleviation of As stress. (Da-Silva et al., 2018)

Triticum aestivum Amelioration of Pb toxicity. (Kaur et al., 2015)

Lolium perenne Promotes growth under Pb toxicity. (Bai et al., 2015)

Pogonatherum crinitum Controlled Pb uptake. (Yu et al., 2012)

Triticum aestivum Mitigation of oxidative stress by enhancing the
antioxidative defense response.

(Hasanuzzaman and
Fujita, 2013)

Arabidopsis thaliana Prevention of Lead toxicity in seedlings but no effect on
the accumulation

(Phang et al., 2011)

Cucumis sativus Alleviation of the adverse effects caused by Cd. (Yu et al., 2013)

Lupinus perennis L. Mitigation of inhibitory effect of Ni. (Hassanein et al., 2020)

Brassica napus Ameliorating Pb toxicity. (Hamidi et al., 2020)

Nasturtium officinale Reduction in the adverse effects caused by As. (Namdjoyan and
Kermanian, 2013)

Lactuca sativa var. capitata Reduction in the adverse effects of Co. (Samet, 2020)

Lupinus luteus Stimulation of germination and mitigation of inhibitory
effects of Cd and Pb stress.

(Kopyra and Gwóźdź,
2003)

Triticum aestivum Enhancement of root growth under Ni stress. (Wang et al., 2010b)

Capsicum annum Reduction in oxidative stress induced by Cd and Pb
(applied alone or in combination).

(Kaya et al., 2019)

Cicer arietinum Reduction in accumulation, toxicity, and oxidative stress
induced by Cd.

(Kumari et al., 2010)

Typha angustifolia Mitigation of Cd stress. (Zhao et al., 2016)

Oryza sativa Decreased accumulation of Cd in roots. (Xiong et al., 2009)

Helianthus annuus Protection of leaves against Cd-induced oxidative stress. (Laspina et al., 2005)

Lolium perenne Mitigation of oxidative stress induced by Cd. (Chen et al., 2018)

Cassia tora L. Significant reduction in Al-induced oxidative stress. (Wang and Yang, 2005)

Phaseolus Vulgaris Tolerance to Al. (Wang et al., 2010a)

Oryza sativa Reduced Cu toxicity and Cu-induced NH4
+ accumulation

and Cu toxicity.
(Yu et al., 2005)

Solanum lycopersicum Alleviation of Cu toxic effects. (Cui et al., 2010)

Triticum aestivum and
Phaseolus vulgaris

Maintenance of Zn homeostasis. (Abdel-Kader, 2007)

Hibiscus moscheutos Alleviation of inhibitory effects of Al on root elongation. (Tian et al., 2007)

Triticum aestivum Alleviation of Cd-induced toxicity and alterations in
biochemical factors in roots.

(Singh et al., 2008)

SNP + H2O2 Glycine max amelioration of As toxicity. (Singh et al., 2021b)

SNP+ Si Brassica juncea Mitigation of As stress. (Ahmad et al., 2021a)

SNP+ Salicylic acid Eleusine coracana Protection from Ni stress. (Kotapati et al., 2017)

SNP+
GSH

Oryza sativa Mitigation of the adverse effects of Cu. (Mostofa et al., 2015)

(Continued
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et al., 2021). The metal adsorption property of magnetite

nanoparticles has been found to lower the accumulation of Cd

and Na in rice plants (Sebastian et al., 2019). Nanoparticles also

influence the formation of apoplastic barriers which suppresses

the accumulation of heavy metals in the soil (Rossi et al., 2017).

Nanoparticles are useful in mitigating heavy metals in various

ways. For instance, they prevent the translocation of heavy

metals by forming complexes with them which leads to their

immobilization at inactive sites like vacuoles (Wang et al., 2021).

