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Ralstonia solanacearum, the causal agent of bacterial wilt, is one of the most
destructive bacterial plant pathogens. This is linked to its evolutionary adaptation to
evade host surveillance during the infection process since many of the pathogen’s
associated molecular patterns escape recognition. However, a 22-amino acid sequence
of R. solanacearum-derived cold shock protein (csp22) was discovered to elicit an
immune response in the Solanaceae. Using untargeted metabolomics, the effects of
csp22-elicitation on the metabolome of Solanum lycopersicum leaves were investigated.
Additionally, the study set out to discover trends that may suggest that csp22
inoculation bestows enhanced resistance on tomato against bacterial wilt. Results
revealed the redirection of metabolism toward the phenylpropanoid pathway and sub-
branches thereof. Compared to the host response with live bacteria, csp22 induced a
subset of the discriminant metabolites, but also metabolites not induced in response
to R. solanacearum. Here, a spectrum of hydroxycinnamic acids (especially ferulic
acid), their conjugates and derivatives predominated as signatory biomarkers. From
a metabolomics perspective, the results support claims that csp22 pre-treatment of
tomato plants elicits increased resistance to R. solanacearum infection and contribute
to knowledge on plant immune systems operation at an integrative level. The functional
significance of these specialized compounds may thus support a heightened state of
defense that can be applied to ward off attacking pathogens or toward priming of
defense against future infections.

Keywords: cold shock protein, defense, elicitor activity, hydroxycinnamic acids derivatives, metabolomics,
phenylpropanoids and phenolics, plant immunity activation

INTRODUCTION

The immobile nature of plants exposes them to an environment filled with a diverse range of
biotic—and abiotic stimuli and stressors. Since plants are the primary producers within most food
systems, they are threatened by bacteria, fungi, viruses, insects, and herbivores. Plants synthesize
a large variety of surface-located receptors that allow them to interact with the surrounding
environment and defend themselves from unavoidable threats (Ranf, 2018; Malik et al., 2020).
Plant innate immunity is thus reliant on cell-autonomous events, with these events displaying
an overlapping similarity when compared to the immune system of animals. To compensate for
the absence of an adaptive immune system, plants have evolved a greater pathogen recognition
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capacity (Freeman and Beattie, 2008; Dodds and Rathjen, 2010).
The described pattern recognition receptors (PRRs) recognize
and bind to molecules deemed foreign or non-self to the
host (Sanabria et al., 2012), defined as microbial-associated
molecular patterns (MAMPs). Exposure of the plant to a live
pathogen would expose it to a consortium of different MAMPs,
with different chemical signatures originating from peptide,
carbohydrate and lipid-based structures (Boller and Felix, 2009;
Sanabria et al., 2012). This results in the initiation of intracellular
signaling cascades leading to a plant immune response in support
of a broad-spectrum resistance that limits pathogen ingress and
development (Malik et al., 2020). The perception of the MAMP
molecules functions as an early warning system against pathogens
and allows the rapid activation of the plant defense mechanisms.

The causal agent of the bacterial wilt disease, Ralstonia
solanacearum, is regarded amongst the most destructive bacterial
pathogens due to several behavioral, geographic and host
factors (Mansfield et al., 2012). The disease has been difficult
to contain due to the pathogen’s ability to evade host
recognition. A contributing factor to the pathogen’s success
would be that many of the prototypical MAMPs described in
literature are not perceived by host plants (Wei et al., 2018)—
allowing the pathogen to successfully infiltrate the host by
bypassing many of the pre-existing defense mechanisms. For
example, the polymorphic flagellin-derived flg22 sequence from
R. solanacearum (flg22Rso), elicits no response in tomato (Wei
et al., 2018, 2020), which sets back the development of strategies
to limit the bacterial wilt disease.

However, the discovery of the cold shock protein (csp)-
derived csp22 elicitor, reported to induce an immune response in
several species of the Solanaceae, together with its corresponding
PRRs, has opened new avenues of scientific exploration
in the Solanaceae. The csps of bacteria are defined by
intracellular hyperaccumulation in response to rapid temperature
fluctuations of >10◦C to assist with the challenges faced by
the microorganism; which includes the rigidification of the cell
membrane, inefficient protein folding, as well as a decreased
efficiency in transcription and translation (Keto-Timonen et al.,
2016; Wang et al., 2016). The highly conserved nucleic acid
binding motif RNP-1 of csps (the 22-amino acid core or csp22)
was found to function as MAMPs and to selectively induce
immune responses in species belonging to the Solanaceae family
(Zipfel, 2014; Wang et al., 2016). Initially, the phenomenon that
Solanaceae plants possess an immunological detection method
directed at the perception of membrane impermeable proteins
naturally found in the cytoplasm of bacteria (as also applies
to elongation factor Tu), came as a scientific mystery, and
suggested the presence of a PRR for csp recognition located at
the plant cell surface (Wang et al., 2016). The PRR of Solanum
lycopersicum was identified by mapping the natural variation in
csp22 perception between S. lycopersicum and S. pennelli and was
named the cold shock protein receptor (CORE) (Wang et al.,
2016; Wei et al., 2018). Similarly, in Nicotiana benthamiana, the
PRR responsible for csp22 perception was named as the receptor-
like protein required for csp22 responsiveness (NbCSPR). This
PRR was found to associate with the brassinosteroid insensitive
1 (BRI1)-associated kinase upon elicitor treatment to confer

