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and Xiaodong Yang4*

1College of Ecology and Environment, Xinjiang University, Xinjiang, China, 2Key Laboratory of Oasis
Ecology of Education Ministry, Xinjiang University, Xinjiang, China, 3Xinjiang Jinghe Observation and
Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe, China, 4School of
Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
Species diversity has spatial heterogeneity in ecological systems. Although a

large number of studies have demonstrated the influence of soil properties on

species diversity, most of them have not considered their spatial variabilities. To

remedy the knowledge gap, a 1 ha (100 m × 100 m) plots of arid desert riparian

forest was set up in the Ebinur Wetland Nature Reserve (ELWNR) in the NW

China. Then, the minimum data set of soil properties (soil MDS) was established

using the Principal Component Analysis (PCA) and the Norm Value

Determination to represent the total soil property data set (soil TDS). The

Geo-statistics and two models (i.e., Random Forest/RF and Multiple Linear

Regression/MLR) were used to measure the spatial variability of species

diversity, and predict its spatial distribution by the soil MDS, respectively. The

results showed that the soil MDS was composed of soil salt content (SSC), soil

total phosphorus (STP), soil available phosphorus (SAP), soil organic carbon

(SOC) and soil nitrate nitrogen (SNN); which represented the soil TDS perfectly

(R2 =0.62). Three species diversity indices (i.e., Shannon–Wiener, Simpson and

Pielou indices) had a high spatial dependence (C0/(C0+C)< 25%; 0.72 m ≤

range≤ 0.77 m). Ordinary kriging distribution maps showed that the spatial

distribution pattern of species diversity predicted by RF model was closer to its

actual distribution compared with MLR model. RF model results suggested that

the soil MDS had significant effect on spatial distribution of Shannon–Wiener,

Simpson and Pielou indices (Varex= 56%, 49% and 36%, respectively). Among all

constituents, SSC had the largest contribution on the spatial variability of

species diversity (nearly 10%), while STP had least effect (< 5.3%). We

concluded that the soil MDS affected spatial variability of species diversity in
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arid desert riparian forests. Using RF model can predict spatial variability of

species diversity through soil properties. Our work provided a new case and

insight for studying the spatial relationship between soil properties and plant

species diversity.
KEYWORDS

Geo-statistics, Random Forest model, spatial distribution, spatially heterogeneous,
desert riparian forests
1 Introduction

Species diversity inseparably links to ecosystem stability

(Ruiz-Jaén and Aide, 2005; Wortley et al., 2013; Hamberg

et al., 2020). Studies of species diversity contribute to a full

understanding of the ecosystem balance of structures and

functions (Cardinale et al., 2002; Chen et al., 2006), as well as

the dynamic change of the community (Kang et al., 2010).

Currently, a great number of studies have focused on the hot

spots with rich biodiversity, while remote and species-poor

areas, like arid desert, have lagged behind hot spots (Ma et al.,

1995; He et al., 1998; Ricotta and Avena, 2003; Li et al., 2018).

As one of the most fragile biotic types, desert ecosystems are

gifted with distinctive regional flora and a large number of

characteristic species. Despite they possess relatively low

productivity and species diversity (Waide et al., 1999), desert

ecosystems are home to rare and relict plant species that can

tolerate extreme environment (i.e., scarce rainfall, high salt

content and poor-soi l nutr ients) (Ezcurra , 2006) .

Understanding the changes and the influencing mechanisms of

species diversity in deserts will benefit plant conservation at the

global level. At present, many studies have showed that species

diversity is mainly determined by soil factors in the arid desert

ecosystem (Wang et al., 2009; Midgley, 2012; Jin et al., 2021a).

However, soil factors are numerous and interrelated, making it

difficult to figure out the relationship between species diversity

and soil properties (Ma et al., 2021). Researchers want to select a

small number of indicators to provide an integrated,

comprehensive, and accurate view of the overall soil

properties, while maximizing the inclusion of all relevant

information about the soil properties and minimizing data

redundancy (Andrews et al., 2004).

Larson and Pierce (1991) proposed the concept of a

minimum data set of soil properties (soil MDS), whose core

function is to establish a set of simplified and practical data

(including few properties) to replace a large number of complex

soil data, and to better grasp the whole characteristics or status of

soils (Yu et al., 2018; Li et al., 2019; Tian et al., 2020). Such

method saved the substantial cost of time and labor for

measurement of all soil properties, and reduce data
02
redundancy due to collinearity among different properties (Li

et al., 2019). The researches in soil quality assessment and plant-

soil relationship demonstrated the results based on the soil MDS

were superior to that based on the total soil property data set

(soil TDS) (Volchko, 2014; Rahmanipour et al., 2014; Wu et al.,

2019). Therefore, using the soil MDS as key proxy of all soil

properties, may make it more convenient and efficient to study

the relationship between soil properties and species diversity

(Rezaei, 2006; Wu et al., 2019; Jin et al., 2021b). However, our

understanding of the relationship between species diversity and

the soil MDS in arid deserts is still unclear.