These complexes also get adsorbed on the cell surfaces,

restricting their movement and biological activity (Cui et al.,

2017; Wang et al., 2021). Activation of enzymatic (superoxide

dismutase (SOD), catalase (Cantrel et al., 2011), ascorbate

peroxidase (APX), glutathione reductase (GR), glutathione

peroxidase (GPX), and peroxidase (POD), and non-enzymatic

(such as vitamin C, vitamin E, and polyphenols) anti-oxidative

defense system is another strategy to cope with the toxicity

caused by heavy metals (Zhou et al., 2021). However, a more

effective strategy would be to combine the properties of

nanoparticles with NO donors as this will have a more

profound effect in combating heavy metal stress. In this

context, the characteristics properties of nanoparticles like

high permeability, film-forming ability, prolonged contact with

the active ingredient, and high diffusion would add to the

characteristic properties of NO donors for double protection

against heavy metal stress.
Nitric-oxide releasing nanoparticles
as potential alternatives to chemical
NO donors in alleviating heavy
metal toxicity in plants

The limitations associated with NO donors have led to the

development of new biomaterials for the controlled and
Frontiers in Plant Science 06
prolonged release of NO into biological systems including

plants (Kim et al., 2014; Seabra et al., 2014). Evaluation of

NO-releasing nanoparticles has recently begun as an

alternative to chemical NO donors for various biomedical and

agricultural purposes (Lopes-Oliveira et al., 2019; Ma et al., 2019;

Liang et al., 2020; Pieretti and Seabra, 2020; Pelegrino et al.,

2020; Pieroni, 2020; Ahmad et al., 2021a). Some of the NO-

releasing nanoparticles used in biomedical research have been

listed in Table 2 with their various applications in

different plants.

A recent study reported the effect of free and nanoencapsulated

nitric oxide donor, S-nitroso-mercaptosuccinic acid on neotropical

tree seedlings, under field conditions. In this study, the donor

molecule was coated with chitosan nanoparticles which protected

the molecule from thermal and photochemical degradation. Their

study suggested that depending on the tree species, seedling

acclimation in the nursery was improved using these

nanoencapsulated NO donors (Lopes-Oliveira et al., 2019).

Besides, delivering NO is considered a promising approach in

biomedical research and applications. The biomedical applications

of NO-releasing nanoparticles suggest their importance and also

provides insights into their adequacy in plant system as well.

Therefore, based on the scientific knowledge we report that the

application of NO-releasing nanoparticles is a useful approach to

alleviate the detrimental effects of heavy metal stress on plants. The

combined effects of nanoparticles and the stress mitigating

properties of NO may provide an advantageous approach for

combating heavy metal stress in plants. Figure 2, demonstrates the

advantages of NO-releasing nanoparticles over chemical NO

donors in alleviating heavy metal toxicity in plants.

Recent studies have synthesized NO-releasing nanoparticles

for studying their effect in plants. NO-releasing nanoparticles

are formulated by the addition of NO donor molecules in

chitosan nanoparticles which encapsulates the NO donor for

slow and prolonged release (Oliveira et al., 2016; Pelegrino et al.,

2017a; Pelegrino et al., 2017b; Cabral et al., 2019). These have
TABLE 1 Continued

NO donor Plants Outcome
(stress alleviation)

Reference

SNP+
GSH

Oryza sativa Decrease in oxidative stress induced by Cu by enhancing
the antioxidative levels.

(Mostofa et al., 2014)

SNP+Auxin Oryza sativa Mitigation of the adverse effect of Cd stress. (Piacentini et al., 2020a)

SNP+SA Carthamus tinctorius Decrease in adverse effects of Zn. (Namdjoyan et al.,
2018)

SNP+TiO2 nanoparticles Triticum aestivum Alleviation of the adverse effects caused by Cd stress. (Faraji et al., 2018)

SNP+Melatonin Catharanthus roseus Mitigation of Cd stress. (Nabaei and
Amooaghaie, 2019)

SNP+SA Zea mays Reduction in negative effects caused by Se. (Naseem et al., 2020)

SNP
ASC + NaNO2

N-tert-butyl-a-phenylnitrone, 3-
morpholinosydonimine (all are NO donors)

Oryza sativa Reduction in CdCl2 induced toxicity by reducing oxidative
stress

(Hsu and Kao, 2004)
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also been tested for their efficacy in mitigating environmental

stress in different plants (Oliveira et al., 2016; Lopes-Oliveira

et al., 2019).
Other NO-releasing techniques used
in biomedical research as alternate
potential strategies for efficient NO-
release in plants

NO is an important signaling molecule that has a significant

role in biomedical research. Inmammalian tissues, the kinetics and

exposure time of NO are key determinants in its biological

applications. However, its therapeutic applications are limited

due to its extremely short half-life, aimless diffusion into the

vasculature, and limited accumulation in the target tissues

(Wang et al., 2020).

