
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Nabin Bhusal,
Agriculture and Forestry University,
Nepal

REVIEWED BY

Md Mehedi Hasan,
Tulane University, United States
Piyush Priya,
National Institute of Plant Genome
Research (NIPGR), India

*CORRESPONDENCE

Sarika Jaiswal
sarika@icar.gov.in

SPECIALTY SECTION

This article was submitted to
Plant Abiotic Stress,
a section of the journal
Frontiers in Plant Science

RECEIVED 01 August 2022

ACCEPTED 14 November 2022
PUBLISHED 12 January 2023

CITATION

Ahmed B, Haque MA, Iquebal MA,
Jaiswal S, Angadi UB, Kumar D and
Rai A (2023) DeepAProt: Deep
learning based abiotic stress
protein sequence classification
and identification tool in cereals.
Front. Plant Sci. 13:1008756.
doi: 10.3389/fpls.2022.1008756

COPYRIGHT

© 2023 Ahmed, Haque, Iquebal, Jaiswal,
Angadi, Kumar and Rai. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not
comply with these terms.

TYPE Original Research
PUBLISHED 12 January 2023

DOI 10.3389/fpls.2022.1008756
DeepAProt: Deep learning based
abiotic stress protein sequence
classification and identification
tool in cereals

Bulbul Ahmed1, Md Ashraful Haque2, Mir Asif Iquebal1,
Sarika Jaiswal1*, U. B. Angadi1, Dinesh Kumar1,3 and Anil Rai1

1Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute,
New Delhi, India, 2Division of Computer Application, ICAR-Indian Agricultural Statistics Research
Institute, New Delhi, India, 3Department of Biotechnology, School of Interdisciplinary and Applied
Sciences, Central University of Haryana, Mahendergarh, Haryana, India
The impact of climate change has been alarming for the crop growth. The

extreme weather conditions can stress the crops and reduce the yield of major

crops belonging to Poaceae family too, that sustains 50% of the world’s food

calorie and 20% of protein intake. Computational approaches, such as artificial

intelligence-based techniques have become the forefront of prediction-based

data interpretation and plant stress responses. In this study, we proposed a

novel activation function, namely, Gaussian Error Linear Unit with Sigmoid

(SIELU) which was implemented in the development of a Deep Learning (DL)

model along with other hyper parameters for classification of unknown abiotic

stress protein sequences from crops of Poaceae family. To develop this

models, data pertaining to four different abiotic stress (namely, cold, drought,

heat and salinity) responsive proteins of the crops belonging to poaceae family

were retrieved from public domain. It was observed that efficiency of the DL

models with our proposed novel SIELU activation function outperformed the

models as compared to GeLU activation function, SVM and RF with 95.11%,

80.78%, 94.97%, and 81.69% accuracy for cold, drought, heat and salinity,

respectively. Also, a web-based tool, named DeepAProt (http://login1.cabgrid.

res.in:5500/) was developed using flask API, along with its mobile app. This

server/App will provide researchers a convenient tool, which is rapid and

economical in identification of proteins for abiotic stress management in

crops Poaceae family, in endeavour of higher production for food security

and combating hunger, ensuring UN SDG goal 2.0.
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1 Introduction

The drastic climatic changes due to global warming after the

1980s lead to significant yield loss in various crops (Lobell et al.,

2011). The Poaceae family of crops, especially rice, wheat, and

maize, which account for ~50% of the world’s food calories and

20% of its protein intake (Erenstein et al., 2022), are highly

susceptible to abiotic stress like heat, salinity, drought, and cold

(Landi et al., 2017). On the other hand, due increasing global

population, which may be around 9.5 billion by 2050, the current

food availability gap requires a dramatic increase in food by 2050

(Cobb et al., 2013). It is already well known that environmental

stressors negatively regulate the growth and development of

plants leading to substantial yield and quality losses (Boyer,

1982; Palanog et al., 2014, Gupta et al., 2021). A recent study

suggests that climate change could reduce global crop yields by

3–12% by mid-century, and by 11–25% by the century’s end,

under a vigorous warming scenario (Sue Wing et al., 2021).