Many studies have shown that soil properties (e.g. soil

nitrogen content, soil water content, phosphorus content and

pH) have significant effects on plant species diversity

(Ceulemans et al,. 2014; Wang et al., 2015; Palpurina et al.,

2017). It is well known that the spatial distribution of soil

properties and their effects on ecological processes, such as

biodiversity maintenance, are often spatially heterogeneous

(Dutilleul and Legendre, 1993; Fortin and Payette, 2002; Wang

et al., 2021). Geo-statistics has been widely developed in

ecological research in recent years (Robertson, 1987; Kent

et al., 2006). It not only reveals the spatial patterns, variability

and relevant properties of attribute variables, but also links

spatial variability with ecological processes, as well as clarifies

their influencing factors (Wang et al., 2021). However, the vast

majority of current studies about species diversity have not

addressed spatially heterogeneous, especially for arid desert

ecosystems (Lu et al., 2018). Furthermore, we do not know the

underlying causes of spatial heterogeneity in species diversity

and whether it is influenced by the soil MDS.

Desert riparian forests are an important and special

community type in continental arid ecosystems, which are

unique bio-systems with the most active life phenomenon,

high biodiversity and primary productivity (Damasceno-Junior

et al., 2005; Kang et al., 2021). Since the number of species in

riparian forests is much higher than that in typical xerophytic

sparse shrubs, it is considered as a key biodiversity conservation

area in arid desert (Chen et al., 2022). On the other hand,

affected by global warming and human activity, such as

groundwater extraction and deforestation, the area of riparian
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forests has been shrinking rapidly over the past few decades

(Zeng et al., 2020). Revealing the spatial distributions and

influencing mechanisms of species diversity in riparian forests

has become one of the key points of species conservation and

forest restoration in arid desert areas (Kang et al., 2021). The

Ebinur Lake Wetland Nature Reserve (ELWNR) is located in the

northwestern China. Affected by harsh environments (i.e., low

soil water and nutrient availability, high soil salinity and

frequent wind disturbance), ecosystem in the ELWNR is

highly sensitive and fragile to environmental changes (Wang

et al., 2021). In contrast, the ELWNR is a resource treasury of

biodiversity in arid desert areas (Jiang et al., 2022), which has

well-protected and typical riparian forests in northwest China. It

offers an eligible place for investigating the spatial relationship

between species diversity and soil properties. The objectives of

our work are to reveal the spatial variability of species diversity

in arid desert riparian forest and to evaluate the complicated

spatial relationships between species diversity and the soil MDS.

The detailed objectives of the study are as follows: (1) to find a

soil MDS for the study area; (2) to identify the relationship

between the soil MDS and species diversity; (3) to predict the

spatial distribution of species diversity from the soil MDS.
2 Materials and methods

2.1 Study area

The study was conducted in the ELWNR (44°30’–45°09’N,

82°36’–83°50’E), which is located in the southern part of the

Gurbantünggüt Desert in the Xinjiang Uygur Autonomous

Region, NW China. The study area features a typical northern

temperate continental arid climate, with the mean annual

precipitation and evaporation less than 100 mm and more

than 1500 mm, respectively (Yang et al., 2019). The mean

annual temperature is 7.8°C. The maximum and minimum

temperatures in summer and winter can achieve 36.4°C and

-41.3°C in extreme situation, respectively (Wang et al., 2021).

Due to the scarce precipitation, soil water is primarily recharged

by rivers and groundwater (Li et al., 2006). Affected by the low

local vegetation cover and forest biomass, the organic matter

content in the soil is relatively low, with values ranging from

0.28% to 5.46% (Qin et al., 2011).

The typical soil types in the study area are mainly gray desert

soil, aeolian sand soil and gray brown desert soil (Wang et al.,

2013; Token et al., 2022). The varied soil types have supported

abundant communities of plant, in particular of xerophytic

desert species. Phragmites australis Trin. ex Steud., Apocynum

venetum L., Halimodendron halodendron Dum. Cours., Nitraria

tangutorum Bobr., Achnatherum splendens Nevski, Lycium

ruthenicum Murray, Populus euphratica Oliv., Suaeda

microphylla Pall., Alhagi camelorum Fisch., Reaumuria
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soongonica Pall., Haloxylon ammodendron Bunge, Salsola

collina Pall., Sonchus oleraceus L. and Glycyrrhiza uralensis

Fisch. are the main species in the study area. Frequencies of

plant species are presented in the Supplementary Table S1.
2.2 Soil sampling and measurements

2.2.1 Sampling site
A total of 7 rivers with annual runoff over 1× 108 m3·a-1 are

included in the ELWNR, which makes the local desert riparian

forest distribute in a very wide range, accounting for about

58.44% of the total area of the reserve. Among all rivers, the

Aqikesu River flows through the largest area, making its banks

form the largest and most typical riparian forest in the ELWNR.