bacterial resistance in an age-dependent and flagellin-induced
fashion (Saur et al., 2016). These studies also underlined the
biotechnological potential to augment immunity and defense
by interspecies transfer of CORE/CSPR to other plant families
(Wang et al., 2016).

This observation motivated for the investigation of
downstream metabolic processes following csp22-elicitation
in order to evaluate the functional significance of adaptive
metabolome changes. In terms of “omics” levels, metabolomics
is the final manifestation of integrated upstream biological
information flow and thus the determinant of the eventual
phenotype. Integration of data originating from metabolomics
with transcriptome and/or proteome data offers gene-to-
metabolite and protein-to-metabolite analysis in support of
reliable understanding and interpretation of metabolism. Here,
we monitored the effects of csp22-elicitation on S. lycopersicum
using an untargeted metabolomics approach. Additionally, the
study set out to discover trends that may indicate that csp22
treatment confers increased resistance to R. solanacearum
in S. lycopersicum. Metabolomic analyses have shown
potential in studies involving plant-pathogen interactions
by revealing subtle metabolic alterations in response to biotic
or abiotic perturbations and can subsequently be regarded
as an adequate method of functionally investigating plant
metabolism (Tugizimana et al., 2018; Zeiss et al., 2018, 2019;
Castro-Moretti et al., 2020).

MATERIALS AND METHODS

Plant Cultivation
Seeds from the tomato cultivar, “Star 9001” was obtained from a
tomato breeding program for resistance against R. solanacearum
(Stark Ayres, Pty. Ltd., Bredell, South Africa)1 and cultivated
in germination mixture (Culterra, Muldersdrift, South Africa).
Plants were grown under greenhouse conditions: a light/dark
cycle of 12 h/12 h, with the light intensity set at 80 µmol/m2/s
and the temperature regulated to between 22 and 24◦C. Plants
were rotated on a daily basis to prevent any positional effects.

csp22 Peptide
The csp22 peptide elicitor with sequence
ATGTVKWFNETKGFGFITPDGG (Wei et al., 2018), was
synthesized at ≥90% purity (GL Biochem, Shanghai, China).
A stock solution of the peptide elicitor was made to 1 mg/mL
in 8 mM MgSO4 and used as a diluted sample during the
inoculation procedures.

DAB Histochemical Staining
The leaves of 6 w old mature tomato plants were treated with
csp22 and subsequently stained with a 3,3′-diaminobenzidine
(DAB, Sigma, St. Louis, United States) solution to visualize and
detect the presence of hydrogen peroxide (H2O2). The protocol
was performed with slight modifications as previously described
(Bach-Pages and Preston, 2018). Briefly, the abaxial side of the

1www.starkeayres.co.za
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leaves were treated with 500 nM csp22 by means of pressure
infiltration and incubated for 30 min. The corresponding abaxial
side of the leaves were treated with 8 mM MgSO4, which served
as a negative control. Care was taken to avoid excess wounding
or mechanical damage during pressure infiltration. The DAB
solution (1 mg/mL in water, pH 3.8) was prepared 1 h before use.
The leaves were excised from the plant and placed within a DAB
solution under light at 23◦C for 8 h with constant agitation. After
the incubation period, the leaves were removed and immersed
in boiling 70% ethanol for 10 min. After cooling, the leaves
were transferred into absolute ethanol at room temperature and
left overnight. The leaves were then imaged. The visible brown
polymerized precipitate in the host tissue was produced as a result
of the oxidation of DAB by H2O2.

Oxidative Burst Luminescence Assay
Leaf disks (0.4 cm2) were punched out from fully expanded
leaves using a cork borer. The leaf disks were floated adaxial
side up on 200 µL MilliQ water in a white 96-well microtiter
plate (Nunc, Roskilde, Denmark) which was placed under light
at room temperature for 24 h. After the incubation period the
water from each well was completely removed and replaced with a
100 µL of a master mix solution composed of: 34 µg/mL luminol
(Sigma, St. Louis, United States) and 20 µg/mL horseradish
peroxidase (Sigma, St. Louis, United States) and 1 µM csp22
in 8 mM MgSO4. Special consideration was taken to limit
mechanical damage of the leaf disks during the floating disk and
water removal steps. A negative control composed of the above-
mentioned master mix, excluding the csp22 elicitor, was added.
The negative control was supplemented with 8 mM MgSO4 to
maintain sample volumes. Luminescence was measured every
2 min for 60 min using a Synergy HT Biotek microplate reader
(Biotek Instruments, Vermont, United States). The luminescence
data was exported to an excel file for further analysis. To account
for natural variability three leaf disks per plant were taken. In total
of 24 leaf disks were used per treatment condition.

