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The obligate biotrophic fungus Puccinia striiformis f. sp. tritici, which causes

yellow (stripe) rust disease, is among the leading biological agents resulting in

tremendous yield losses on global wheat productions per annum. The

combatting strategies include, but are not limited to, fungicide applications

and the development of resistant cultivars. However, evolutionary pressure

drives rapid changes, especially in its “effectorome” repertoire, thus allowing

pathogens to evade and breach resistance. The extracellular and intracellular

effectors, predominantly secreted proteins, are tactical arsenals aiming for

many defense processes of plants. Hence, the identity of the effectors and the

molecular mechanisms of the interactions between the effectors and the plant

immune system have long been targeted in research. The obligate biotrophic

nature of P. striiformis f. sp. tritici and the challenging nature of its host, the

wheat, impede research on this topic. Next-generation sequencing and novel

prediction algorithms in bioinformatics, which are accompanied by in vitro and

in vivo validation approaches, offer a speedy pace for the discovery of new

effectors and investigations of their biological functions. Here, we briefly review

recent findings exploring the roles of P. striiformis f. sp. tritici effectors together

with their cellular/subcellular localizations, host responses, and interactors. The

current status and the challenges will be discussed. We hope that the overall

work will provide a broader view of where we stand and a reference point to

compare and evaluate new findings.
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Introduction

The underlying molecular mechanisms of the complex,

dynamic, and multilayer nature of interactions between plants

and pathogens are still elusive in many agriculturally crucial

plant species and host-specific pathogens, such as Puccinia

striiformis f. sp. tritici (Pst), causing yellow rust disease on

wheat. Over the years, genetic studies using marker-assisted

selection for producing yellow rust-resistant wheat cultivars not

only laid the foundation to identify many resistance gene loci

(Dracatos et al., 2016) but also allowed map-based cloning of

some resistance genes. The advent of genome sequencing and

other methods such as MutRenSeq (Steuernagel et al., 2016) and

MutChromSeq (Sánchez-Martıń et al., 2016) will facilitate the

fast cloning of many new yellow rust R (YR) genes. Yellow rust

disease is a devastating wheat disease; its destruction will be even

more severe in a currently experienced and steadily elevated

rapid climate change (Dudney et al., 2021), which further

threatens food security. The ability to spread long distances

and survival of over-seasoning cause widespread propagation

and acceleration of the frequency of genetic variation over time

(Jin et al., 2020). Genome-wide sequencing of Pst provides

comprehensive data analysis as an eximious predictive tool

and helps to understand the population characteristics that

mirror genomic differences of races in different regions and

allows diagnostics and surveillance in hot spot areas more

concretely (Hubbard et al., 2015; Bueno-Sancho et al., 2017;

Radhakrishnan et al., 2019). Additionally, the sequence

information of many Pst races provides data to identify the

pathogenic factors to excavate plant immunity and interactions

between plants and pathogens.

The relationship between plants and pathogenic

microorganisms is a co-evolutionary process. To cope with the

invasion of complex pathogens, higher plants make use of a large

number of cell surface and intracellular immune receptors to

sense a variety of pathogenic signals and develop a complete

immune system. On the other hand, pathogens need to

overcome the host’s immune system for its differentiation and

development to further their propagation. Plants have specific

receptors to sense pathogens that are called pattern recognition

receptors (PRRs), e.g., flagellin epitope (flg22) is a pathogen-

associated molecular pattern (PAMP), which is recognized by a

specific PRR named flagellin-sensing 2 (FLS2) (Boller and Felix,

2009; Zipfel, 2009). The detection of PAMPs by PRRs stimulates

immunity, which is called PAMP-triggered immunity (PTI)

(Jones and Dangl, 2006). Once PTI is activated, a series of

signaling takes place to counter pathogen attacks, i.e., stomatal

closure to prevent pathogen invasion, cell wall thickening and

lignification or callose deposition, ion fluxes and oxidative burst;

release of reactive oxygen species (ROS), synthesis and release of

defense-related hormones; ethylene and salicylic acid (Zipfel and

Robatzek, 2010). The PTI response is a massive, repelling, and

intimidating shield against the pathogen nuisance. However,
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successful pathogens can evade, suppress, or manipulate the PTI

phenomenon with the aid of specific and small proteinaceous

compounds called effectors. Phytopathogen effectors could

inhibit plant defense-related enzymes, block or seize

recognition of PAMPs, and jam the signaling system. Plants

developed another defense strategy to protect themselves against

the effectors, which is called effector-triggered immunity (ETI)

(Jones and Dangl, 2006). In ETI, effectors are sensed directly or

indirectly by the cytoplasmic receptor proteins sharing common

features such as N-terminal coiled-coil (CC) or Toll/interleukin-

1 receptor (TIR) domains, nucleotide-binding (NB) domain, and

leucine-rich region (LRR) (Kobe and Kajava, 2001; Bej et al.,

2014) in the carboxyl-terminal. They are referred to as NB and

oligomerization domain (NOD)-like receptors (NLRs),

depending on the type of the domains, CC or TIR, then they

are called CC NLRs (CNLs) and TIR-type sensor NLRs (TNLs),

respectively. These two different domains also determine diverse

paths of resistance responses (Feys et al., 2005; Day et al., 2006).

The LRR of the receptor recognizes effectors secreted by a

pathogen, whereas the NB domain is responsible for ATP/

ADP binding (Jones and Dangl, 2006). Upon effector and ATP

binding, NLR becomes activated (Wang et al., 2019a). Recently

in a significant work, the three-dimensional (3D) structure of the

active form of HOPZ-ACTIVATED RESISTANCE 1 (ZAR1)

was reported (Wang et al., 2019a). It indicated that ZAR1 forms

a pentameric complex through CC domains of the monomers on

the plasma membrane (PM). The complex punctuates PM that

works as a calcium channel. ZAR1 (HOPZ-ACTIVATED

RESISTANCE 1) channel activity was shown to be required

for triggering ROS prior to programmed cell death (PCD)

(Wang et al., 2019b; Bi et al., 2021). Thus, terminating the

pathogen invasion and achieving ETI and resistance. The

discovery deepens our understanding of PCD at the molecular

level for resistance that is activated by a host-specific effector;

such effectors are specifically called avirulence factors (Avrs).

Until the pathogen averts the recognition of its Avr effector by

mutation, elimination, or evolving another effector that inhibits

the inspection by NLRs, the cognate R protein maintains disease

incompatibility of the plant or the resistance. Once Avr can no

longer be sensed, the pathogen becomes virulent again,

achieving compatibility.

Upon PCD, ETI-stimulated responses occur and lead to an

array of secondary events similar to PTI. PTI can be considered

as an extensive defense to a broad range of pathogens including

non-host and non-adaptive pathogens due to PAMP perception,

whereas ETI is an intensive defense against host-specific

pathogens. Accumulating evidence suggests that PTI and ETI

are indeed intertwined with each other. Some of the components

in PTI and ETI are required for both types of immunity (Chang

et al., 2022). PTI and ETI increase the effect of immunity

synergistically. It is shown that PRRs are involved in PTI,

recognizing apoplastic effectors, which are also required for

intracellular ETI (Yuan et al., 2021; Ngou et al., 2021). On the
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other hand, ETI activates/enhances the expression of PTI

signaling components (Pruitt et al., 2021; Tian et al., 2021).