In this study, in order to survey more plants, the peak season of

local plant growth (from July to August) in 2018 was selected to

set up sampling plot and survey community.

A 1 ha sampling plot (100 m × 100 m) of plant community

was conducted in riparian forest on the north bank of the

Aqikesu River. Then, the plot was divided into 400 continuous

quadrats with the area of 5 m × 5 m (25 m2) (Figure 1).

Vegetation surveys were carried out within each quadrat.

Species names, plant abundances, geographical coordinates

and elevation of each quadrat were recorded. Here 1 ha plot

was selected for the study of spatial heterogeneities of species

diversity and the soil MDS, because this area covered most of the

plant species and community types in the desert ecosystem

(Yuan et al., 2018). At the same time, the boundary length of

1 ha plots (100 m) was larger than the spatial variation distance

(or range) of soil properties (Lu et al., 2018; Wang et al., 2021).

The division of the 1 ha plot into 400 small quadrats with an area

of 25 m2 was based on the need for spatial geographic statistical

analysis. In the analysis of spatial heterogeneity of species

diversity, it is required that the analytic objects (geographic

grids) are adjacent to each other, and located in different

spatial positions. Each grid also has its own unique attributes

(which refers to the species diversity index in this study) (Wang

and Yang, 2022). Unlike the 100 m2 or 400 m2 sampling

area of many temperate forests or mountain coniferous forests,

the grid or small quadrat area was defined as 25 m2 because it

was found to be the minimum sampling area for the desert

riparian forests in arid areas (Wang and Guo, 2016; Kong

et al., 2016).

2.2.2 Sampling and measurements
Sampling points were established at the center of the

quadrats for soil samples collections. As suggested by Tian

et al. (2010), 0-20 cm topsoil was set as our sampling object

because it enriched the vast majority of soil nutrients. The

samples were transferred into the corresponding aluminium

boxes, weighed and taken back to the laboratory. The soil
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samples were then dried and weighed to calculate soil water

content (SWC). Meanwhile, another soil samples were also

collected, and then passed through a 2-mm sieve in the

laboratory for the further measurements of soil properties

(Table 1) (Bao, 2000).
2.3 Data processing and statistical
analysis

2.3.1 Calculation of species diversity indices
The Shannon–Wiener diversity index, Simpson diversity

index and Pielou evenness index were selected as proxies for

species diversity due to their universality and high popularity

(Simpson, 1949; Spellerberg and Fedor, 2003). The calculations

are as following:

Shannon–Wiener diversity index:

H0 = −oS
i=1(Pi ln Pi)  Equation 1

Simpson diversity index:

D = 1 −oS
i=1 Pið Þ2 Equation 2
Frontiers in Plant Science 04
Pielou evenness index:

                J = H0= ln S   Equation 3

where S is the total number of species in a unit, Pi is the

proportion of the abundance of the i th species relative to the

total abundance.

2.3.2 The soil MDS selection and verification
The combination of Principal Component Analysis (PCA)

with Norm Value Determination was used to obtain the pivotal

constitutors (or indicators) of the soil MDS from the soil TDS

(Yu et al., 2018; Tian et al., 2020). The grouping process of the

PCA was referred to Jin et al. (2021b). Norm Values are the

comprehensive loadings of given indicators across all

components, which were calculated to screen the indicators.

Norm values were calculated separately for each soil property

according to Equation 4. Indicators with norm values within the

top 10% of the maximum norm value in each group were

temporarily retained. The Pearson correlation analysis was

then used to select indicators. If these indicators were

significantly correlated, then the one with the highest norm

value was retained in the soil MDS, and all others were removed.
FIGURE 1

Sampling sites and the division of 1 ha sampling plot.
TABLE 1 Measurement methods of soil properties.