Plant Elicitation and Experimental Design
Six-week-old tomato plants were watered generously 5 h prior
to elicitor inoculation to open leaf stomata and facilitate
inoculation. Three plants, selected for uniform size and
appearance, were reserved for each treatment/control condition
prior to the treatment process. To ensure sample consistency,
leaves from the fourth node branching point of the plants
were selected for elicitor/control inoculation. The respective
plants were treated with (500 nM) elicitor solution by pressure
infiltration into the leaves using a blunt-ended syringe. Separate
plants were treated with 8 mM MgSO4 functioning as a
negative control. In each instance, the entire leaf surface was
supplied with elicitor/control treatment solution to minimize
biological variation. It should though be noted that the fragility
and complex reticulate venation inherent with tomato leaves
complicate the inoculation process and that care should be
taken to avoid/limit wounding or mechanical damage. After
inoculation, the plants were incubated for 16, 24, and 32 h,
respectively. After each incubation time the inoculated leaves
were harvested from the three selected plants, snap-frozen in
liquid nitrogen to quench metabolic activity and stored at

−80◦C until further use. The experimental design consisted of
three biological replicates (n = 3) that were created for each
elicitor/control treatment at each time point (16, 24, and 32 h),
thus constituting 18 biological sample groups (3× 2× 3) in total,
covering all conditions.

Metabolite Extraction
The leaf tissues frozen with liquid nitrogen were pulverized
with a mortar and pestle. Two grams of leaf powder were
extracted with 80% methanol in a 1:10 (w/v) ratio. The samples
were sonicated twice in a sonicator bath for 30 min, with the
temperature controlled at 20◦C. Cell debris was pelleted with a
bench top swinging-bucket centrifuge set at 5,525 × g and 5◦C
for 20 min. The supernatants were evaporated to 1 mL using
a rotary evaporator at 55◦C, carefully transferred into 2 mL
microcentrifuge tubes and dried in a heating block overnight at
55◦C. The samples were then reconstituted in 500 µL of 50%
HPLC-grade Methanol: MilliQ water solvent (1:1, v/v). The 18
samples were filtered through 0.22 µm nylon syringe filters into
vials fitted with 500 µL inserts and stored at 4◦C until analyzed.
Three pooled quality control (QC) samples consisting of aliquots
of all samples, as well as 50% methanol blanks were included in
the sample list. The QC samples were added to check sample
stability, feature legitimacy, assess intensity drifts that occur
during data the acquisition process, and monitor instrumental
efficiency and robustness. Each of the 18 biological samples (that
were prepared in triplicate as biological repeats) were analyzed
in triplicate (technical repeats) on the UHPLC-MS instrument
to gain precision and accuracy. Although the method described
above has been widely used in scientific metabolomics literature,
it should be noted that the extraction of highly polar compounds
e.g., phosphates and sugars, highly non-polar compounds e.g.,
several lipid and sterol species, as well as volatile compounds
may only partially extract or not at all. There are currently no
extraction method that can recover the entire metabolome with
a high level of robustness and reproducibility (Tugizimana et al.,
2013). Previous literature has shown that the described method
is able to recover many of the secondary metabolites of interest
present within the tomato metabolome (Gómez-Romero et al.,
2010; Roldan et al., 2014).