Stresses in plants, like drought, salinity, cold, etc. are their

defensive states which result from deviations from their optimal

growth conditions (Jansen and Potters, 2017). These stresses lead

to a loss in yield, thus affecting food security, especially in the

current scenario of climate change (Rico-Chávez et al., 2022).

Therefore, there is a need to conceive comprehensive strategies

for trait improvement of important crops, especially of the

Poaceae family, under adverse climatic conditions. Artificial

intelligence (AI)- based machine learning techniques have

become the forefront of prediction-based data interpretation

and plant stress responses (Gill et al., 2022). Analyses of high-

throughput genomic data in recent years, like, genes, transcripts,

proteins, metabolites, etc., require advanced analytical methods

for proper associations and interactions. The promising

computational power in terms of artificial intelligence (AI)

based methodologies had been a promising means for

analyzing various plant stress mechanisms (Fenu and Malloci,

2021). Also, machine learning (ML) based methodologies for

identifying DNA N6-methyladenine sites of plant genomes

(Hasan et al., 2021), a deep-learning-based hybrid framework

for identifying human RNA N5-methylcytosine sites (Hasan

et al., 2022), solving classification problems in molecular data

like amino acid sequence, protein sequences and structures (Cai

et al., 2020; Xu et al., 2020; Gelman et al., 2021; Sridevi and

Kanimozhi, 2021; Wang, 2022; Ding et al., 2022) proves the

versatility of ML methodologies. The use of ML-based studies to

identify, classify, and predict various stresses in plants are well

reported, namely, in basil, coriander, parsley, baby-leaf, coffee,

pea, and maize for water stress (Niu et al., 2021; Zahid et al.,

2022), in Arabidopsis thaliana for heat, cold, salt, and drought

(Kang et al., 2018), salt stress in rice (Das et al., 2020) and wheat

(Moghimi et al., 2018), drought stress in Bromus inermis (Dao

et al., 2021), and biotic stresses in soybean (Venal et al., 2019), etc.

Various studies have been done using ML/Deep Learning

techniques to classify stress-responsive varieties in corn using
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deep convolutional neural networks (Ghosal et al., 2018; Khaki

et al., 2019), neural networks (Etminan et al., 2019), linear mixed

model (Chen et al, 2012) and CNN (An et al., 2019), etc.

However, there are limited resources of deep-learning-based

prediction models for the abiotic stress protein sequence of the

Poaceae crop family. Therefore, we developed a deep learning

approach for the classification of the abiotic stress protein

sequence of this family. In addition, we developed a novel

activation function, namely, sielu that has increased accuracy

as compared to the existing models. The same has been applied

to the stress datasets. Most of the data under study were

benchmark data collected from Uniprot. Although, the DL

model works well in the structure, unstructured, and complex

features of the dataset, however, it requires a large dataset to

train the model (Elaraby and Elmogy, 2016). It also uses different

optimization techniques, weight functions, loss functions, and

activation functions during model development (Wen et al.,

2018; Salman and Liu, 2019). During model building, an

activation function plays an important role in boosting the

performance of the model as this helps in the activation or

deactivation of neurons (Benvenuto and Piazza, 1992; Sarker,

2021). DL model without an activation function converges to

linear regression model. Several activation functions like

sigmoid, ReLU, LeakyReLU, Tanh, and Softmax have been

reported in the literature (Xu et al., 2015; Hendrycks and

Gimpel, 2016; Agarap, 2018; Pratiwi et al., 2020) are being

used in building DL for the classification and prediction (Li

et al., 2018; Armenteros et al., 2019; Bileschi et al., 2022). Some

of the major limitations of these activation functions are the

vanishing gradient, loss of neurons, and problems in training

small datasets (Srinivasan et al., 2019).