Soil properties Abbr. Measuring method

Soil water content SWC (g·kg−1) Drying method

Soil salt content SSC (g·kg−1) Electrical conductivity method

pH pH Glass electrode method

Soil organic carbon SOC (g·kg−1) Potassium dichromate method

Soil total nitrogen STN (g·kg−1) Kjeldahl nitrogen method

Soil ammonium nitrogen SAN (mg·kg−1) Indophenol blue colorimetry

Soil nitrate nitrogen SNN (mg·kg−1) Dual-wavelength ultraviolet spectrophotometry

Soil total phosphorus STP (g·kg−1) Molybdenum blue colorimetric method

Soil available phosphorus SAP (mg·kg−1) Molybdenum antimony anti-colorimetric method
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Conversely, the uncorrelated indicators were retained in the soil

MDS (Wu et al., 2019; Jin et al., 2021b).

Nik =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
k

i=1
(U2

iklk)  

s
Equation 4

where Nik is the comprehensive loading of indicator i in all

components with eigenvalues ≥ 1,Uik is the loading of indicator i

in component k , and is the eigenvalue of component k.

The soil property index (SPI) was used to verify the

similarity between the soil MDS and the soil TDS, or to test

the feasibility of using the soil MDS instead of the soil TDS. The

specific method was to analyze the relationship between soil

MDS and TDS by SPI using Linear Regression. SPI was

calculated from the weights of the soil property indicators

(Wi) and the score of indicators i [F(Xi)] in Membership

Functions (Equation 5-7) (Qi et al., 2009). More specific,

Wiwas the ratios of the common factor variances to the sum

of the common factor variances (Shukla et al., 2006; Jin et al.,

2021b), which obtained from PCA (Zhang et al., 2022).

  SPI =o
n

i
Wi � F(Xi) Equation 5

F(Xi)s in the Membership functions were created on the

basis of the plus and minus effects of the indicators. The soil

indicators were transformed into dimensionless scores ranging

from 0.00 to 1.00 (Jin et al., 2021b). Then, F(Xi)s were calculated

by Equation 5 and 6 according to the different data types,

respectively:

F(Xi) =

0                                                Xi ≤ XMin

Xi−XMin
XMax−XMin

               XMin < Xi < XMax

1                                                Xi ≥ XMax  

8>><
>>: Equation 6

F Xið Þ =
0                                                Xi ≥ XMax

  (XMax−Xi)
XMax−XMin

               XMin < Xi < XMax

1                                                Xi ≤ XMax  

8>><
>>: Equation 7

where Xi is the actual value of the indicators; XMin and XMax are

the lower and upper limit of the critical value of the indicator,

which represent the minimum and maximum values measured

in the actual environment, respectively (Wu et al., 2019; Jin

et al., 2021b).

2.3.3 Geo-statistics
The semi-variograms of geo-statistics were applied to obtain

the structural characteristics of spatial variation of species

diversity in the ELWNR, which was calculated as Equation 8

(Robertson et al., 1993):

g (h) = 1
2N(h) o

N(h)

i=1
½Z(xi) − Z(xi + h)�2   Equation 8
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where N(h) is total number of sample couples for the separation

distance h, and Z(xi) and Z(xi+h) are measured sample values at

points i and i+h, respectively.

The nugget to sill ratio [C0/(C0+C)] is commonly described

as variable spatial dependence (Vasu et al., 2017). As

Cambardella et al. (1994) stated, the ratios below 25%,

between 25% and 75% and over 75% signify strong, moderate

and weak spatial dependence, respectively. Range value was the

largest distance of autocorrelation or spatial dependence (Behera

et al., 2018).

Four commonly theoretical models, i.e., exponential,

Gaussian, linear and spherical models, were used to fit semi-

variograms. High coefficient of determination (R2) indicated a

good fitting of model. In addition, ordinary kriging interpolation

plots were used to select the best-fitting model via the visual

inspection (Hou et al., 2021). Here the Ordinary kriging was

adopted in spatial interpolation because it provided the unbiased

predictions for specific un-sampled sites and minimized the

effect of outliers (Bogunovic et al., 2017; Vasu et al., 2017; Fu

et al., 2018; Gao et al., 2019; Hou et al., 2021). All maps were

produced with GS + (Version 9.0).

2.3.4 Model prediction
The relationship between species diversity and the soil MDS

was fitted using Multiple Linear Regression (MLR) and Random

Forest (RF) models. Details on the MLR and RF model can be

found in Yilmazer and Kocaman (2020), and Chagas et al.

(2016), respectively. The operation process of these two

models were accomplished respectively in the ‘stats’ and

‘rfPermute’ packages of R software (R Core Team, 2019).