Ultra-High Performance Liquid
Chromatography Coupled to High
Definition Mass Spectrometry
Two microliter of each sample extract was analyzed on an
UHPLC-quadrupole time-of-flight (qTOF) high-definition MS
system equipped with an electrospray ionization (ESI) source
(Synapt G1, Waters Corporation, Manchester, United Kingdom).
The analytes were separated on an Acquity HSS T3 reverse-phase
column (2.1× 150 mm× 1.7 µm; Waters Corporation, Milford,
MA, United States) using a binary solvent system consisting of
acetonitrile (Romil Chemistry, Cambridge, United Kingdom):
MilliQ water, with both solvents containing 0.1% formic acid
(FA, Sigma, Munich, Germany) and 2.5% isopropanol (Sigma,
Munich, Germany). A gradient elution method was used over
a 30 min run with a flow rate set to 0.40 mL/min. The
elution was started at 2% (v/v) acetonitrile from 0 to 1 min,
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raised to 70% acetonitrile from 1 to 22 min, taken up to 95%
from 22 to 23 min then kept constant at 95% acetonitrile
from 23 to 26 min. The composition of the mobile phase
was then reverted to 2% acetonitrile from 26 to 27 min, for
column cleaning and equilibration from 27 to 30 min. The
chromatographically separated metabolites were detected with
the aid of a SYNAPT G1 high definition mass spectrometer
(Waters Corporation, Manchester, United Kingdom) set to
acquire data in both positive and negative ionization modes.
The MS conditions were as follows: capillary voltage of 2.5
kV, sample cone voltage of 30 V, microchannel plate detector
voltage of 1,600 V, desolvation temperature of 450◦C, source
temperature of 120◦C, cone gas flow of 50 L/h, desolvation
gas flow of 550 L/h, m/z range of 50–1,500, scan time of
0.2 s, interscan delay of 0.02 s, mode set as centroid. The
lockmass flow rate was 0.1 mL/min, with leucine encephalin
as reference calibrant (50 pg/mL, [M + H]+ = 556.2771
and [M – H]− = 554.2615), continuously sampled every 15 s,
producing an average intensity of 350 counts/scan in centroid
mode, with typical mass accuracies between 3 and 5 mDa and
a mass accuracy window of 0.5 Da. High purity Helium was
used as desolvation-, cone-, and collision gas. The MS analyses
performed in an unfragmented as well as four fragmenting
experiments (MSE) simultaneously using ramping of the collision
energy from 10 to 50 eV. The data acquisition at these collision
energies was used to facilitate metabolite fragmentation and ease
downstream structure elucidation and compound annotation.
Each of the three biological replicates was analyzed in triplicate
on the UHPLC-MS system, creating the technical replicates
(n = 3). Thus, data for nine samples were obtained (n = 9) that
was further processed by multivariate data analyses (MVDA).

Metabolomics Data Processing and
Analysis
The UHPLC-ESI-MS data sets were analyzed with
Masslynx XSTM software (Waters Corporation, Manchester,
United Kingdom), with the addition of other statistical programs
for MVDA. The raw UHPLC-ESI-MS data was processed with
MarkerLynx XSTM 4.2 software, with the following parameters:
0.60–21 min retention time (Rt) range of the chromatograms
and m/z domain of mass range 50–1,500 Da. The Rts were
allowed to differ by ±0.20 min and the m/z values by ±0.05
Da. The mass tolerance was 0.01 Da and the intensity threshold
was 10 counts. Only the data matrices with noise level less
than 50% (MarkerLynx cut off) were retained for downstream
data analyses. The MarkerLynx application uses the patented
ApexPeakTrack algorithm to perform accurate peak detection
and alignment. Furthermore, MarkerLynx performs sample
normalization, based on total ion intensities of each defined
peak. Prior to calculating intensities, the software performs a
modified Savitzky-Golay smoothing and integration (Zhou et al.,
2012; Chen et al., 2013; Tugizimana et al., 2016).

The generated data matrices were imported into SIMCA
(soft independent modeling of class analogy) software, version
14.0 software with the “omics” skin (Sartorius Stedim Data
Analytics AB, Umeå, Sweden) for statistical analyses. To put all

variables on equal footing, and adjust for measurement errors, the
Pareto-scaling method was applied to data prior to chemometric
modeling. A non-linear iterative partial least squares algorithm
(built-in the SIMCA software) was used to handle missing values,
with a correction factor of 3.0 and a default threshold of 50%.
Unsupervised and supervised learning methods were applied. As
part of the unsupervised methods, both principal component
analysis (PCA) and hierarchical cluster analysis (HiCA) were
applied. PCA is an unsupervised projection-based statistical
method, used for reducing the multi-dimensionality of the data
matrix. This is done by projecting the data matrix into lower
dimensional space (2D) where global and qualitative visual
representation of the observations can be observed. This results
in the discovery and summarization of underlying clusters,
trends, or sample outliers, as well as displaying the systematic
variation present within the data matrix. Orthogonal projection
to latent structures discriminant analysis (OPLS-DA modeling),
as the chosen supervised method and binary classifier, was
applied as the variable selection method to compare the samples
of the elicitor treatment to that of the MgSO4 controls—leading
to identification of metabolite features positively correlated to
the discrimination between the two groups (Tugizimana et al.,
2013). The OPLS-DA separates multivariate relationships into
predictive (positively correlated to the csp22-treatment) and
orthogonal (positively correlated to the control) variation. As a
tuning procedure in computing the models, a sevenfold cross-
validation (CV) method was applied (Tugizimana et al., 2016).
Thorough model validation steps were consistently applied;
and only statistically valid models were examined and used in
data mining for metabolite annotation. For variable selection,
the OPLS-DA loading S-plots were used. The loading plot
displays an S-shape when the data is centered and Pareto-
scaled. The loadings plot facilitates the identification of features
with variability between groups (discriminating variables), i.e.,
variables situated at the upper right or lower left sections in
the S-plot. Discriminant features with a |p(corr)| of ≥0.5 and
a co-variance value of |(p1)| ≥0.05 were selected for further
analysis (Trygg et al., 2007). It should be noted that these
selection parameters are largely data dependent. These selection
parameters were chosen based on the application of descriptive
statistics (ANOVA) to the downstream metabolite features,
where a statistical cut-off of p-value <0.05 was used. To avoid
selection bias, the statistical significance of each potential marker
was investigated with the application of univariate descriptive
statistics. These analyses included the generation of average
intensity values, standard deviations, p-values, fold changes, and
each feature’s coefficient of variation in control and treatment
samples. The overall selectivity of the OPLS-DA models was
assessed by constructing receiver operating characteristic (ROC)
curves. The ROC curves illustrated the supervised model’s ability
to discriminate between features correlated to the different
sample conditions. The predictive capacity of the supervised
models was assessed with a n = 100 response permutation
test. The permutation test consisted of comparing the Q2