Currently, we have a working model of CNL type of NLRs

initiating ETI that is deciphered for ZAR1 (HOPZ-ACTIVATED

RESISTANCE 1). A clear understanding of the mode of action will

also be crucial for elucidating the mechanism of ETI in relation to

PTI in wheat yellow rust resistance, provided that a PstAvr is

discovered for a cloned cognate wheat YR gene.
Genomics, transcriptomics,
and proteomics

Decline in the cost and advances in next-generation

sequencing (NGS) enable generat ing genomic and

transcriptomic data on much more complicated and

challenging organisms, e.g., Pst. Thus, the ability to make

comparisons between different Pst isolates and races and

attempt to discover virulence and avirulence factors are made

possible by sequencing. Similarly, transcript profiles of a

pathogen could be monitored at different time intervals and

under various environmental conditions during the infection
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processes—thanks to the accessibility of NGS. Despite a huge Pst

genome and transcriptome sequence data availability in yellow

rust disease, still, few effectors were investigated for their roles

in detail.

To present the current state of affairs, Tables 1 and 2 were

organized using data reported in the literature. Pst can only be

maintained as urediniospores on a living host, hence, the first

identification of functional genes in disease was done on

urediniospores of Pst-78 using a full-length cDNA library

(Ling et al., 2007). Gene expression analysis was reported on

germinated urediniospores of Pst-CYR32 using Expressed

Sequence Tags (ESTs) (Zhang et al., 2008). Haustorium-

specific genes were identified in the Pst-78 cDNA library, and

authors defined proteins that are abundant in haustoria and

secreted in various infection stages (Yin et al., 2009). A custom-

made microarray chip was developed to reveal the expression

profile of suspected genes obtained from past reports (Huang

et al., 2011). The genome of Pst-130 was sequenced using NGS

technology (Cantu et al., 2011). Chinese isolate Pst-CYR32 (09-

001) was sequenced, and the origin of the isolate was analyzed by

comparing four Pst isolates (Pst-CYR23, 104E137A, PK-CDRD,

Hu09-2) from different geographical regions (Zheng et al., 2013).
TABLE 1 Genome sequences of Pst-races.

Isolates/Races Origin References NCBI Bioprojects

PST-78, PST-1, PST-127, PST-CYR-32 US Cantu et al., 2011 PRJNA60743

Pst-130 US Cantu et al., 2011 PRJNA51241

104E137A Australia Schwessinger et al., 2018 PRJNA396589

Pst-CY32 China Zheng et al., 2013 PRJNA176877

PST-87/7 UK Cantu et al., 2013 PRJNA181962

PST-08/21 PRJNA181960

Pst-21 PRJNA181959

Pst-43 PRJNA181957

PST-12/86, PST-12/83, PST-11/13, PST-11/128, PST-11/08 UK Hubbard et al., 2015 PRJNA257181

PST-78/66 US

Pst-78 US Cuomo et al., 2017 PRJNA41279

11-281 US Xia et al., 2017 PRJNA354804

Pst-127

12-248

12-346

12-368

PK08-2 Pakistan

841541:430 Australia

P.str31, P.strK, P.str46S119 India Kiran et al., 2017 PRJNA277552 PRJNA277553 PRJNA277554

P. striiformis Kranich race isolate 14/106 UK Bueno-Sancho et al., 2017 PRJEB15280

93-210 US Xia et al., 2018 PRJNA422914

38S102 India Aggarwal et al., 2018 PRJNA344021

30 EMS mutagenesis of Pst 11-281/ PSTv-18 US Li et al., 2020 PRJNA587768

PstS0, PstS7 Europe Schwessinger et al., 2020 PRJNA588102

12-368 (AvYr44-AvYr7-AvYr43-AvYrExp2 cluster) US Xia et al., 2020 PRJNA599033

PstS0, PstS1, PstS10 and PstS13 Australia Ding et al., 2021 PRJNA704774
frontiersin.org

https://doi.org/10.3389/fpls.2022.1012216
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2022.1012216
TABLE 2 Transcriptome, microarray, and proteome studies.

Transcriptome sequence and microarray analysis

Isolate/Race Strategy Sample References

PST-78 Full-length cDNA library
and cDNA clone sequencing

Urediniospores Ling et al.,
2007

PST-78 Wheat GeneChip Inoculated flag leaves of Yr39 (resistant) and yr39 (susceptible) genotypes at 6, 12, 24, 48 and
96 hpi

Coram et al.,
2008a

PST-100 Wheat GeneChip Inoculated and mock-inoculated Yr5 (resistant) and yr5 (susceptible) isolines at 6, 12, 24 and
48 hpi

Coram et al.,
2008b

CY32 cDNA library construction
and EST sequencing

Germinated urediniospores Zhang et al.,
2008

CY31 cDNA library construction
and clone sequencing

3, 5 and 8 dpi infected wheat seedlings of genotype Suwon 11 Ma et al.,
2009

CY31 cDNA-AFLP Inoculated and mock inoculated leaves of wheat genotype Suwon11 respectively sampled at 6,
12, 18, 24, 36, 48, 72, 96, 120, 144 and 168 hpi

Wang et al.,
2009

PST-78 Construction and
sequencing of a haustorial
cDNA library

Haustoria isolated from heavily infected wheat leaves of Avocet ‘S’ carrying the Yr8 resistance
gene at 8 dpi.

Yin et al.,
2009

169E136, 232E137 Microarray 0, 6, 12, 24, 48, 72 hpi inoculated wheat seedlings of Avocet S and Avocet*6/Yr1 Bozkurt et al.,
2010

CYR23 cDNA-AFLP Inoculated leaves of wheat genotype Suwon11 harvested at 6, 12, 18, 24, 36, 48, 72, 96, 120,
144 and 168 hpi

Wang et al.,
2010

CYR23 cDNA library construction
and sequencing

24, 48, 72 hpi infected seedlings of wheat genotype Suwon11 Yu et al.,
2010

PST-78 Microarray 12, 24 and 48 hpi, 7 and 14 dpi inoculated wheat of AvSYr5NIL and germinated
urediniospores

Huang et al.,
2011

CY32 SSH-cDNA library 0, 24, 48, 72, 96 hpi and 7, 10, 13 dpi inoculated wheat seedlings of Shaanmai139 Zhang et al.,
2011

PST-08/21 RNA-seq or transcriptome
sequencing

6 and 14 dpi infected wheat seedlings of cv Avocet ‘S’ and haustoria isolated from infected leaf
at 7dpi

Cantu et al.,
2013

PST-78 Microarray 24 and 48 hpi inoculated wheat leaves of AvSYr5NIL and AvSYr39NIL Chen et al.,
2013

104E137A RNA-seq or transcriptome
sequencing

Germinated urediniospores and haustoria Garnica et al.,
2013

CYR32 SSH cDNA library 12, 24, 48 hpi inoculated adult plants of wheat cv Xingzi 9104 Huang et al.,
2013

CYR32 GeneChip microarray 0, 12, 36 hpi inoculated wheat seedlings of 92R137 (resistant), R236 (resistant) and
Yangmai158 (susceptible)

Jiang et al.,
2013

CYR31 EST library construction and
sequencing

0, 1, 2, 3 dpi inoculated seedlings of wheat line N9134 Zhang et al.,
2014

CYR23, CYR31 Microarray (microRNA) 0, 12, 24, 48, 72, 120 hpi inoculated wheat cv Suwon11 Feng et al.,
2015a

CYR32 Microarray (microRNA) 0, 24, 48, 120 hpi inoculated wheat cv Xingzi9104 Feng et al.,
2015b

Mixture of Pst (UK field
isolates in 2013)

RNA-seq or transcriptome
sequencing

PST-infected wheat and triticale collected directly from the field Hubbard
et al., 2015

PST-78/66, PST-12/86,
PST-12/83, PST-11/13,
PST-11/128, PST-11/08

Infected leaves of susceptible wheat variety Vuka

PST-87/66 RNA-seq 0, 1, 2, 3, 5, 7, 9, 11 dpi infected seedlings of the susceptible variety Vuka and 0, 1, 2, 3, and 5
dpi inoculated seedlings of the resistant Avocet-Yr5 line

Dobon et al.,
2016

CYR32 RNA-seq or transcriptome
sequencing, DGE library
construction and sequencing

Adult plant and seedling of wheat cv Xingzi9104 at 0 hpi without Pst. 24, 48, 120 hpi
inoculated wheat cv Xingzi 9104 at adult plant and seedling stage.