Two models’ performance were evaluated and compared

using root mean square error (RMSE) and mean relative error

(MRE) (Equations 9 and 10). The optimal model was selected in

consideration of the lowest RMSE and MRE. Where T
0
i and Ti

are the predicted and observed species diversity indices,

respectively, and n represents the number of measurements.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(T

0
i − Ti)

2

s
Equation 9

MRE = 1
no

n

i=1

T
0
i − Ti

��� ���
Ti

Equation 10
3 Results

3.1 Statistical analyses and the soil MDS
establishment

The descriptive statistics of soil properties were presented in

Table 2. CV is the ratio of standard deviation to mean value,
frontiersin.org
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which represents the standardized variability. CV values for soil

properties ranged from 3.90% (pH) to 57.20% (SOC). According

to Hillel (1980) and Nielsen and Bouma (1985), soil properties

can be classified into two types based on the CV values: the low

(CV< 10% for pH); and the moderate variabilities (CV from 10

to 100% for SWC, STP, SSC, SOC, SAP, STN, SAN and SNN).

Results of K-S test presented that the SSC, SOC and STP

followed normal distribution, suggested that these soil properties

have uniform variances and no outliers. The data of SWC, pH,

SAP, STN and SAN were transformed using logarithmic

transformation due to the fact that they had not followed the

normal distribution (Table 2).
Frontiers in Plant Science 06
Figure 2 showed that most of the correlation coefficients

between the soil properties were significant at the 0.01 and 0.05

levels, indicating that the soil TDS existed redundant (Wu et al.,

2019). In this case, the soil MDS can be obtained from the soil TDS.

Three extracted principal components (PC) with eigenvalues

≥ 1 explained 60.75% of the cumulative contribution (Table 3).

The load value of SSC in PC2 was greater than 0.5, while the load

value of STP in PC3 was greater than 0.5. The retained soil

properties were assigned to the third group (PC3). According to

the principle that the top 10% of the maximum in each group

entered the soil MDS, SSC and STP in the first and second

groups entered the soil MDS. In the third group, SNN (0.89)
FIGURE 2

Correlation coefficients of soil properties. * and ** indicate a significant correlation at the 0.05 and 0.01, respectively.
TABLE 2 Descriptive statistics of soil properties.

Indicators Maximum Minimum Mean ± SD SE CV (%) Normal distribution

SWC (g·kg−1) 26.11 5.18 13.12 ± 3.70 0.19 18.50 L.N.

SSC (g·kg−1) 10.21 1.33 5.59 ± 2.44 0.12 43.60 N

pH 8.94 7.22 8.07 ± 0.32 0.02 3.90 L.N.

SOC (g·kg−1) 27.73 2.04 9.57 ± 5.51 0.27 57.20 N

SAP (mg·kg−1) 89.76 11.67 38.19 ± 14.99 0.75 39.10 L.N.

STP (g·kg−1) 2.17 0.83 1.31 ± 0.25 0.01 19.30 N

STN (g·kg−1) 9.98 0.51 2.05 ± 0.75 0.04 36.60 L.N.

SAN (mg·kg−1) 10.21 0.60 2.48 ± 1.27 0.06 51.60 L.N.

SNN (mg·kg−1) 43.97 2.03 12.51 ± 7.12 0.36 57.00 L.N.
SD, Standard Deviation; SE, Standard Error; CV, Coefficient of variation; N., normal distribution; L.N., normal distribution using logarithmic transformation.
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with the largest norm value entered the MDS. SAP (0.82) and

SOC (0.81), with norm values in the top 10% of the maximum

norm value (SNN, 0.89), entered the soil MDS. Correlation

coefficients between SAP, SOC, and SNN were less than 0.5

(Figure 2). A total of five soil properties (i.e., SSC, STP, SAP,

SOC and SNN) were entered in the soil MDS.

The SPIs of the soil TDS and the soil MDS showed a

significant positive correlation (R2 = 0.62) (Figure 3),

suggesting that the soil MDS could be substituted for the

soil TDS.
3.2 Correlation between the soil MDS
and species diversity

Figure 4 presented the results from the MLR models. SNN

and STP had not entered into any of the models. The coefficients

of determination (R2) were 0.05, 0.06 and 0.06 for the three MLR

models, respectively, which indicated that the MLR models

could explain less than 10% of the variance in species diversity.

Mean relative errors (MREs) and the root mean square

errors (RMSEs) were used to compare the accuracy of the

MLR and RF models (Figure 5). The performance of the two

models differed. The MLR models were better at predicting

linear relationships while the RF models were more accurate in

predicting non-linear relationships. The RF models performed

significantly better than the MLR models in predicting the three

species diversity indices. The values of RMSEs and MREs for all

three indices in the RF models were substantially below than

values in the MLR models. This suggested that the RF models

predict more accurately than MLR models in species diversity

according to the soil MDS. In addition, for each index, the

residuals of the RF models were almost lower than those of MLR
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models, indicating that the RF models were significantly

preferable to the MLR models in predicting species

diversity distribution.