In this study, we proposed a novel activation function,

named Gaussian Error Linear Unit with Sigmoid (SIELU) to

overcome issues related to the activation function. Further, we

have built a DL model using the proposed activation function for

the prediction of abiotic stresses, i.e. heat, drought, cold, and

salinity responsive protein sequences from the crops of the

Poaceae family. Also, a Web server has been developed, which

can be extensively used by researchers/breeders for the

development of abiotic stress resistance varieties of the crops

of the Poaceae family for increasing agricultural production and

productivity. In the future, there is a scope for developing

different weight initialization techniques, activation functions,

optimizers, etc. for more efficient classification using deep

learning models.
2 Materials and methodology

2.1 Activation function

A series of studies have been carried out related to various

activation functions and their performance in DL network
frontiersin.org
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building. The extensively used activation functions in DL models

are Sigmoid, Tanh, ReLU, LeakyReLU, SoftMax, etc. (Dunn

et al., 2011).

Sigmoid function: For any given input of data, the sigmoid

maps to 0 or 1. If a given input goes above the predetermined

threshold value, it will give output as 1, otherwise, 0, i.e., the

neuron will remain deactivated. Scientifically, it has been proven

that the human brain functions like the sigmoid function for

differentiating and classifying objects (Pratiwi et al., 2020).

Mathematically, it is expressed as:

f xð Þ = 1
1 + e−x

Tanh function: It is similar to the Sigmoid function with little

modification for the output and expressed mathematically as

(LeCun et al., 2012):

f xð Þ = 2
1 + e−2x

− 1

Rectified Linear Unit (ReLU): This activation function uses

stochastic gradient descent for back-propagation by adjusting

the learning rate and minimizing the errors during training a

model. Also, it provides a better solution without decaying the

hidden layers by adjusting the learning rate and minimizing the

error differentiation by removing all the negative values in back-

propagation. Mathematically, ReLU can be expressed as

(Agarap, 2018):

f xð Þ =
x,       for   x ≥ 0

0,   for   x < 0

(

Leaky Rectified Linear Unit (LaekyReLU): It is an extension

of ReLU i.e., by using some value, say s=0.01 that makes the

neuron active instead of deactivating for zero values.

Mathematically, the LeakyReLU function is expressed as (Xu

et al., 2015):

f xð Þ =
x,                               for   x ≥ 0

s*x,     for   x < 0

(

Softmax function: It gives the probability of each true class

and is expressed as (Kanai et al., 2018):

f xj
� �

=
exj

ok
k=1e

xk

Many other activation functions have been developed which

are mainly derived from the above activation functions such as

Gaussian Error Linear Unit (gelu) (Hendrycks and Gimpel,

2016), a multi-layer perceptron model with a sigmoid, tanh,

conic section, and radial bases function (RBF), etc. (Karlik and

Olgac, 2011; Cai et al., 2015).
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2.2 Proposed Gaussian error linear unit
with sigmoid activation function (SIELU)
activation function

It may be noted that the Tanh activation is used in the

Cumulative Distribution Function of GELU. Also, Tanh

activation function is reported to perform better than sigmoid

(Szandała, 2021; Ingole and Patil 2020; Jiang et al., 2020) but

takes more time. However, in the prediction of high-dimension

datasets, computational time is one of the crucial factors. It has

been pointed out that the sigmoid function requires less time

and is computationally inexpensive by approximating its

polynomial for positive outputs (Wang et al., 2020). Further,

the sigmoid function is computationally easy to perform.

Therefore, a thorough investigation was done to derive a novel

activation function i.e., SIELU from the GELU function.

An approximation of normal distribution (q) was carried out

in 1955 for the first time by (Hastings, 1955; Brophy, 1985)

which was expressed as:

q =
1ffiffiffiffiffiffi
2p

p
Z ∞

−∞
e−

1
2t

2

∂ t; 0 ≤ q ≤ 0:5

Hence X*(q) = h − f a0+a1h
1+b1h+b2h2g;  h =

ffiffiffiffiffiffiffiffiffi
ln 1

q2

q
;

where , a0=2.30753 , a1=0.27061 , b1=0.99229 , b2=0.04481

or              X*(q) = h − f a0+a1h+a2h2

1+b1h+b2h2+b3h3g,
were, q! normal distribution , t! time, a0=2.515517 ,

a1=0.802853 , a1=0.010328 , b1=1.432788 , b2=0.189269 ,

b2=0.001308 (Hastings., 1955).