Traditionally, NO donors were used for NO-release in

biomedical sciences which included various types of nitrates, N-

diazeniumdiolates, Nitrosothiols, Furoxans, Metal nitrosyl

compounds, and Nitrobenzenes (Yang et al. , 2021).

Nanotechnology has been recently employed for the delivery of

NO. In such cases, the nanomaterial is usually degraded once

absorbed into the system thereby releasing NO gas through NO

donor. Though several different nanotech-based NO delivery

platforms have been developed, some interesting studies carry

significant potential for application in plant sciences. For example,

Lee et al. (2016) described the pH-sensitive release of NO by

CaCO3 mineralized nanoparticles. This is specifically important in

plant sciences as plant growth under basal conditions and soil-
Frontiers in Plant Science 07
related stress conditions such as heavy metal stress, and salinity is

significantly related to the pH of the soil. Therefore, such

nanoparticle carriers can be engineered to release NO or NO

donors at a specific soil pH or under a range of pH conditions. Jia

et al. (2018) developed a redox-active nanosilicon-NO donor

system that released NO only in response to over-accumulated

GSH in tumor tissues. The same concept can be employed in plant

sciences by developing nanomaterial-NO donor systems that

release NO only in response to over-accumulated chemicals

such as salts, heavy metal ions, phytohormones, secondary

metabolites or other chemicals/ions in plant tissues. In addition,

biomedical researchers developed nanomaterial-NO donors

triggered by external cues such as light, heat, X-rays and

ultrasound (Fan et al., 2015; Guo et al., 2017; Jin et al., 2017;

Hotta et al., 2020; Zhou et al., 2020). Although their clinical

applications are limited in mammals, we believe that these may

prove to be highly useful in plant sciences. Sunlight is mandatory

for photosynthesis. However, intense light for a longer duration

and/or certain wavelengths of light are harmful to plant growth.

Similarly, intense heat also limits plant growth and development.

Nanomaterial-NO delivery systems that release NO under specific

light and temperature conditions can be designed for target NO

delivery. An alternate biomedical study also suggests the use of

nanostructured CuO/SiO2 catalysts for releasing NO by the

catalytic decomposition of NO-releasing metabolites like GSNO

(Kulyk et al., 2020). However, these nanoparticles are suggested to

be useful in medical applications and their possibilities and

applications need to be explored for agriculture purposes.

Besides, NO donor-conjugated chemical drugs were also

designed with more sophisticated NO linkage, release position,

selectivity, and amount of NO release. Chen et al. (2008) designed
TABLE 2 Recent examples of the advances in the applications of NO-releasing nanoparticles in agriculture and biomedical research.

S.NO. NO-releasing Nanoparticle Applied on Outcome Reference

1 Alginate/Chitosan (ratio 0.75) encapsulated with
GSH

Zea mays
Glycine sp

Sustained and controlled release of NO over several hours.
Potentially useful as controlled release systems.

(Pereira et al.,
2015)

2 Chitosan nanoparticle encapsulated with S-nitroso-
mercaptosuccinic acid

Zea mays Alleviation of salt stress (Oliveira et al.,
2016)

3 GSNO-loaded mineralized CaCO3 nanoparticles Human breast
cancer cells, MCF-7

Improvement in therapeutic activity of doxorubicin. (Lee et al.,
2016)

4 Chitosan nanoparticle encapsulated with S-nitroso-
mercaptosuccinic acid

Heliocarpus
popayanensis
Cariniana
estrellensis

Improvement of seedling acclimation and protection of NO
donor from thermal and photochemical degradation.

(Lopes-Oliveira
et al., 2019)

5 Tetramethoxysilane derived hydrogel-based NO-
releasing nanoparticles

Male, Balb/c mice Reduction in the inflammatory response. (Williams et al.,
2020)

6 NO-releasing S-Nitrosoglutathione-Conjugated Poly
(Lactic-Co-Glycolic Acid) Nanoparticles

Mice Treatment of MRSA (methicillin-resistant staphylococcus
aureus) infected cutaneous wounds.