The contributions of SOC, SSC, SAP, STP and SNN on the

species diversity obtained from the RF models were shown in

Figure 6. The explained variances of RF models were not same

for different diversity indices. RF model had the highest

explanation for the Shannon–Wiener index (56%), followed by

the Simpson index (49%), and the Pielou index (36%). The

relative contributions of the soil MDS indicators were different

among three indices of species diversity. More specifically, the

contribution of five MDS indicators to Shannon–Wiener index

was ranked as follows: SSC > SNN > SOC (SAP) > SAP (SOC) >

STP. For Simpson and Pielou indices, the contributions showed

similar orders. Notably, SNN and SOC were important variables

for explaining the variation in Simpson and Pielou indices,

respectively. In total, SSC was the most influential soil MDS

indicator in explaining the variability in species diversity,

whereas STP was the least important factor (Figure 6).
3.3 Spatial variability and distribution

Parameters of original and predictive values of species diversity

were given in Table 4. According to the R2 andRSS, the exponential

model has the best fitting to species diversity compared with linear,

Gaussian and spherical models (Supplementary Table S2). After

considering that RF model owned the higher explanation to the

variance on the species diversity from soil MDS than MLR model,

the RF-predictive diversity indices had been optimally fitted by

using the exponential model.

The semi-variograms of RF-predictive diversity indices were

well structured with very small nugget effects, indicating that the
TABLE 3 Load matrix and norm values of indicators.

Principal component variable Group Norm value Minimum data set

PC1 PC2 PC3

SWC 0.12 0.48 0.17 3 0.65 /

SSC 0.23 0.53 0.21 1 0.79 Enter

pH 0.14 0.42 0.40 3 0.72 /

SOC 0.48 −0.03 −0.14 3 0.81 Enter

SAP 0.29 −0.41 0.41 3 0.82 Enter

STP 0.27 −0.38 0.51 2 0.85 Enter

STN 0.46 0.04 −0.06 3 0.77 /

SAN 0.28 0.03 −0.48 3 0.68 /

SNN 0.50 −0.04 −0.31 3 0.89 Enter

Eigenvalues 2.79 1.56 1.12 / / /

Variance contribution (%) 31.03 17.33 12.39 / / /

Cumulative variance contribution (%) 31.03 48.36 60.75 / / /
“/” means failure to enter the soil MDS or no related data.
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sampling intervals were sufficient to measure the spatial

variability. The nugget/sill ratios of the species diversity

indices were all below 25% (4.17%-9.33%) with the

autocorrelation ranged from 0.72 m (Shannon–Wiener index)

to 0.95 m (RF-predictive Pielou index), indicating that species

diversity showed high spatial dependence (Table 4). As the

nugget/sill ratios were less than 75%, three species diversity

indices can be further used to predict the values of un-sampled

sites by interpolation method.

Original and predictive kriging distribution maps were given

in Figure 7. Spatial variations of Shannon–Wiener, Simpson and

Pielou indices were largely consistent with their predicted values

from RF models. In contrast, the prediction from MLR model

was inappropriate, which undervalued the maximum and

overvalued the minimum for three indices of species diversity

(Supplementary Figure S1).
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4 Discussion

4.1 The MDS composition of soil
properties

The main limiting environmental factors in the arid desert

ecosystem were water and salinity (Wang et al., 2020). Plant

growth, nutrient cycling and the biological function were all

affected by soil water content (SWC) and salinity (Smith and

Doran, 1997; Yang et al., 2022). However, SWC was not included

in the soil MDS. This is probably because the studied object

(riparian forest) located close to the river, where SWC was

relatively high compared to other desert regions, resulting in that

the limiting effect of SWC on biological process was not obvious.

Also, there was an obvious correlation between SWC and salinity

in arid desert (Zhao et al., 2017). Soil salinity (SSC) entering the
FIGURE 3

Linear fitting of SPIs based on the soil MDS and soil TDS.
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MDS meant that it removed SWC due to data redundancy. This

can be proved in this paper that SSC showed a significant

correlation with SWC.

Similar to the results of Gong et al. (2015) and Zhijun et al.

(2018), STP was considered as the other limiting factor in the

arid desert ecosystem, which included in the MDS because of its
Frontiers in Plant Science 09
integral role in the biochemical reactions and nutrient cycling in

plants (Marty et al., 2017; Shao et al., 2020). However, STP was

not a valid indicator of the level of phosphorus availability. SAP

was highly soluble, easily desorbed and rapidly exchanged.