With the advancement of technology, a more accurate

approximation was introduced by estimating the standard

normal deviated distribution z by (Zelen and Severo, 1964)

followed by Emerson, 1979.

z = t −
C0 + C1t + C2t

2

1 + d1t + d2t2 + d3t3

� �
+ e pð Þ

where,   t =
ffiffiffiffiffiffiffiffiffiffi
ln 1

p2  
q

and |e(p)|<4,5×10−4 , C0=2.515517 ,

C1=0.802853 , C2=0.010328 , d1=1.43288 , d2=0.189269 ,

d3=0.001308 .

Later, in 2008, standard normal deviated distribution to

approximate the function was given by Kiani and co-workers

(Kiani et al., 2008) as follows:

F(x) = 1
2 f1 − erf ( −zffiffi

2
p )g; −∞<z<∞ where erf (z) =

Z z

0

2ffiffiffiffi
p

p
e−t

2

∂ t; −∞<z<∞ .

Moreover, the approximation of F(x)−0.5 with absolute

error< 3×10−5 (Bagby, 1995) is estimated from:

F xð Þ − 0:5 ≈ 0:5 1 −
1
30

� �
7� exp

−z2

2

� �
+ 16� exp −z2 2 −

ffiffiffi
2

p	 
n o
+ 7 +

pz2

4

� �
� exp −z2

� �� �0:5

Our proposed Gaussian Error Linear Unit with Sigmoid

(SiELU) was constructed by modifying the GELU function as

follows:
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GELU : f xð Þ

= 0:5x 1 + tanh

ffiffiffiffi
2
p

r
� x + 0:044715x3
� �( )" #

(1)

Let tanhf
ffiffiffi
2
p

q
� (x + 0:044715x3)g = tanh(y) where, y =ffiffiffi

2
p

q
� (x + 0:044715x3)

On simplification of the equation (1):

f xð Þ = 0:5x 1 + tanhy½ �
Tanh and Sigmoid functions are mathematically defined as:

Tanh xð Þ = ex − e−x

ex + e−x
(2)

Sigmoid xð Þ = 1
1 + e−x

(3)

On further simplification of the equation (2),

Tanh xð Þ = ex − e−x +   e−x − e−x

ex + e−x
= 1 −

2e−x

ex + e−x
(4)

By dividing numerator and denominator by e-x, equation (4)

is changes to:

Tanh xð Þ = ex − e−x +   e−x − e−x

ex + e−x
= 1 −

2
e2x + 1

= 1 − 2� Sigmoid −2xð Þ
(5)

From equation (1) , f(x)=0.5x[1+tanhy] Now, equating

sigmoid with tanh function and simplifying, we get:

sigmoid yð Þ = tanh y
2

� �
+ 1

2
− 1

2� sigmoid 2yð Þ − 1 = tanh yð Þ
Finally, the SiELU can be expressed as:

SiELU f xð Þ = 0:5x 1 + 2� sigmoid 2�
ffiffiffiffi
2
p

r
x + 0:044715x3
� �

− 1

( )" #

On simplification, we got the Gaussian Error Linear Unit

with Sigmoid activation function, termed SIELU as follows:

SiELUf xð Þ = 0:5x 2� sigmoid 2�
ffiffiffiffi
2
p

r
x + 0:044715x3
� �( )" #
2.3 Deep learning model with proposed
activation function

2.3.1 Data collection and pre-processing:
Abiotic stress responsive protein sequence data, namely,

“salt stress”, “drought stress”, “heat stress” and “cold stress”
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of the Poaceae family were retrieved using Boolean operator

from the public domain (Uniprot database: https://www.

un ip ro t . o rg / ) . A l so , the nega t i v e da t a s e t o f the

corresponding stress conditions has been downloaded with

the NOT operator. A total of 46 features were extracted from

each of these sequences using the bio-python package, (Cock

et al., 2009) (Table 1). All the redundant sequences were

removed with a similarity of 80% or more using the CD-Hit

suite (Huang et al., 2010). For pre-processing the dataset,

StandardScaler was used to transform these datasets into

Standard Normal Distribution (SND) of the data having

zero mean and unit variance, which reduces the biases of

the models (Ahsan et al., 2021; Karlas ̌ et al., 2022; Cha and

Bae, 2022).