obtained for the original data with the distribution of the Q2-
values calculated during the randomly assigned permutations
(Triba et al., 2014).
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Annotation of Metabolites
The chemical—and structural identities of the metabolites were
elucidated using their respective mass spectral properties and
patterns obtained during the MS analyses. MS spectral-based
metabolite identification was performed based on sufficient
and accurate mass fragment information, accurate calculation
of each feature’s elemental composition and database searches
for possible metabolite annotation. MassFragment, a built in
Markerlynx software tool, was utilized for assigning possible
structures to observed fragment ions of the precursor metabolite
features using novel algorithms. The putative empirical formula
of each statistically significant extracted ion peak (XIC) in
the mass spectra was obtained and searched in databases
(ChemSpider,2 Dictionary of Natural Products,3 PubChem,4 the
KEGG Compound database,5 and Metacyc6 database for the
identification of possible compound matches (Gómez-Romero
et al., 2010; Mhlongo et al., 2016; Zeiss et al., 2018). The
analysis and identification of lipids was facilitated using the
Lipidmaps database.7 Metabolites were annotated and tentatively
identified to level 2 of the Metabolomics Standards Initiative
(MSI) (Sumner et al., 2007; Spicer et al., 2017).

RESULTS

The experiments were set up in such a way that the leaf tissues
of the “Star 9001” tomato cultivar were pressure infiltrated
with the R. solanacearum-derived csp22 peptide—the MAMP-
perceived component of bacterial cold-shock proteins—and
appropriately harvested at selected incubation time points, i.e.,
16, 24, and 32 h post inoculation. The “Star 9001” cultivar
was selected due to: (1) its apparent disease resistance toward
R. solanacearum (Zeiss et al., 2018), as well as (2) minimal
venation patterns present on the abaxial side of the leaves, which
facilitated the pressure infiltration process. The research followed
an untargeted metabolomics workflow to detect the elicitor-
induced perturbations and subsequent metabolic patterns within
the metabolome of S. lycopersicum that could be interpreted as
a positive correlation toward a conferred resistant phenotype
against R. solanacearum.

Reactive Oxygen Species Production
and Oxidative Burst
The DAB staining protocol was performed, as a qualitative
validation method, to verify that the elicitor was perceived by
the plant and that a defense-related physiological response was
triggered. The left abaxial side of the leaves was treated with
the elicitor solution, while the right abaxial half was supplied
with the MgSO4 control. The formation of a color product
(Figure 1A) revealed the presence of H2O2 and associated

2www.chemspider.com
3https://dnp.chemnetbase.com/
4http://pubchem.ncbi.nlm.nih.gov/
5https://www.genome.jp/kegg/compound/
6https://metacyc.org/
7https://www.lipidmaps.org/

ROS. The associated production of ROS in planta hints to the
trigger of the oxidative burst and suggests the activation of
initial plant immune responses. The time-dependent kinetics
of the elicitor-linked oxidative burst was investigated using the
chemiluminescence assay (Figures 1B,C). Univariate statistics
were applied, in the form of a Student’s t-test, to determine the
statistical significance (P ≤ 0.0001) between the two conditions.
The data generated from the DAB stain and chemiluminescence
assay confirmed the plant’s ability to perceive of the csp22
peptide elicitor. This is in contrast to the non-perception of the
polymorphic flg22 from R. solanacearum, regarded as part of the
pathogen’s immune evasion strategy (Wei et al., 2018, 2020).