Therefore, SAP was one of the best properties of soil

phosphorus supply, and was commonly used in the evaluation
FIGURE 5

Reverse cumulative distribution of residuals of MLR and RF models. (A–C) represent Shannon–Wiener, Simpson and Pielou diversity indices,
respectively. (D) is the results of RMSE and MRE of the two prediction models.
B CA

FIGURE 4

Forest plots of the observed and the predicted values of species diversity indices calculated by MLR. (A) Shannon–Wiener index; (B) Simpson
index; (C) Pielou index.
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of soil fertility (Barbosa et al., 2014). SAP was also identified as

the soil MDS indicators due to its higher Norm values within the

group 3 (0.82). Nitrogen existed in soil via various forms such as

ammonium and nitrate nitrogen, but the effects of different

kinds of nitrogen on biological processes were different. In this

study, SNN was included in the MDS, while neither STN nor

SAN were included. This was because SNN can be directly and

rapidly absorbed by plants compared with the other two types.

SNN directly determined the ability of poor soil to supply

nitrogen to plants in the short term (Zhou et al., 2020). SOC

as a crucial element of soil (Ownley et al., 2003), contributed to

the soil structural, biological and physical health, and was the

basis of soil fertility (Yerima and Van Ranst, 2005). This was

confirmed in our study that SOC was selected as a constituent of

soil MDS in desert riparian forest.

Our results showed that the soil MDS consisted of SSC, SOC,

STP, SAP and SNN. The correlation coefficient between SPI-

MDS and SPI-TDS (R2 = 0.62) indicated that our soil MDS can

replace soil TDS in reflecting the soil property status. In other

words, the constructed soil MDS could provide sufficient

information to predict the spatial variation of plant diversity.

The number of the soil properties was reduced to five by the soil

MDS construction. Although some important soil information

might be lost during the process, the soil MDS reduced the total

number of indicators of the soil TDS, and provided a better

example for other similar work.
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4.2 Species diversity has high spatial
dependence in desert riparian forests

Our results showed that the nugget/sill ratios (C0/(C0+C) of

species diversity varied from 4.17% to 5.38%, indicating that

species diversity has high spatial dependent in desert riparian

forests. This might be caused by the fact that spatial variability of

species diversity was largely dominated by structural factors

rather than stochastic factors. This result was consistent with

previous studies (Bhatti et al., 1991). The structure of diversity

was mainly determined by soil conditions (Wild, 1971),

topography (Bhatti et al., 1991) and climate (Berndtsson et al.,

1993), because the continuous changes of these variables in space

led to the regular structure of plant distribution and community

composition. On the contrary, the stochastic factors that caused

the spatial distribution of plants mainly referred to man-made or

natural disturbances. Ebinur Lake Wetland was a well-known

biological reserve in the western China. Governmental

management made the local ecosystem rarely disturbed by

human beings. At the same time, in a small range, such as

1 ha sampling plot in this study, the homogeneity of the

environment made the natural disturbance will not easily

appeared. Therefore, stochastic factors had not played a major

role in the spatial variation of species diversity.

Our study also found that the range of species diversity

varied from 0.72 m to 0.77 m (Table 4). This indicated that,
TABLE 4 Parameters of semi-variograms predicted by RF models.

Indices Variables Model C0(Nugget) C0+C (Sill) C0/(C0+C) (%) Range (m) R2 RSS

Shannon–Wiener Original Exp 0.43×10-2 0.08 5.38*** 0.72 0.42 2.24×10-4

RF-pre Exp 0.28×10-2 0.03 9.33*** 0.82 0.46 3.86×10-5

Simpson Original Exp 0.14×10-2 0.03 4.70*** 0.77 0.37 4.20×10-5

RF-pre Exp 0.60×10-3 0.01 6.00*** 0.90 0.42 7.23×10-6

Pielou Original Exp 0.25×10-2 0.06 4.17*** 0.77 0.27 2.44×10-4

RF-pre Exp 0.13×10-2 0.02 6.50*** 0.95 0.34 3.99×10-5
fronti
Exp is the exponential model. C0/(C0+C)< 25% (***) suggest a strong spatial dependence.
FIGURE 6

Contributions of the soil MDS indicator to the variability of species diversity measured using RF model.
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species diversity owned a certain correlation between any two

spatial locations within this range, but beyond this range, the

interaction weakened with increasing distance (Zhao et al.,

2015). The reason was that, plants have positive mutually

beneficial or biased relations in a certain range, such as water

redistribution and nutritional support from mothers to

daughters, in order to increase the survive in the arid deserts

(Schlesinger et al., 1996). The same result was also confirmed in

the arid desert zone of Alashan Left Banner, China. Species

diversity was similar in the range from 0.50 m to 0.82 m, but the

association decreased continuously if beyond this distance (Ma

et al., 2008).
4.3 Soil MDS affects spatial variability of
species diversity

Our study suggested that soil salinity affected the spatial

variability of species diversity. This was because soil salinity is
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one of the most important factors affecting plant distribution in