This data pertains to various features that were scaled down

and standardized as follows to achieve consistency in the varying

range of datasets:

Scaling x̂ð Þ = x −min xð Þ
max xð Þ −min xð Þ

Standardization Zð Þ = x − m
s

;  m = 0;  s 2 = 1  

where, Z is standard normalization with x variables, m mean,

and s2 variance (Tauber and Sánchez, 2002).

For different layers and epochs, first, stratified sampling was

performed, followed by random selection of the training dataset

using python script, sklearn library. Different combinations of

training:test sets, like, 70:30, 80:20, and 90:10 were made, and

finally we proceeded with 80:20 based on the accuracy parameter

(Gholamy et al., 2018; Akarsh et al., 2019; Pham et al., 2020;

Nguyen et al., 2021; Gu et al., 2022). From this training data,

actual training data and drop-out prediction data were retained

at 80:20. Fine tuning of weight initializer, layers, epochs, and

activation function was carried out in the model to assess the

model performance in each epoch. For the given datasets of four

stresses, different machine learning algorithms such as SVM, RF,

LSTM models were applied using GeLU. For SVM models,

polynomial kernel function, 0.01 coeff , and 5-fold

StratifiedKFold were used in SVM models for maximum

efficiency. In the case of Random Forest, we used a minimum

of 0.1 leaf weight with 5-fold StratifiedKFold. For the deep

learning model, 150 units, He normal kernel initializers, gelu

activation function, and the proposed activation function i.e.,

sielu were used for comparative analysis in input layers. In the

case of the hidden layer, 50 units, 0.02 dropout, and sigmoid

activation with 1 unit for binary classification (in the output

layer) were employed. During the model compilation, an Adam

optimizer and mean square error loss function were used with

500 epochs. The schematic diagram of the methodology is

represented in Figure 1.
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2.4 Model evaluation indicators

For model evaluation, measures such as accuracy, precision,

recall, F1 Score, specificity, and MCC were applied. These

parameters were calculated for all four abiotic stresses for
Frontiers in Plant Science 05
SVM, RF, LSTM with GeLU, and LSTM with SieLU activation

functions. These are expressed as follows:

Sensitivity =
TP

TP + FN

� �
 �  100
TABLE 1 Set of features under study.

Sl. No. Features Sl. No. Features

1 Composition of Alanine (A) 24 C- Nitrosylation (Nito C)

2 Composition of Arginine (R) 25 Total Nitrosylation (Total Nitro)

3 Composition of Asparagine (N) 26 A- Nitrotyrosine (YNO A)

4 Composition of Aspartate (D) 27 B- Nitrotyrosine (YNO B)

5 Composition of Cysteine (C) 28 C- Nitrotyrosine (YNO C)

6 Composition of Glutamine (Q) 29 Total Nitrotyrosine (YNO Total)

7 Composition of Glutamate (E) 30 SUMOylation I (SUMO I)

8 Composition of Glycine (G) 31 SUMOylation II (SUMO II)

9 Composition of Histidine (H) 32 SUMOylation III (SUMO III)

10 Composition of Isoleucine (I) 33 Total SUMOylation (SUMO Total)

11 Composition of Leucine (L) 34 Amino acid number

12 Composition of Lysine (K) 35 Number of negative amino acids

13 Composition of Methionine (M) 36 Number of positive amino acids

14 Composition of Phenylalanine (F) 37 Molecular weight

15 Composition of Proline (P) 38 Theoretical PI

16 Composition of Threonine (T) 39 Number of carbon atoms

17 Composition of Serine (S) 40 Number of hydrogen atoms

18 Composition of Tryptophan (W) 41 Number of nitrogen atoms

19 Composition of Tyrosine (Y) 42 Number of oxygen atoms

20 Composition of Valine (V) 43 Number of sulphur atoms

21 Coiled-coil domain (CCD) 44 Instability index

22 A- Nitrosylation (Nito A) 45 Aliphatic index

23 B- Nitrosylation (Nito B) 46 Grand average hydropathy (GRAVY)
FIGURE 1

Schematic workflow for model implementation in the development of DeepAProt.
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Precision =
TP