Chromatographic Separation and Mass
Spectrometric Detection of Metabolites
As an analytical platform, reverse-phase UHPLC-MS is especially
suitable to reflect the overall phytochemical abundance of
plants, including secondary/specialized metabolites which have
a defensive or protective function (Tugizimana et al., 2013).
Following leaf inoculation, harvesting and metabolite extraction
with 80% methanol (able to extract a wide range of semi-polar
and non-polar metabolites), the sample extracts were analyzed
on such a high definition/accurate mass UHPLC-MS system. The
base peak intensity (BPI) chromatograms highlighted the relative
peak intensities and adequate resolution of individual peaks as
well as the increased ionization of S. lycopersicum metabolites in
ESI negative mode (Figure 2). Qualitative variation is reflected
by the peak size—where the y-axis represents the relative
intensity of metabolites on the x-axis at their respective Rts
(min). Changes in peak intensities and/or the presence/absence
of peaks reflect differential variation in csp22-induced leaf
metabolism. A comparison of the chromatograms between the
control and treated conditions highlights the induced metabolic
perturbations over the described incubation points in the 20 min
Rt window (Figures 2A,B).

Data Analysis and Statistical Modeling
Multivariate data analysis was performed as the chosen
method of data exploration by: (1) revealing trends within
the metabolome across the incubation time points, and (2)
detecting similarities/differences in the metabolite profiles of
the treatment conditions. Processing of the chromatographic
data yielded a data matrix containing the relative intensities
of detected metabolite features (variables) present in each of
the samples (observations). The data matrix was subjected to
PCA (Figure 3A—an unsupervised projection-based statistical
method, used for reducing the multi-dimensionality of the data
matrix. By projecting the data embedded in the matrix into lower
dimensions (2D), a global and qualitative visual representation
of the observations can be observed—leading to the discovery
and summarization of underlying clusters, trends, or sample
outliers, thus displaying the systematic variation present within
the data matrix. Additionally, the data matrices were subjected to
HiCA (Figure 3B), an unsupervised hierarchical-based statistical
method that was used complimentary to PCA. HiCA was
performed: (1) to build a hierarchy of the sample observations
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FIGURE 1 | The generation of reactive oxygen species in the leaf tissue of Solanum lycopersicum cv. Star 9001 in response to csp22 (500 nM) elicitation. (A) The
generation of H2O2 visualized using the peroxidase-dependent histochemical stain 3,3-diaminobenzidine (DAB) after 24 h incubation at room temperature. The left
abaxial half of the leaves was infused with the csp22 elicitor while the right abaxial half served as the negative control for comparative purposes. (B) The total ROS
production during the oxidative burst over 60 min as indicated as the integrated area under the curve, described as 6 relative luminescence units (RLU). The leaf
disks were treated with a csp22 solution (red) and a negative 8 mM MgSO4 control (green). (C) The total kinetics of ROS production in 60 min after elicitor
inoculation. Both experiments were replicated (DAB, n = 3 and luminescence n = 24), as three independent experiments. A pairwise Student’s t-test was performed
to determine statistical significance. The asterisks indicate the degree of statistical significance (∗∗∗∗p ≤ 0.0001).

FIGURE 2 | The UHPLC-MS analyses of methanol extracts from the csp22-treated (500 nM) S. lycopersicum, Star 9001 cultivar. A comparison of the metabolite
profiles at the 16 h time interval—(A) treatment and (B) control—revealed concentration-related variances in peak intensities. The y-axis represents the relative
abundance (%) of the metabolite fragments at their respective retention times (min). Changes in peak intensities (green) and/or the presence/absence of peaks (red)
reflect differential variation in elicitor-induced leaf metabolism.

and, (2) to subsequently reveal trends within the matrix that
may be overlooked during PCA analysis. The HiCA model
was constructed based on Ward’s linkage method, considering
distance clusters between- and within-samples. The PCA scores
plot (Figure 3A) revealed the partial overlap between some of the

observational groups e.g., the 32 h control and treated groups.
The partial overlapping pattern observation could be attributed
to a single immune-inducing elicitor treatment rather than a
cocktail of elicitors frequently associated with live pathogen
infection. The immune response produced by csp22-treatment
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FIGURE 3 | A principal component analysis (PCA) score plot revealing the group clusters within the data matrices of S. lycopersicum extracts from leaf tissue after
csp22 elicitor treatment at the incubation time points (16, 24, and 32 h). (A) A 2D PCA scores plot illustrating the grouping of the observations. The PCA model had
a calculated R2X (cum) value of 61.0% and a Q2 (cum) value of 50.3%. The ellipse on the score plot represents Hotelling’s T2 with a 95% confidence interval. (B) A
Ward-linkage hierarchical cluster analysis (HiCA) dendrogram corresponding to (A), showing the hierarchical outline of the data before and after treatment.

may leave the flux of some metabolic pathways unaffected
resulting in metabolites with similar cellular levels in both the
control and treated groups. This pattern of similarity in some
metabolite classes may contribute to the partial overlapping
pattern observed in the PCA scores plot.