arid desert regions (Chenchouni, 2017; Souahi et al., 2022). The

scarce annual precipitation and the high osmotic pressure

generated by perennial drought often led to increasing salt

concentrations in the soil surface (Souahi et al., 2022), which

in turn influenced the distribution of plants and the species

composition of communities. It was well known that nutrient

availability was one of the main determinants of plant diversity

in arid desert regions (Reynolds and Haubensak, 2009). For

example, Vourlitis et al. (2013) found that species diversity

significantly increased with soil nutrients in Southern Mato

Grosso, Brazil. A study from Zhang et al. (2010) in an arid

desert demonstrated that 40% of the variation in plant diversity

can be attributed to soil nutrients. This may be because plants

prefer to grow in areas with higher nutrient availability in the

arid desert. Such behavior would help them improve the chances

of survival in the poor-soil environment (Al-Mutairi, 2022). This

can be confirmed by the results of SOC in this study that SOC

was the second factor determining the change of plant diversity.
FIGURE 7

Spatial variations in species diversity interpolated using the original (left) and RF-predicted values (right), respectively.
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SOC was the most important indicator of soil nutrition, and its

high value indicated that there were more nutrients available for

plant to absorb and utilize in the soil (Souahi et al., 2022). In

addition to SSC and SOC, SAP, STP and SNN were also affected

spatial variation in species diversity in the arid desert regions.

This may be because phosphorus was involved in various anti-

stress activities of plants in arid desert, such as resistance to

drought and salt stress. Compared with other nitrogen types,

nitrate nitrogen can be directly absorbed by plants, so it can

affect the spatial distribution of plants largely in poor-soil

environments (Zhang, 2011). Similar results were found in

Stohlgren et al. (2005) and Gu et al. (2003) that soil

phosphorus and soil nitrogen had a greater impact on plant

diversity than other factors in arid areas.

Our results confirmed that soil properties strongly affected

the distribution of species diversity. The predicted species

diversity based on the soil MDS using the RF model was

basically consistent with the actual species diversity in desert

riparian forests. Furthermore, the predictions of the highest and

lowest values of species diversity were also similar to the actual

values. This suggested that the soil MDS determined the spatial

variation in species diversity. Our results also indicated that the

RF models showed significantly greater comprehensiveness and

accuracy in predicating the distribution of species diversity than

MLR models. Earlier studies have indicated that RF model

possesses more powerful modelling capabilities for complex

interactions between indicators (Breiman, 2001; Guo et al.,

2015; Xie et al., 2021). The relationship between soil properties

and species diversity was very complex, because soil properties

had not act on plant growth or distribution in one direction, but

were intertwined with each other. Therefore, the accuracy of

spatial distribution of species diversity predicted by RF model

was bound to be higher than that by MLR (Zhang et al., 2017;

Hamidi et al., 2021). In the further study, we suggested that

nonlinear relationships rather than linear relationships should

be considered more when exploring the influencing factors of

species diversity.

Species diversity can be predicted using the soil MDS. This

given us a good insight of how to dynamically monitor and

assess changes in species diversity. Soil properties were relatively

stable and measure easily, thus species diversity can be assessed

by periodically examining soil properties. Similarly, since soil

MDS significantly affected diversity, the ecological managers can

increase species diversity by regulating constituents of the soil

MDS (i.e., SSC, STP, SAP, SOC and SNN), further improving

ecosystem productivity and enhancing desert riparian

ecosystem function.
5 Conclusions and perspectives

Our study identified that the soil MDS was consisted of SSC,

STP, SOC, SAP and SNN in desert riparian forests of NWChina.
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Based on the soil MDS, we compared traditional method (MLR)

and machine learning algorithms (RF) model for predicting

species diversity in typical desert riparian forest. The accuracy

of the RF model was far superior to the MLR model. Our study

found that RF predictions based on the soil MDS were visually

highly matched to the original distribution of species diversity.

Predicting plant diversity through the soil MDS was highly

feasible. The MDS of soil properties determined the spatial

variation in plant species diversity. SSC and SOC contributed

decisively to the distribution of species diversity. STP also had

minor effect on the spatial distribution of species diversity. These

findings can provide essential references for biodiversity

conservation and sustainable development in the ELWNR and

other low productivity drylands around the world.

Productivity, as one of the important ecosystem functions, is

closely related to community species composition and diversity.

The relationship between species diversity and productivity in

desert riparian forests is also a question that deserves to be

investigated. However, we did not test it in this study. In the

future, we can explore the plant diversity and biomass dynamics

and their relationship with the environment in arid desert areas

combining abiotic factors such as precipitation, temperature,

topography and soil properties.
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