TP + FP

� �
 �   100

F1 =   2  � Precision  �  Recall
Precision + Recall

� �

Recall =
TP

TP + FN

� �

Accuracy =  
TP + TN

TP +  TN + FP + FN

� �
 �   100

MCC =
TP  �  TN − FP  �   FNffiffiffiffiffiffiffiffi

(TP
p

+ FP) TP + FNð Þ TN + FPð Þ TN + FNð Þ
� �

 �   100

where, TP = True Positive, TN = True Negative, FP = False

Positive, FN = False Negative.
3 Results and discussion

A thorough screening of “salt stress”, “drought stress”, “heat

stress” and “cold stress” associated protein sequences from the

Poaceae family retrieved from the public domain resulted in a

total of 739 positive and 1305 negative protein sequences of cold

stress, 642 positive and 1284 negative protein sequences of

drought stress, 977 positive and 1305 negative protein

sequences of drought stress, and 473 positive and 946 negative

protein sequences of salt stress. For these datasets, 46 protein

sequence features were extracted (Table 1) using the bio-python

package. These features were scaled down and standardized. The

scaling method was used followed by the transformation of

feature information into 0 to 1 to reduce the dominance of one

feature over others (Beljkas et al., 2020).

The DL models were built using Sigmoid, Tanh, ReLU,

LeakyReLU, SoftMax using the above data set and their

performance was evaluated with respect model using the

proposed SIELU activation function. Also, models were built

based on these stress-associated datasets with different machine

learning algorithms, namely, SVM, RF, and DL with GeLU

activation function were also evaluated with the model using

the proposed SEILU activation function. Off course, the

proposed SIELU activation function was used in LSTM along

with other fine-tuning hyper-parameters for the model

development of four different abiotic stress protein sequence

datasets of the Poaceae family. All these developed models were

subjected to five-fold cross-validation.

The performance of these models was recorded from the test

dataset in the form of a confusion matrix for calculating the

various evaluation measures, namely, accuracy, precision, recall,

F1 Score, specificity, and MCC. The following points emerged

from this analysis:
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It was observed that, for the cold stress dataset, accuracy and

MCC were highest for LSTM with the proposed activation

function, SieLU, i.e., 95.11% and 0.90, respectively for testing

and 99.20% and 0.98 for the training dataset. LSTM with GeLU

activation function gave an accuracy of 94.62% and MCC of 0.89

for the testing dataset and 100% accuracy and MCC of 0.89 in

the training dataset. The performance of RF was lowest, i.e.,

87.53% accuracy and 0.74 MCC for the testing dataset, accuracy

of 88.43% and MCC of 0.75 for the training dataset (Table 2).

For the drought-responsive protein sequences, the

performance of LSTM with SieLU activation function was best

with accuracy and MCC as 80.78% and 0.58, respectively for the

testing dataset and 97.79% accuracy and MCC 0.95 for the

training dataset. This was followed by LSTM with GeLU

activation function (Accuracy 78.18%, MCC 0.53 for testing

dataset and Accuracy of 100% and MCC 0.53 for training

dataset), SVM (Accuracy 75.06%, MCC 0.45 for testing and

Accuracy 85.39% and MCC 0.67 for training dataset) and RF

(Accuracy 67.53, MCC 0.26 for testing dataset and Accuracy

72.03% and MCC 0.30 for training dataset).

In the case of heat stress also, we found LSTM with a novel

activation function, SieLU to perform best with 94.97% accuracy

and 0.90 MCC for the testing dataset while an Accuracy of

99.12% and MCC 0.98 for the training dataset. The accuracies

for LSTM (GeLU), SVM, and RF were 94.97%, 93.65%, and

87.31%, and 87.96% respectively for the testing dataset whereas

for the training dataset, it was found as 99.12%, 100%, 88.71%,

and 85.64% respectively, while MCCs were 0.90, 0.87, 0.74, and

0.77 respectively for testing dataset whereas for training it was

0.98, 0.87, 0.77, and 72 respectively. A similar trend was

observed in performance for the salt stress dataset also.