Hao et al.,
2016

CYR31 EST library construction and
sequencing

0, 1, 2, 3 dpi inoculated seedlings of wheat line N9134 Zhang et al.,
2016

(Continued)
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Pst-78 (2K-041) genome was published along with a detailed

comparative analysis between Pgt and Ptt (Cuomo et al., 2017).

Broad Institute released genome sequences of Pst-78 (2K-041),

Pst-1 (3-5-79), Pst-127 (08-220), and PstCYR-32 (09-001)

(Zheng et al., 2013; Cuomo et al., 2017; Xia et al., 2017). In

addition, genome sequences of Puccinia graminis f. sp. tritici, Pgt

(CRL 75-36-700-3), and Puccinia triticina, Ptt (BBDD), were

published as a publicly available reference dataset, which is also

useful for comparison studies (http://www.broadinstitute.org/)
Frontiers in Plant Science 05
(Duplessis et al., 2011; Cuomo et al., 2017). The genome

sequences of the four races, including Pst-87/7, Pst-08/21 (two

UK races), Pst-21, and Pst-43 (US races), were reported in a

publication by Cantu et al. Additionally, the gene expression

data belonging to different time points [6 and 14 days post

inoculation (dpi)] of the infection were described as well as

haustorium-specific genes Cantu et al. (2013). Hubbard et al.

(2015) surveyed Pst isolates collected from the UK fields of the

United Kingdom in 2013. The authors investigated the
TABLE 2 Continued

Transcriptome sequence and microarray analysis

Isolate/Race Strategy Sample References

CYR31 RNA-seq or transcriptome
sequencing

0, 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 7, 10, and 13 dpi inoculated leaves of wheat line N9134 Zhang et al.,
2019a

Pst from the fields of
Svalöv, Sweden

RNA-seq or transcriptome
sequencing

Leaf materials from resistant and susceptible lines were collected from penultimate leaves
pooled from three plants from each breeding line which obtained from the cross (Nimbus/3/
SW, 2081221/2/SW2-7/Kranich) of the segregating population at the booting stage

Kushwaha
et al., 2020

Pst isolates from the
fields of Anatolia,
Turkey

RNA-seq or transcriptome
sequencing

Mock and 10 dpi inoculated wheat seedlings of Avocet-S and Avocet-YR10 Ozketen
et al., 2020

CYR32 RNA-seq or transcriptome
sequencing

The samples of wheat cv. Xiaoyan6 at 8 dpi (0 h post-temperature, hptt) and 9 dpi (24 hptt)
under different temperature treatments: (i) normal temperature (N), (ii) normal-high-normal
temperature (NHN), and (iii) high temperature (H)

Tao et al.,
2020

CYR31 RNA-seq or transcriptome
sequencing

Urediospores, germ tubes and haustoria Xu et al.,
2020a

NA RNA-seq or transcriptome
sequencing

538 Pst-infected plant samples collected across 30 countries from 2014 to 2018 Adams et al.,
2021*

CYR34 RNA-seq or transcriptome
sequencing

1, 3, 7 dpi inoculated seedlings of wheat cv SM126 Wang et al.,
2021a

CYR32, V26 RNA-seq or tarnscriptome
sequencing

Entire leaf tissue taken from barberry (Berberis shensiana) plants at 3 and 4 dpi and from
wheat cv MX169 at 1 and 2 dpi

Zhao et al.,
2021

Proteome studies

CYR23, CYR32 two-dimensional
electrophoresis and MALDI-
TOF MS

Mock and 24, 72 hpi inoculated wheat cv Suwon11 Li et al., 2011

Pst isolates from Turkiye ProteomeLab PF2D and
nanoLC-ESI-MS/MS

0, 24 hpi inoculated wheat cv Izgi2001 Maytalman
et al., 2013

CYR32 two-dimensional
electrophoresis and MS/MS

0, 24, 48 hpi inoculated japonica rice cultivar Nipponbare Zhao et al.,
2014

Pst isolates from Czech nanoLC-MALDI-MS Urediniospores Beinhauer
et al., 2016

Pst isolates from Turkiye Nano LC-ESI-MS/MS 0, 1, 2, 3, 4 dpi infected wheat cv Seri82 Demirci et al.,
2016

CYR23 iTRAQ and LC-ESI-MS/MS 0, 12, 24, 48 hpi inoculated wheat cv Su11 Yang et al.,
2016

CYR32 iTRAQ and MALDI-TOF/
TOF tandem MS

Urediniospores and germinated urediniospores Zhao et al.,
2016

CYR31, CYR32, CYR33 iTRAQ and LC-MS/MS Urediniospores and UV-B radiation applied urediniospores Zhao et al.,
2018a

CYR31 iTRAQ and LC-ESI-MS/MS 0, 24, 48, 72 hpi inoculated wheat introgression N9134 Zhang et al.,
2019b

CYR32 and CYR32-5
and CYR32-61 acquired
by UV-B radiation

iTRAQ and Nano LC-MS/
MS

Urediniospores and germinated urediniospores Zhao et al.,
2020
fr
*Rust expression browser (http://www.rust-expression.com).
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evolutionary resemblance of harvested Pst isolates to the

historical ones (14 UK and seven French isolates) and six

additional isolates through whole-genome sequencing (WGS).

It was discovered that the field isolates were not related to old

isolates, but they possibly originated from foreign Pst

populations. Garnica et al. (2013) reported the sequence data

generated from both haustoria and germinated urediniospores

of an Australian. In a later study, seven new races of Pst were

sequenced using NGS and combined with seven older published

genomes. A total of 14 races of Pst were subjected to correlation

analyses in an attempt to predict Avr candidates (Xia et al.,

2017). From the Indian subcontinent for the first time, Kiran

et al. (2017) adopted NGS to sequence the genomes of P.

striiformis pathotypes (46S 119, 31, and K). Eighty-one percent

of the total annotated genes were successfully identified, and

extracellularly secreted proteins were found to be very conserved

in the three pathotypes.

Initial deep sequencing of the genomes of a Pst race is always

laborious and costly but allows a valuable reference genome

sequence for analyses of other races and transcriptome analyses at

a selected state. Microarray profiling is still useful, but only a set of

genes with known sequences could be monitored and investigated,

not the novel ones. Although directly detecting proteins is valuable,

proteome analyses generate a narrow range of information because

of the low level and sometimes short duration of protein

expressions; it is possible to miss key proteins. Nevertheless, a

study about the proteome profile of compatible interactions

between wheat and Pst revealed some of the proteins involved in

pathogenesis (Demirci et al., 2016). Another proteome study listed

proteins of Pst that are active in urediniospores and germ tubes

using the isobaric tag for relative and absolute quantitation

(iTRAQ) method and qRT-PCR for validation (Zhao et al., 2016).