In contrast to unsupervised learning methods that evaluate
the patterns within data, supervised methods are designed for
the prediction, classification and discovery of biomarkers (Ren
et al., 2015). OPLS-DA models were constructed, as the selected
supervised statistical method, to inform on class separation
(Figure 4A). The statistical significance for the observed class
separation in the OPLS-DA models were measured by calculating
the cross-validated analysis of variance (CV-ANOVA) p-values,
as a tuning method, applying a cut-off of p <0.05 (Trygg et al.,
2007; Eriksson et al., 2008). The p-values of each computed
supervised model were tabulated (Supplementary Table 1). The
corresponding OPLS-DA loadings S-plot (Figure 4B) showed
variables that were positively correlated to class separation,
i.e., csp22 treatment at the selected incubation time points.
These multidimensional analyses were then applied toward the
identification of significant features to consider for annotation.

Discriminant features with a | p(corr)| of ≥ 0.5 and a
co-variance value of |(p1)| ≥0.05 were selected for further
analysis (Trygg et al., 2007). These selection parameters
were chosen based on the application of descriptive statistics
(ANOVA) to the downstream metabolite features (Figure 4B),
where a statistical cut-off of p-value <0.05 was used. This
improved the selection of statistically relevant features, while
simultaneously excluding the selection of false positives. The
overall performance of the OPLS-DA models, in terms of
selectivity, was assessed with the construction of a ROC curve
(Figure 4C), showing that the supervised models, as binary
classifiers, had perfect discrimination with regards to sensitivity
and specificity (Supplementary Table 1). The predictive capacity
of the supervised models was assessed with a n = 100 response
permutation test (Figure 4D; Eriksson et al., 2008). The

permutation test revealed that the presented supervised models
had higher calculated R2 and Q2-values (Supplementary Table 1)
in comparison to the model permutations, concluding that
the OPLS-DA model obtained was statistically superior to the
generated permutations (Eriksson et al., 2008; Saccenti et al.,
2014). The corresponding sets of figures for the 24 and 32 h time
points are presented as Supplementary Figures 1, 2.

Selection of Discriminant Features
Based on Multivariate Statistical
Analysis Data
The OPLS-DA S-plot (Figure 4B) was used for the selection of
metabolite features positively correlated to the elicitor treatment.
The cut-off values of |p(corr)| of ≥ 0.5 and a co-variance value
of |(p1)| ≥0.05 were determined based on the application of
univariate descriptive statistics (the calculation of control and
treatment averaged peak intensities, the standard deviation, the
coefficient of variation, fold change between the two groups,
and the p-value) on the selected features. Descriptive statistics
were used to provide basic information and summarize the
characteristics of the variables between the samples from control
and treated tissues. Metabolite features that were found to
contain a p-value >0.05 and a coefficient of variation >30
were removed from the generated list of features. Using this
process, the optimal values threshold values for |p(corr)| and
|(p1)| were determined.

Metabolite Investigation
From 1,575 features (a combination of individual mass
signals, including parental ions, isotopologs and possible MS
fragments) initially acquired through ultra-high performance
liquid chromatography coupled the mass spectrometry analyses,
a total of 36 metabolites that were positively correlated to the
csp22 treatment were putatively identified in the leaf tissue of
S. lycopersicum (Table 1). The metabolites have been previously
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FIGURE 4 | An OPLS-DA model for data processing of methanol extracts from tomato leaf tissue at the 16 h incubation time. (A) An OPLS-DA scores plot showing
the group separation of control vs. treated (CSP22—Green vs. MgSO4–Blue) conditions. The calculated model yielded R2X (cum) = 46.1%, R2Y (cum) = 99.7% and
Q2 (cum) = 98.5%. Model validation by 7-fold CV-ANOVA displayed a level of statistical significance with p-value = 8.502 × 10−12. (B) The corresponding OPLS-DA
loading S-plot. Relevant variables on the loadings S-plot (at the extremes, x, y ≥0.05, 0.5), were selected and represent potential discriminating variables. (C) A
receiver operating characteristic (ROC) curve summarizing the selective ability of a binary classifier (S-plot), with a classifier having a perfect discrimination producing
a ROC curve that passes through the top left corner to indicate 100% sensitivity and specificity. (D) The response permutation test plot (n = 100) for the OPLS-DA
model.

described in literature and databases related to tomato or
plant species within the Solanaceae family. The metabolites
were tabulated according to increasing Rt with corresponding
m/z values. Among the identified metabolites, several of
the phytochemicals belong to the phenylpropanoid class
(including cinnamates, benzoates, flavonoids and coumarins),
conjugates such as amides of hydroxycinnamic acids (HCAs)
and chlorogenic acids (CGAs), organic acids and amino acid
derivatives and lipid classes. The metabolites were annotated
based on: (1) accurate mass, utilized for calculating an empirical
formula, (2) analysis of each compound’s mass fragmentation,
and (3) comparative analysis with existing literature.