Accuracy of LSTM (SieLU), LSTM (GeLU), SVM, and RF

were 81.69%, 80.63%, 75.35, and 79.93 respectively for the

testing dataset, whereas for the training dataset, it was 98.06%,

100%, and 75.49%, and 84.92% respectively. Table 2 delineates

the performance of models in detail.

Training accuracy vs. validation accuracy was captured for

each epoch in which performance LSTM (SieLU) was found to

be superior for all four abiotic stress datasets (Figure 2). For the

binary classification of four different abiotic datasets, we used a

precision-Recall graph (Supplementary Figure 1) for

measurement of the performance of our developed models

(Flach and Kull 2015; Boyd et al., 2012). Analogously, the

ROC (Receiver Operating Characteristics) curve shows the

comparison of the performance of the developed ML/DL

models for all the abiotic stress datasets (Supplementary

Figure 2) (Majnik and Bosnić, 2013). Therefore, it can be

concluded that the LSTM model with the proposed SIELU

activation function outperformed in all datasets as compared

to the other competitive models used in this study for classifying

protein sequences. Further, these models were also cross-

validated with the benchmark heart disease dataset available in
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TABLE 2 Comparison of LSTM with sielu and gelu, SVM, and RF for different abiotic stress-associated protein sequences. The figures in bold denote the evaluation parameters of the best fit model for
given stress.

(%) Recall (%) F1 Score (%) Specificity (%) MCC

Testing Training Testing Training Testing Training Testing Training Testing

92.95 98.8 94.16 98.88 93.55 99.43 95.69 0.98 0.9

93.42 100 92.21 100 92.45 100 96.08 0.89 0.89

96.45 92.29 88.31 95.99 92.2 100 98.04 0.94 0.88

96.4 69.69 69.48 81.15 80.75 98.86 98.43 0.75 0.74

79.31 95.92 64.79 96.5 71.32 98.67 90.12 0.95 0.58

71.32 100 68.31 100 69.78 100 83.95 0.53 0.53

82.86 56.91 40.85 71.62 54.71 99.04 95.06 0.67 0.45

84 15.83 14.79 26.87 25.14 99.04 98.35 0.3 0.26

95.31 98.85 92.89 98.97 94.09 99.33 96.54 0.98 0.9

92.42 100 92.89 100 92.66 100 94.23 0.87 0.87

87.17 83.57 82.74 86.33 84.89 92.54 90.77 0.77 0.74

97.97 69.58 73.6 80.53 84.05 97.61 98.85 0.72 0.77

72.63 96.76 72.63 97.01 72.63 98.69 86.24 0.96 0.59

73.81 100 65.26 100 69.27 100 88.36 0.55 0.55

62.63 61.54 65.26 62.53 63.91 82.43 80.42 0.44 0.45

88 58.09 46.32 71.92 60.68 98.28 96.83 0.66 0.53
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Samples Models Accuracy (%) Precision

Training Testing Training

Cold LSTM (sielu) 99.2 95.11 98.97

LSTM (gelu) 100 94.62 100

SVM 97.25 94.38 100

RF 88.43 87.53 97.14

Drought LSTM
(sielu)

97.79 80.78 97.11

LSTM (gelu) 100 78.18 100

SVM 85.39 75.06 96.6

RF 72.08 67.53 88.76

Heat LSTM (sielu) 99.12 94.97 99.1

LSTM (gelu) 100 93.65 100

SVM 88.71 87.31 89.3

RF 85.64 87.96 95.59

Salt LSTM (sielu) 98.06 81.69 97.28

LSTM (gelu) 100 80.63 100

SVM 75.49 75.35 63.56

RF 84.92 79.93 94.4

https://doi.org/10.3389/fpls.2022.1008756
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ahmed et al. 10.3389/fpls.2022.1008756
the UCI machine learning repository which consists of 303

samples with the 13 most significant features (Otoom et al.,

2015). The results showed LSTM (SiELU) to have the highest

accuracy (94.74%) and MCC (0.89) as compared to other

machine learning models, namely, LSTM (GELU), SVM and

RF which showed MCC of 0.86, 0.57 and 0.53, respectively.
3.1 DeepAProt: Web implementation

Aweb-based tool, named asDeepAProt, was developed using

the Application Programming Interface (API) flask for the

deployment of these DL models. In this web server, the best

model for each of the stress-responsive datasets was

implemented at the backend to develop a web server for the

prediction of related stress-responsive proteins. The architecture

of a web-based tool followed the standard three-tier architecture,

namely, presentation, web-API, and application layer. The

presentation layer is the user interface of the tool which was

implemented using HTML and CSS languages. In web-API, a

REST API was developed for deploying the model in the server.