Alterations in the proteome content of urediniospores in response

to the application of UV-B radiation were reported for three

different Chinese races (CYR31, CYR32, CYR33) to elucidate

deviations in virulence mechanisms (Zhao et al., 2018a).

The effectiveness of omics technologies is obvious in

providing bulk data on various races and different phases of

the disease or the resistance. Hence, such data are the key

resources for mining genes (Figure 1).
Data mining

The pace of effector evolution and the emergence of new

races led to the amassed number of suspects in effector biology.

The generated data of “omics” related to Pst help us to discover,

compare, and pinpoint direct and indirect players in

pathogenicity and plant resistance mechanisms. Data mining

is a popular terminology to explain the studies conducted on big

datasets using statistics, predictions, and deep machine learning

to evaluate outcomes, to pinpoint crucial subsets of data from

bulk collection, and to predict future patterns. Here, data mining
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is used as a terminology to cover all in silico strategies for

handling and characterizing bulk data generated from various

sequencing strategies to dissect the most relevant information.

Since the datasets obtained through sequencing are quite

substantial and testing many numbers of uncovered genes is

laborious, time-consuming, and costly, there is a need to pool the

most probable sets of candidates so that they can be

experimentally tested for function. Consequently, data mining

is a useful strategy to narrow down candidate effectors. It uses

our prior knowledge about effectors to predict new candidates.

For instance, it is known that secreted proteins are important in

achieving virulence. Hence, predicting the secreted proteome or

“secretome” catalog of a pathogen is an initial step. Of course,

the predicted subset may not be fully accurate or can be

irrelevant to virulence, but it still concentrates to scan a

shorter list of the genes. Each prediction and characterization

will increase the success of trials. The first attempt to dissect the

secretome was reported on the haustorial cDNA library of Pst-78

(Yin et al., 2009). Subsequently, the secretome and effectorome

era has begun for many races. Abundant data generated with

genomics, transcriptomics, and proteomics were subjected to

secretome prediction and characterization by several studies

(Cantu et al., 2011; Huang et al., 2011; Cantu et al., 2013;

Garnica et al., 2013; Zheng et al., 2013; Demirci et al., 2016;

Cuomo et al., 2017; Xia et al., 2017; Xia et al., 2018; Xia et al.,

2020; Ozketen et al, 2020). Duplessis et al. (2011) published

genome sequences of poplar leaf rust Melampsora larici-

populina (Mlp) and wheat stem rust Pgt. Moreover, the group

predicted the secretome of the pathogens and small secreted

proteins. A pipeline to discover and characterize candidate

effector proteins was defined in a hierarchical clustering study

using the same data of pathogens, Mlp and Pgt (Saunders

et al., 2012).

The core of secretome prediction is based on two rules: 1) the

presence of secretion signal and 2) the absence of

transmembrane helices. A protein could be secreted by either

classical or non-classical pathways. In the classical pathway, the

presence of an N-terminus secretion signal or signal peptide is

required for translocation through the endoplasmic reticulum/

Golgi-dependent secretory pathway (Nickel, 2003). The non-

classical pathway lacks any secretion signal contradictory to a

conventional path (Stein et al., 2014). However, secretome

prediction is conducted frequently based on classical secretion

even though some proteins follow non-classical pathways. The

absence of any transmembrane helix is important to rule out any

membrane-destined protein. After a secretome is defined,

candidate effectors are predicted through certain parameters

established on known effectors. Effector proteins are generally

short in length. Some apoplastic effectors are rich in their

cysteine content to provide stability in the hostile environment

of the apoplast. Conserved motifs were also detected in the

amino acid sequence of fungal effectors. Most notably, the

[FYW]xC motif was identified in a number of candidate
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effectors of powdery mildew and rust (Godfrey et al., 2010).

However, its significance is yet to be clarified. The haustoria

provide a handy interface with enough proximity for the effector

translocation in a pathogen-dependent or -independent manner.

They generally show no homology to known domains except the

ones associated with pathogenicity. Effectors could be encoded

by genes with long intergenic regions, and they may contain

internal repeats. Hence, it becomes possible to set an indefinite

number of pipelines for effector mining using different filtering

parameters based on known effector functions. A well-accepted

pipeline was defined by Saunders et al. (2012) to pinpoint

candidate-secreted effector proteins (CSEPs) of fungal

pathogens (Duplessis et al., 2011; Saunders et al., 2012). The

discovery of each novel effector offers new information for

prediction. A list of generated software and databases for

effector discovery and characterization is presented in
Frontiers in Plant Science 07
Supplementary Table S1. Each one uses different strategies

such as sequence similarity, biochemical nature of its

composition, and presence of known signals and sequences for

diverse sets of tasks including subcellular localization prediction,

conserved domain discovery, structure, and function deduction.

Among these strategies, machine learning is recently introduced

to effector prediction. Algorithms compare and learn

experimentally validated sets of positive and negative results in

order to forecast a novel protein belonging to an appropriate

group. For example, EffectorP is the first reported machine-

learning program to predict effectors from other secreted

proteins (Sperschneider et al., 2016). EffectorP 2.0, an upgrade

for increased accuracy, is released (Sperschneider et al., 2018a).

ApoplastP and Localizer are other programs to calculate the

subcellular localization of an effector inside/outside the host

plant (Sperschneider et al., 2017; Sperschneider et al., 2018b).
FIGURE 1

Overview of candidate effector predictions and confirmational analyses.
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Data mining enables filtering amassed numbers of proteins

for the probability of relevance, e.g., if the peptidase-like

function in virulence is sought after, secretome repertoire can

be monitored and sorted for peptidase domains. Undeniably,

prediction does not mean that the sorted sets of proteins will

always have peptidase function. Subsequently, they should be

verified experimentally. Likewise, data mining offers candidate

effector functional verifications. Each different pipeline yields a

different list of candidate effectors. Hence, each catalog of

candidates holds false positives and neglected false negatives.

However, the advantages of mitigation of large datasets are

greater than the disadvantages. Fungal effectors do not share

conserved sequence motifs, sequence similarity, and common

features in a broad spectrum. Hence, advances in data mining

are essential for effector biology (Figure 1).
Functions and features of effectors

Sequencing of genomes and transcriptomes at various

developmental stages following Pst infection and gene

annotations have largely resolved the grouping of secreted

proteins, which can be defined as candidate effectors.

Nevertheless, for them to be identified as true pathogen

effectors, experimental proof is required to assess their role in

PTI and/or ETI, which necessitates labor-intensive experimental

verifications of each effector candidate one by one to pinpoint

the functions by elucidating the interactions with the host and

even the other factors of a pathogen, determining targeted

subcellular localizations, hence the mode of action.

The following are the studied Pst effectors to date (Table 3). An

effector candidate, Ps87, is discovered in the cDNA library of

germinated urediniospores of Pst CYR32 (Zhang et al., 2008). Ps87

was reported to bear an RxLR-like motif (Gu et al., 2011). PEC6 (Pst

effector candidate 6) was identified to interact with adenine kinase in

host cells to suppress PTI by hindering ROS release and obstructing

callose deposition (Liu et al., 2016). PNPi (PucciniaNPR1 interactor)

has a DPBB-1 (Double-psi beta Barrel Domain-1) domain to

interact with NPR1 (Non-expresser of PR genes 1), which is a

central regulator of the defense response gene (Cao et al., 1994; Mou

et al., 2003), in the nucleus to jam its interaction with the

corresponding transcription factor of defense genes (Wang et al.,

2016). Recently, it was shown that PNPi targets wheat pathogenesis-

related protein TaPR1a in the apoplastic space and can suppress

multiple defense responses in wheat plants by targeting different

components (Bi et al., 2020). In another study, several Pst effector

candidates were investigated to pinpoint their interactors inside host

cells of Nicotiana benthamiana leaves (Petre et al., 2016).