(Lee et al.,
2020)

7 Copper-based metal-organic framework as a
controlled NO-releasing vehicle

Mice Therapy for diabetic wounds (Zhang et al.,
2020)

8 Superparamagnetic iron oxide nanoparticles
(SPIONS) based NO-releasing nanoparticles

Rat L2 epithelial
cells

Reduction in the inflammatory response. (Shurbaji et al.,
2021)

9 NO-releasing chitosan nanoparticles BALB/c mice Treatment of cutaneous Leishmaniasis caused by Leishmania
amazonensis

(Cabral et al.,
2021)
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and synthesized multiple NO-releasing derivatives of oleanolic acid

(NO-OA) with anti-hepatocellular carcinoma activity. To our

knowledge, such types of conjugated NO-donors have not been

tested in plants. Moreover, NO release strategies are mostly limited

to a few NO donors only (as mentioned in the previous sections)

therefore these can be utilized and tested in crop research as well.

The development of targeted prodrugs for gases like NO has

been a special challenge in biomedical sciences that carries great

prospects. Prodrugs are medications that, after administration,

are metabolized and converted into a pharmacologically active

drug within the body. Specific enzymes can activate NO

prodrugs and release NO gas at specific sites, greatly reducing

the side effects. Such types of targeted NO prodrugs developed so

far are activated by glycosidases (Wu et al., 2001; Cai et al.,

2004), cytochrome enzymes (Saavedra et al. , 1997),

oxidoreductases (Sharma et al., 2013a), esterases (Saavedra

et al., 2000) and reductase enzymes (Sharma et al., 2013b) that

trigger the release of NO. Interestingly, plants express a plethora

of all these different enzymes in various types of tissues offering

the possibility of using NO prodrugs in plant sciences.

Similarly, drug delivery systems based on monoclonal

antibodies also offer high target specificity in mammals.

Antibody/peptides conjugated NO donors have been widely

used in cancer treatment (Sievers and Senter, 2013; Chari et al.,

2014; Sun et al., 2019) offering significantly higher specificity and

release of NO following the detection of target cells only (such as

cancer cells) by the monoclonal antibodies. NO donors

conjugated to monoclonal antibodies can be engineered for the

targeted, specific, and safe release of NO in plant systems under

various circumstances. Such monoclonal antibodies can be

tailored to recognize specific fungal, bacterial, and viral peptides

(during infection), receptor proteins for various phytohormones

(for regulating plant development and responses to various abiotic
Frontiers in Plant Science 08
stresses), and several other peptides with spatial and temporal

expression profiles; for the targeted delivery of NO in plant

systems. Figure 3 summarize the suggested NO-releasing

techniques for potential application in plants.
Conclusions and future prospects

Heavy metals occur naturally in the earth’s crust. They are often

needed in very small amounts to carry out essential role in the

metabolic systems of living organisms. However, natural calamities

like weathering of rocks and volcanic eruptions, and other

anthropogenic activities like mining and industrialization have

largely overwhelmed their natural geochemical cycles (Nriagu and

Pacyna, 1988). As a result, their concentration has increased in

agricultural lands which negatively affects the growth and

productivity of crops. To make things worse the application of

chemical fertilizers containing heavy metals has further deteriorated

the soil profile of agriculturally useful lands (Curtis and Smith, 2002).

Exposure of plant roots to heavy metals like cadmium (Cd),

arsenic (As), lead (Pb), and copper (Cu), enhances endogenous

levels of NO. NO is involved in various physiological and

biochemical processes in plants that ensure optimal growth

and development of plants exposed to various environmental

stress conditions. Exogenous application of NO in the form of

NO donors has been reported to lower oxidative stress by

enhancing the activity of antioxidative enzymes under various

environmental stress conditions. However, the use of NO donors

is disadvantageous due to the short half-life of NO and its

degradation by heat and light. A potential strategy is to use

nanoparticles as encapsulating agents to effectively release NO in

the plants for their optimal growth in heavy metal contaminated

soils. Furthermore, to alleviate the toxicity caused by heavy
FIGURE 2

Projected advantages of NO-releasing nanoparticles in alleviating heavy metal toxicity in plants.
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metals in plants, NO needs to be delivered efficiently and for a

prolonged duration. Therefore, conjugating them with the right

nanoparticle is an important consideration. In this context,

chitosan nanoparticles are suggested to be the most suitable

candidates for this purpose owing to their unique properties

such as biodegradable and biocompatible nature. Therefore,

these nanoparticles need to be tested for their role in

mitigating heavy metal stress in plants to sustain agricultural

productivity. In conclusion, any NO-releasing technique that

promises prolonged and efficient delivery of NO in an eco-

friendly manner has the potential of alleviating heavy metal

toxicity in plants.
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