This layer was implemented using the Python programming

language. Finally, the application layer contains the models for

the end users, making it more user-friendly for easy use and

access. For its application at remote locations, a mobile app
Frontiers in Plant Science 08
“DeepAProt app” was also developed. “DeepAProt app” is

developed using Java and XML as a front-end mobile app

using android studio. For the interface of the web tool, the

Python Flask framework has been used. The Back-end web tool

is developed on a python framework using a deep learning

module i.e., TensorFlow. This app has the provision to upload

protein sequence data in fasta format for analysis and the result

will be presented in a tabular form regarding the given protein

sequences association with abiotic stresses such as cold, drought,

heat, and salt. In this app, a provision was also made to

download and help document and sample data. It makes use

of HTML (Peroni et al., 2017), javascript (Delcev and Draskovic,

2018), and CSS (Genevès et al., 2012) at the back-end and front-

end to classify any protein sequence (in fasta format) that has to

be upload as input by biologists.

The user can select either of the abiotic stresses, (i.e., heat/

cold/salt/drought) followed by uploading the sequence. Once the

raw protein sequence is uploaded in fasta format, the output

classifies the sequences to the predicted category. This web

server is user-friendly and freely accessible at http://login1.

cabgrid.res.in:5500/. Figure 3 shows the interface of this web-

implemented server and its usage. This web-based tool helps the

biologist to classify the unknown protein sequence to the

respective class of abiotic stress. Also, the developed mobile

app can be popularized for easy and quick handling of data for
A B

C D

FIGURE 2

Validation curve of LSTM (SiELU) for (A) Cold stress , (B) Drought stress, (C) Heat stress and (D) Salt stress.
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the identification of stress. It can be downloaded from

the Homepage.

As classification and prediction of proper abiotic stress

protein sequences help the biologist to implement it in crop

improvement. Machine learning and deep learning models help

to find out the abiotic stress protein sequences in a cost and

effective manner. However, most biologists do not have enough

knowledge about machine learning and deep learning to predict

the proper abiotic stress protein sequences. Therefore, our

models help them to distinguish between the abiotic stress and

non-abiotic stress protein sequence that comes from the

sequencing laboratory directly.
4 Conclusion

In this study, we proposed a novel activation function name

SIELU which was used to build the DL model along with other

hyperparameters. The performance of this novel activation

function has been studied using public domain data to predict

stress-responsive proteins under four abiotic stresses, namely,

cold, heat, salinity, and drought from the major crops of the

Poaceae family. Further, a comparative analysis was carried out

between SVM, RF, and LSTM with GELU, and SIELU activation

functions. It has been observed that LSTMwith SIELU activation
Frontiers in Plant Science 09
function outperformed as compared to other competitive

models used in this study. Hence, LSTM with SIELU models

was implemented in the form of web servers for the classification

of unknown protein sequences into different abiotic stresses of

crops from the Poaceae family. This work can be of immense use

for plant breeders for in silico identification of the stress-

responsive proteins in crops of the Poaceae family, leading to

the rapid development of abiotic stress-resistant varieties.

Resource used: The research was carried out using python

programming packages, version 3.7.8. Also, for the graphical

user interface (GUI), Anaconda Repository was used for coding

these models in a Jupyter notebook with necessary python

libraries. All these model buildings have been carried out in

HP-Z400-Workstation dual booting system where Linux -

Ubuntu version with 16.04 LTS is used with the memory of

99.3 GB. The RAM of the system was 16 BGB with a processor of

Intel® Xeon(R) CPU W3565 at 3.20GHz × 4 having

NVC1 graphics.
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