Ramachandran et al. (2017) studied nine Pst effectors, seven of

which were reported to suppress cell death; Shr7 halted the PTI

response stimulated by flagellin epitope (flg22) infiltration into N.

benthamiana leaves (Ramachandran et al., 2017). These researchers

assessed the ability of the effectors to suppress a hypersensitive
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response (HR) with known cytosolic Effector/R combinations, Cp/

Rx, ATR13/RPP13, Rpt2/RPS2, and GPA/RBP1. PstHa5a23 is one of

the candidate effectors that were identified in the haustorial cDNA

library of Pst-78 (Yin et al., 2009). It was discovered that PstHa5a23

targets the cytoplasm and suppresses cell death triggered by INF1,

BAX, MKK1, and NPK1. PstSCR1 (previously PstHa2a5) is shown

to be induced during infection, and it enhances plant immunity, PTI.

It elicits severe cell death upon translocation into the apoplastic fluid

(Dagvadorj et al., 2017). An effector candidate (Pst8713) was shown

for its ability to suppress the cell death triggered by INF1 and BAX

hampering ROS and callose deposition (Zhao et al., 2018b).

Candidate effector Pst_8713 is found to be highly expressed in

early infection, is localized in the host cytoplasm and nucleus, and

inhibits PTI-associated callose deposition. The effector PstGSRE1

acts as an important virulence factor targeting TaLOL2, which is a

positive regulator of zinc finger protein transcription factor against

stripe rust, proposed to block nuclear localization of TaLOL2 and

inhibit host immunity (Qi et al., 2019). Pst18363 by Yang et al.

(2020) was shown to interact with TaNUX23 and suppress ROS

accumulation. Pst_12806, which has a predicted chloroplast transit

peptide, is translocated into host plant chloroplasts, where it interacts

with the Rieske domain of TaISP and attenuates photosynthesis rate,

decreases ROS accumulation at the infection sites, and inhibits plant

defenses (Xu et al., 2019). Pst13661was identified as a polysaccharide

deacetylase found to suppress BCL2 Associated X protein (BAX)-

induced cell death (Xu et al., 2020a). PstCTE1 was shown to target

chloroplast with an unknown targeting mechanism, since it lacks

chloroplast-targeting transit peptide. Red Fluorescent Protein (RFP)

blocking the N-terminal of PstCTE1 does not interfere with its

destination to the chloroplast (Andac et al., 2020). PSEC2 and

PSEC17 both appear in the cytoplasm and chloroplast inhibiting

the PTI response of the host (Su et al., 2021). Two stripe rust effector

proteins Pst_4 and Pst_5 weaken wheat resistance by inhibiting the

entry of host ferritin into chloroplasts and interfere with chloroplast-

mediated defense by binding to TaISP in the cytoplasm, by which

they both inhibit the entry of TaISP into chloroplasts (Wang et al.,

2021b). PSTG_10917 localizes in the chloroplast, and it can suppress

cell death induced by INFESTIN 1 (IFN1) in an N. benthamiana

heterologous expression system (Ozketen et al., 2020). The effector

Pst27791 targets wheat Raf-like kinase TaRaf46 to interfere with host

immunity including ROS accumulation, expression of Salicylic Acid

(SA)-related defense genes TaPR1/2, and Mitogen-Activated Protein

Kinase (MAPK) activation (Wan et al., 2022). A candidate effector

protein PstCFEM1 facilitates Pst infection by suppressing ROS

accumulation (Bai et al., 2022). Secreted protein PstCEP1

(PSTG_13342) has the function of suppressing PCD and responds

to wheat high-temperature seedling-plant resistance via affecting PTI

and ETI (Tao et al., 2020). Pst_A23 acts as a splicing regulator that

directly binds the cis-elements of host genes, ultimately resulting in a

reduction of the plant defense response (Tang et al., 2022). Recently

found PstGSRE4 (Liu et al., 2022) is a glycine-serine-rich effector that

interacts with wheat copper-zinc superoxide dismutase; TaCZSOD2

inhibits the dismutase activity. Host-induced gene silencing (HIGS)
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TABLE 3 The Pst-effectors identified to date; functions, features, and host interactors.

Effectors No.
aa

Location Function / Features / Interactors References

Ps87 85 Cyt No effect (19, 21, 31) Gu et al., 2011

PEC6 88 Cyt/Nuc Interactor: ADK1; Function: Suppresses of PTI (1, 2, 3, 10, 11, 12, 16, 24, 26, 27) Liu et al., 2016

PNPi 333 Cyt/Nuc Interactor: NPR1; Function: Suppresses of defense (4, 7, 12, 16) Wang et al.,
2016

Apo/Cyt/
Nuc

Interactor: TaPR1a; Function: suppress multiple defense responses in wheat plants (4, 7, 12, 13, 16, 24, 28) Bi et al., 2020

Pst02549 297 P bodies Interactor: EDC4 (7, 14) Petre et al.,
2016Pst18220 110 Chl/Nuc Candidate interactors: ABC transporter F family member 4, THO complex subunit 2, DNA damage binding

protein 1 (7, 14)

Pst03196 206 Chl (7)

Pst05023 281 EM Candidate interactor: RNA recognition motif containing protein (7, 14)

Pst05258 256 Chl/Nuc (7)

Pst05006 201 Chl/Nuc (7)

Pst05302 160 Chl/Nuc (7)

Pst08468 206 Chl/Nuc Candidate interactors: SNF4, SNF4 like protein, SNF1 related protein kinase (7, 14)

Pst11721 250 Nuc Candidate interactors: Chaperonin, S/T-protein phosphatase 2A, Dihydrodipicolinate reductase 3 (7, 14)

Pst18447 146 Nuc (7)

Pst15391 256 Nuc (7)

Pst10977 171 Chl/Nuc (7)

Pst12160 168 Chl/Nuc Candidate interactors: Signal recognition particle 54 kDa protein, Oxidoreductase, Ubi 1 (7, 14)

Pst15642 102 Chl/Nuc (7)

Pst18221 112 Chl/Nuc (7)

Pst15964 128 Chl/Nuc (7)

Shr1
(Pstg00494)

199 – Suppressor of cell death (29) Ramachandran
et al., 2017

Shr2
(Pstg01062)

182 –

Shr3
(Pstg01724)

114 –

Shr4
(Pstg09266)

191 –

Shr5
(Pstg10812)

105 –

Shr6
(Pstg14250)

199 –

Shr7
(Pstg14695)

151 – Suppressor of cell death, PTI and HR (2, 24, 27, 29)

PstHa5a23 108 Cyt Function: Suppresses of PTI and cell death, virulence (1, 2, 8, 19, 21, 22, 23, 31) Cheng et al.,
2017

PstSCR1 116 Apo Function: Cell death elicitor (7, 20, 25) Dagvadorj et al.,
2017

Pst8713 114 Cyt/Nuc Function: Induced early infection stage, suppresses of PTI and cell death (1, 2, 7, 8, 19, 21, 31) Zhao et al.,
2018b

Pst18363 219 – Interactor: TaNUDX23; Function: Suppresses ROS accumulation (1, 12, 13, 16, 17, 21, 30, 31) Yang et al.,
2020

PstGSRE1 290 Cyt Function: Defeats ROS-induced defense, by inhibiting the transcription factor, TaLOL2 (1, 2, 3, 8, 12, 17, 30,
31)

Qi et al., 2019

Pst13661 275 Apo Function: Polysaccharide deacetylase, suppresses BAX-induced cell death, Interactors: Itself as homopolymer
(1, 3, 7, 12, 13, 16, 17, 21, 31)

Xu et al., 2020b

PstCTE1 133 Chl Feature: Novel chloroplast target sequence (7, 8, 9) Andac et al.,
2020

(Continued)
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and the overexpression of the effector showed reduced virulence with

increased H2O2 accumulation and increased virulence, respectively.

One latest Pst effector, PsSpg1 (Wang et al., 2022), was shown to lack

a typical fungal effector signal peptide, which comes as no surprise,

since it was detected indirectly as an interactor while investigating

the roles of a receptor-like cytoplasmic kinase (TaPsIPK1) that was

induced by fungus inoculation, and it negatively regulates wheat

resistance to yellow rust pathogen. TaPsIPK1 appears to be a

susceptibility gene. PsSpg1 was shown to impede the virulence of

multiple Pst races and promote parasitism via enhancing kinase

activity and nuclear entry of TaPsIPK1. These effectors, except

PsSpg1, regardless of their subcellular targets, are mostly found as

PTI suppressors (Table 3, Figure 2). In susceptible plants, PTI is

overcome by adapted pathogens in which virulence effectors are

suppressed to defeat PTI. In the case of PsSpg1, it must act in

effector-triggered susceptibility.
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The current understanding of the research of Pst protein

effector biology is still very limited; other unknown factors, both

effectors of pathogen or host, may be facilitating the primary

target interactors within the host cell. The activities of effectors

most probably are transformed continuously in time and space.

The common methods used to determine the roles of effectors

in PTI in the aforementioned studies were conducted in either

whole plant (native host or model organism) or protoplasts. The

assays contain detection of ROS generation, calcium production,

activation of MAPK cascades, induction of defense-related genes,

and callose deposition. These methods are well optimized in N.

benthamiana (Chakravarthy et al., 2009; Nguyen et al., 2010).

Also, the consequences of Pst effectors, which are overexpressed or

silenced, were assessed using the determinants of PTI. For

example, PstHa5a23 demonstrated the competence of the

effector in suppressing cell death induced by the transient
TABLE 3 Continued

Effectors No.
aa

Location Function / Features / Interactors References

Pst12806 146 Chl Function: Inhibits Bax-induced cell death and Pseudomonas induced cell death, Interactor: TaISP (1, 2, 7, 12,
13, 16, 21, 24, 27, 31)

Xu et al., 2019

Pst10917 130 Chl Function: Inhibits INF1 mediated cell death (7, 19) Ozketen et al.,
2020

PSEC2 187 Cyt/Nuc Function: Inhibition of PTI response (2, 8) Su et al., 2021

PSEC17 257 Cyt/Nuc

PSEC45 230 Cyt/Nuc

Pst_4 152 Cyt/Nuc Interactor: TaISP, cyt-b6-f complex iron-sulfur subunit, a Chl protein encoded by Nuc gene (1, 2, 4, 12, 13,
16, 21, 31)

Wang et al.,
2021bPst_5 147 Cyt/Nuc

Pst27791 207 Cyt/Nuc Interactor: TaRaf46; Function: Suppressor of cell death, ROS accumulation and the salicylic acid-dependent
defense response, virulence (4, 8, 12, 13, 16, 27, 30, 31)

Wan et al., 2022

PstCFEM1 192 Apo Function: Suppressor of cell death, ROS accumulation and callose deposition, virulence (1, 2, 7, 30, 31) Bai et al., 2022

PstCEP1
(PSTG_13342)

243 Cyt Function: Suppressor of cell death, responding to wheat HTSP resistance via affecting the ETI and PTI,
virulence (1, 2, 7, 19, 21, 31)

Tao et al., 2020

Pst_A23 181 Nuc Interactor: cis-element of TaWRKY53 and TaXa21-H; Function: regulate host pre-mRNA splicing, suppresses
plant basal defense responses, virulence (2, 4, 7, 8, 15, 21, 24, 26, 31)

Tang et al.,
2022

PsSpg1 232 Cyt Interactor: TaPsIPK1; Function: virulence (1, 5, 6, 7, 12, 18) Wang et al.,
2022

PstGSRE4 232 Cyt Interactor: TaCZSOD2; Function: Suppressor of cell death, ROS accumulation and callose deposition,
virulence (1, 2, 3, 4, 7, 12, 13, 17, 21, 30, 31)

Liu et al., 2022

PSTG_01766 307 Nuc/Cyt/
membrane

Interactor: TaPLCP1; Function: Suppress high-temperature seedling resistance (1, 2, 3, 7, 8, 10, 12, 16, 17, 19,
21, 31)

Hu et al., 2022

Methods

Gene transfer into intact wheat 1) HIGS via BSMV, 2) P. fluorescens (EtHAn)/pEDV6, 3) Particle bombardment, 4) Agrobacterium, 5) Fusarium graminearum 6)
BSMV-VOX

Subcellular localization analysis 7) Agrobacterium-mediated transformation of N. benthamiana, 8) Wheat protoplast, 9) Tobacco protoplast, 10) Wheat plants, 11)
Transgenic Arabidopsis lines

Interactors and verification 12) Y2H, 13) CoIP, 14) CoIP/MS, 15) RNA-EMSA, 16) BIFC, 17) Pull-down assay, 18) Split luciferase comp. (SLC) assay

Identification of PTI involvement 19) INF1, 20) BAK1, 21) BAX 22) MKK1, 23) NPK1, 24) P. syringae DC3000, 25) P. infestans, 26) P. fluorences, 27) Flg22,

28) M. oryzae, 29) Cytosolic ‘Effector/R-gene’ combinations: Cp/Rx, ATR13/RPP13, Rpt2/RPS-2, GPA/RBP-1, Pto (Y207D), 30)
Pst322

Functional validation of the signal
peptide

31)Yeast invertase secretion assay
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expression of INF1, BAX, MKK1, and NPK1 on N. benthamiana

leaves (Cheng et al., 2017). Similarly, the influence of candidate

effectors on non-host pathogens was studied using the

heterologous system N. benthamiana.

In these studies, the experimental methods such as yeast

two-hybrid and Co-Immunoprecipitation (Co-IP) and/or

pulldown allowed detection of host protein interactors, which

are the key determinants of understanding how an effector is

mediating its influence. One of the strategies relying on chimeric

effector-tagged protein fusions was established to capture

interacting partners in vivo utilizing FLAG-tag and fluorescent

tags (Win et al., 2011; Petre et al., 2016).

Another key determinant to elucidate the function of the

effectors is the location of the effector both extracellularly and

intracellularly. The location of a protein is meaningful for the

evaluation of its biological function. It is expected for a protein to

be present in the subcellular location of the interaction site.

Similarly, the pathogen effector needs to travel to the location of

its target. Exploiting this phenomenon, the biological function or

pathogenicity attribution of an effector could be estimated. For

instance, an apoplastic effector is more likely to establish favorable
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conditions by fighting host defensive measures such as defense

enzymes. If an effector localizes in the nucleolus of the host cell, it

should be expected to be involved in the regulation or interference

of transcription. Thereby, investigating the localization site of an

effector candidate illuminates its role. It is however imperative to

compare and contrast the microscopic analyses with co-infiltration

of known cellular markers fused to various fluorescent proteins,

green fluorescent protein (GFP), Yellow Flurescent Protein (YFP),

mCherry, etc. Agrobacterium tumefaciens-compatible plant

destination vectors of “Gateway Cloning” methodology were

designed previously (Karimi et al., 2002). The pK7FWG2 vector

is one of the destination plasmids having a strong 35S promoter site

of the cauliflower mosaic virus. Cloning the effector of choice into

the plasmid results in effector-GFP fusion at the C-terminal end.

The versatility of this system benefitted research related to candidate

effector investigation (Liu et al., 2016; Petre et al., 2016; Dagvadorj

et al., 2017; Evangelisti et al., 2017).

The studies in Table 3 uncovered the biological roles of

numerous effectors of yellow rust fungi fused to fluorescent

protein for their interacting partners and subcellular

localizations. In the majority of these studies, N. benthamiana
FIGURE 2

Cellular localization of Pst effectors and their known targets. The roles indicated in Table 3 are related to PTI. Any effector interacting directly or
indirectly with NLR that generates ETI is not known. The red arrows point to the locations. Host interactors are shown in green oval boxes. *The
candidate interactors were found but not confirmed (Table 3). ADK, Adenosine Kinase; CEP1, Candidate Effector Protein 1; CFEM1, Common in Fungal
Extracellular Membrane Protein 1; CTE1, Chloroplast Targeting Effector 1; CZSOD2, Copper Zinc Superoxide Dismutase 2; EDC4, ENHANCER OF mRNA
DECAPPING PROTEIN 4; ETI, Effector Triggered Immunity; GSRE1, Glycine-serine-rich Effector 1; GSRE4, Glycine-serine-rich Effector 4; ISP,
Cytochrome b6–f complex iron–sulfur Subunit; LOL2, LSD1-One-Like-2, LSD1: Lysine Specific Demethylase 1; NLR, Nucleotide Binding Leucine-rich
Receptors; NPR1, Non-expresser of PR genes 1; NUDX23, Nudix Hydrolase 23; PAMPs, Pathogen Associated Molecular Pattern; PNPi, Puccinia NPR1
interactor, NPR1: Non-expresser of PR genes 1; PR1a, Pathogenesis-related Protein 1a; PRR, Pattern Recognition Receptor; PsIPK1, Puccinia striiformis-
Induced Protein Kinase 1; PsSpg1, Septum-promoting GTP-binding Protein 1; PTI, PAMP Triggered Immunity; Raf46, Raf-like Kinase; RNA bind P, RNA-
binding Protein; SCR1, Small Cysteine-rich Protein 1; WRKY53, WRKY Transcription Factor 53; Xa21-H, Homologous to Xa21 in rice.
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is used as a surrogate experimental plant system, which offers a

great chance to scrutinize candidate effectors inside plant cells,

despite being a non-homologous plant for Pst effectors.
Experimental approaches
and limitations

There is a considerable number of methods in effectoromics

research including in silico, in vitro, and in vivo approaches that

aid in evaluating, dissecting, and filtering these gigantic datasets

generated. The most laborious and time-consuming part is to

validate each effector candidate for its functions using in planta

and in vitro practices. Currently, a huge number of Pst candidate

effectors are still awaiting full elucidation of functions in

immune responses.

In the case of Pst parasite and wheat, to meet the following

conditions is extremely challenging to study effectors with

high-throughput experimental approaches. Not only is it

preferred to study the effectors on their native host but also

it is preferred that an effector in question can be overexpressed

in the native parasitic organism with peptide tags and/or fused

with fluorescent proteins, so recombinantly modified pathogen

can be further investigated for functional analyses on the native

host. Since Pst is an “obligate biotroph” and cannot be cultured

in vitro, the pathogen cannot be genetically manipulated. The

only form of Pst that can be obtained is a urediniospore, which

can only be germinated on water-agar plates; the effective

genetic manipulation of these entities is not currently

available. Nevertheless, this limitation is overcome by

expressing the Pst effectors or their interactors on wheat with

var ious eng ineered bio log ica l ent i t i e s , which are

discussed below.
Agrobacterium tumefaciens
mediated transient transformation
of wheat by effectors

Inefficient transient transformation in wheat for the high-

throughput screening of Pst candidate effectors directly on its

host slows the research progress. A. tumefaciens-mediated

transient gene transfer is ineffective in monocots due to

compatibility issues (De Cleene and De Ley, 1976). Unlike N.

benthamiana, simply put, Agrobacterium cannot transiently

transform intact plant leaves of any wheat cultivar of interest as

efficiently as needed. There are reports that when particular A.

tumefaciens strains, LBA4404 and COR308, are used, the

transient gene transfer on some wheat cultivars, e.g.,

Thatcher (Panwar et al., 2013; Cuomo et al., 2017), is

successfully achieved; however, not every cultivar with a

particular desired genetic background can be utilized. Thus,
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various Agrobacterium strains should be tested for each wheat

variety of interest. It is reported that the recalcitrance of plant

species to Agrobacterium is “primarily determined by the

timing and the intensity at which host defense responses are

activated” (Pitzschke, 2013). There are examples in the

literature, e.g., for the closest yellow rust parasite, stem rust,

where Agrobacterium strain AGL1 carrying AvrSr35 (Salcedo

et al., 2017) and its cognate Sr35 co-infiltrated into barley

successfully showed cell death due to ETI. Other examples are

presented in Table 3.
Effector-to-host analyzer for
transient transformation in wheat
by effector

The other means of transient gene expression is the use of an

engineered Pseudomonas fluorescens strain. A bacterial delivery

system is engineered as Effector-to-Host Analyzer (EtHAn) by

harnessing Type 3 Secretion System (T3SS) of Pseudomonas

syringae pv. syringae-61 for effector delivery by stably integrating

the hrp/hrc region into the genome of P. fluorescens Pf0-1 (Thomas

et al., 2009). The pEDV6 gateway destination vector was

constructed by manipulating the N-terminal amino acid sequence

of AvrRPS4 for type 3 secretion of any effector of interest cloned

into the vector (Sohn et al., 2007). There are concerns raised by the

researchers about the lack of reproducibility of the observations

with transient gene expression by EtHAn, including us. In our

hands, for example, cell death once observed with a Pst effector was

inconclusive in other trials (unpublished data). We suspect that very

minor variations in plant growth conditions are the most probable

cause for the observed irreproducibility. The list in Table 3 presents

some of the successful applications.
Virus-mediated effector
overexpression in wheat

A few other alternative means of gene transfer for

overexpression in wheat is present, one of which is the utilization

of engineered viruses, albeit with other limitations. Barley stripe

mosaic virus (BSMV) is effectively used for gene silencing in wheat.

However, its use for virus-mediated overexpression (VOX) is only

possible for non-native or non-homologous genes; otherwise,

instead of overexpression, silencing can occur. There is another

limitation even if non-homologous genes are to be overexpressed,

which is the requirement of a short insert. BSMV gamma-RNA

genome cannot sustain large inserts of full non-homologous genes

for overexpression. To overcome such limitations, there are efforts

to split the gamma genome of BSMV to maintain stability (Lee

et al., 2012). Recently, another virus, a monopartite foxtail mosaic

virus (FoMV) was shown to stably overexpress longer proteins, with
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limitations of up to 600 amino acids (Bouton et al., 2018). There is

only one example of VOX of Pst effector (232 amino acids) in wheat

(Wang et al., 2022) (Table 3).
Effector gene silencing in wheat

Gene silencing strategy is an effective tool to investigate the

biological significance of candidate genes by delivering the silencing

constructs of antisense RNA. It is widely used as a gene validation

tool for observing the change in phenotype. The virus-based

elements are engineered for the expression of antisense RNA in

host plants as in virus-induced gene silencing (VIGS). BSMV is the

most commonly and effectively utilized virus for gene silencing in

wheat. It is also used effectively for HIGS of the genes of Pst. VIGS is

relatively straightforward and trouble-free in functional genomics of

plants (Holzberg et al., 2002). In early applications of proviral DNA

of BSMV, genomes were transcribed in vitro and the RNA

generated was used for inoculations. Over a decade, viral RNA

generated in vivo, N. benthamiana, sap containing the virus was

used to rub-inoculate wheat seedlings (Yuan et al., 2011). The

method reduced the cost and allowed its widespread application.

HIGS exploits the ability of double-stranded RNA (dsRNA) or

small interfering RNA (siRNA) translocation from a host into a

pathogen (Nowara et al., 2010) upon expression of hairpin RNA,

antisense, sense, or dsRNA. It is demonstrated that pathogen

effector candidates could be subjected to HIGS for assessing the

biological function of Pst effectors (Yin et al., 2011), since generated

dsRNA and/or siRNAs can enter haustoria. Currently, host-induced

silencing of the messages of Pst effectors is extensively conducted to

assess the loss/reduced function of effectors (Table 3).
Effector delivery and expression in
wheat protoplasts

The literature is full of use of protoplasts instead of intact

plants for many purposes, especially if a robust transient

transformation method of a plant is not available, or

sometimes protoplasts allow better microscopic detections to

assess not only the cellular targets of effectors but also cell death,

ROS accumulation, etc. The optimized delivery of plasmids

expressing the gene of interest is available for model plants

and crops, many of which are referred to in the references of the

studies listed in Table 3. The method takes advantage of

polyethylene glycol (PEG)-mediated delivery of DNA and the

use of enzymes for the removal of the cell wall. Nevertheless, the

procedure must be optimized in each laboratory. A major

shortcoming is the need to isolate protoplasts freshly. One of

the best and most recent examples of protoplast microscopic

analyses comes from the studies of ZAR1 (HOPZ-ACTIVATED

RESISTANCE 1) (Bi et al., 2021), encouraging similar studies to

be conducted with wheat protoplasts.
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Conclusive remarks

The biological importance of effectors as virulence and avirulence

determinants commenced the new era of effectoromics. Common

features of the effectors such as secretion to apoplast or into the plant

cell enabled the high-throughput discovery of effectors (Figure 1).

Any identified unique feature compels further studies to elucidate

their functions. Despite the available genome and transcriptome

information and ongoing annotations of the genes of Pst, to entirely

understand the biological and biochemical functions, interactions,

cell entrance, organellar targeting, and the mechanism in induction

or suppression of plant immunity of hundreds of Pst effectors, robust

high-throughput functional analysis methods are needed. So far, a

heterologous planta system, particularly the model organism N.

benthamiana with immense examples and generated information,

appears as the best system in understanding effector biology.

Most often, also in the case of Pst, the search and functional

analyses of effectors aim to identify the Avrs. Despite the

aforementioned limitations, it is still possible to test avirulence gene

candidates by co-infiltrating N. benthamiana together with cognate

wheat R-genes based on some criteria: 1) provided that the R-gene of

interest is a singleton, or 2) if not, heterologous/non-native helper

NLRs of N. benthamiana can execute an HR, or 3) if the cellular

content and/or the genetic background of N. benthamiana is

conducive for the avirulence factor activating its cognate R-protein.

If these requirements are met, detecting cell death inN. benthamiana

allows the verification of the effector being the avirulence factor of Pst.

These requirements may limit the identification of many Avrs of Pst

in a non-host system, N. benthamiana.

Currently, the use of wheat protoplasts might be the only

means of testing Pst effectors for being avirulence factors for any

cognate YR gene. A cell death detection assay is developed on

wheat protoplasts. The protoplasts isolated can be used from a

wheat line having a particular R gene by expressing effectors of a

race with known virulence and avirulence pathogenicity

possessing a cognate Avr to that of the R-gene. The method

detects luciferase activity (Saur et al., 2019); it demonstrates the

detection of significant loss of luciferase activity due to cell death

by Avr sensed YR-protein, where the mesophyll protoplasts are

transfected with the luciferase, a candidate Avr, and the YR-

gene. However, the method can be very cumbersome for testing

hundreds of effectors on many wheat lines with different YR

genes. Thus, there is an urgent need for high-throughput

transient gene expression methods in intact wheat plants. In

our opinion, it appears that the best possible candidate approach

could be virus-mediated overexpression of genes in wheat until

the time a particular strain of A. tumefaciens is engineered for

efficient transient gene expression. Most recently, BSMV-

mediated VOX was successfully applied to express the

predicted effector proteins from Pst to identify the AvrSr27

gene (Upadhyaya et al., 2021). In another study, the

infiltration of purified AvrSr35, expressed with the intact signal

peptide in Escherichia coli, into the wheat with Sr35 resistance
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gene resulted in an HR. The method is useful for determining

Avr proteins in the true host (Salcedo et al., 2017). However, the

applicability of this approach for high-throughput screening of

effectors for seeking out Avrs can be cumbersome. In our

opinion, the search for Avr genes of Pst requires genetic

studies on isolates of the races, as it has been proven

successful for finding Avr genes of wheat stem rust pathogen.

The precisely identified virulence and avirulence of the Pst

isolates of the same race can be utilized for comparing the

genome and transcriptome sequences. Searching for natural

mutations resulting in different virulence/avirulence by

comparing the sequences leads to the identification of the

candidate genes. For Pst, it is now possible to generate a

segregating population of the isolates by fertilization, since its

sexual reproduction is possible in the alternate host, which is

determined to be barberry. On the segregating population, a

high-density genetic map can be generated using single-

nucleotide markers, determined by sequencing. Indeed, such a

study produced candidate PstAvr genes by comparing the

sequences of ethyl-methane sulfonate (EMS)-generated

mutants with the progenitor isolate (Xia et al., 2020). Thus,

the goal of identifying Avr genes of Pst is now within reach.

Thordal-Christensen proposed a model, known as the

“iceberg model” as a view on ETI. In the model, it is pointed

out that most of the NLRs, the effectors, and the effector targets

keep one another in a silent state. The model helps explain the

existence of many NLRs, effectors, and lesion mutants, also

why many effectors appear to enhance virulence due to

suppression of PTI (as in Table 3). It is argued that many of

these effectors indeed cause effector-triggered susceptibility;

when silenced, contributing to virulence indirectly, they may

be misinterpreted as suppressors of PTI. In this model, it is

claimed that what is observed most often is the tip of the

iceberg (Thordal-Christensen, 2020). This view questions the

presence of numerous NLRs and emphasizes that few are R-

genes, and a few effectors are cognate Avrs. Finding the

primary components of ETI (R/Avr) may be relatively easier

than a full understanding of what is happening below the

surface of the iceberg in plant immunity that requires time and

huge effort.
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