Below, the structural elucidation of acetyl tryptophan
rhamnoside (a deoxyhexoside) is shown, demonstrating the
steps involved in metabolite annotation. Each metabolite’s
mass fragmentation pattern was investigated in both ionization
modes, in conjunction with MS fragmentation at different
energies (MSE), to illustrate how the MassFragment plugin
of the MassLynx software facilitated the annotation of the

fragment ions and verify the overall mass fingerprints. The
elemental compositions of fragments were also calculated as
a secondary method of validating each compound’s structural
identity (Figure 5).

Semi-Quantitative Analysis of
Metabolites
The relative peak intensities of ferulic acid derivatives (feruloyl
dopamine, feruloyl quinic acid and feruloyl hexoside) were
compared between the MgSO4 control and csp22 elicitor
treatments over the described incubation times (Figure 6). The
data revealed that feruloyl dopamine biosynthesis (Figures 6A,B)
was increased by a factor of ≥ 4 throughout the 16, 24, and
32 h incubation intervals, with the overall production of the
compounds peaking at the 24 h time point. This observed
result overlaps with literature relating the tomato-Pseudomonas
syringae pathosystem (Zacarés et al., 2007). Feruloyl quinic
acid (Figures 6C,D) exhibited its highest cellular abundance (a
fold increase of ≥ 8) during the early 16 h time point which
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TABLE 1 | Annotation of metabolite signatures from the leaf tissue of S. lycopersicum displaying a positive correlation to the csp22 elicitor treatment at selected time
intervals (16, 24, and 32 h).

# Retention
time (min)

Ionization m/z Putative
identification

Chemical
formula

Mass
error
(mDa)

Mass
error
(ppm)

Mass
fragmentation

Metabolite
class

1 0.94 [M–H]- 191.019 Citric acid C6H8O7 −0.2 −1.0 173, 111 Organic acid

2 1.15 [M–H]- 191.019 Isocitric acid C6H8O7 −0.2 −1.0 173, 111 Organic acid

3 1.17 [M+H]+ 182.081 Tyrosine C9H11NO3 −0.4 −2.2 165, 121 Amino acid

4 3.03 [M+H]+ 188.069 Indole acrylate C11H9NO2 −1.3 −6.9 142 Indole

5 3.22 [M–H]- 285.058 Gentisate pentoside C12H14O8 −0.2 −0.7 153 Benzoic acid

6 3.45 [M–H]- 397.161 Benzoyl ornithine
hexoside

C18H26N2O8 0.1 0.3 293, 235 Organic acid

7 4.12 [M–H]- 658.154 GSH-CGA C26H32N3O15S −1.0 −0.9 515, 466, 385,
191

Glutathione
conjugate

8 4.70 [M–H]- 431.153 Benzyl alcohol
dihexoside

C19H28O11 0.3 −0.9 269, 107 Benzoic acid

9 4.91 [M–H]- 367.158 Dihydroxy-dimethoxy
prenylchalcone

C22H24O5 1.0 3.8 337, 299, 235 Flavonoid

10 4.94 [M–H]- 353.084 Caffeoyl quinic acid C16H18O9 0.3 −7.9 191, 179, 135 CGA

11 4.99 [M+H]+ 217.098 Cyclo methyltryptophan C12H12N2O2 0.1 7.5 143 Indole

12 6.00 [M–H]- 293.121 Eugenyl cinnamate C19H18O3 0.8 2.7 147 HCA

13 6.28 [M–H]- 355.101 Feruloyl hexoside C16H20O9 −0.9 −2.5 193 HCA

14 6.79 [M–H]- 385.110 Feruloyl glucaric acid C16H18O11 −1.1 −2.9 223 HCA

15 6.97 [M–H]- 385.075 Sinapoyl hexoside C17H22O10 −0.6 −1.6 209, 193 HCA

16 7.31 [M–H]- 387.164 Hydroxyjasmonic acid
hexoside

C18H28O9 −0.2 −0.5 225 Phytohormone
derivative

17 8.62 [M–H]- 367.100 Feruloyl quinic acid C17H20O9 −1.9 −5.2 191, 161 CGA

18 8.66 [M+H]+ 177.054 Methylumbelliferone C10H8O3 0.1 0.6 161, 106 Coumarin

19 9.86 [M–H]- 393.165 Acetyl tryptophan
deoxyhexoside

C19H26N2O7 −0.6 −1.5 245, 203 Amino acid
derivative

20 10.91 [M+H]+ 695.365 N1, N5, N14-Tris-
(dihydro-caffeoyl)

spermine

C37H49N4O9 0.4 0.6 531, 474, 457,
293, 222

HCAA

21 10.99 [M–H]- 444.165 Coumaroyl tyramine
hexoside

C23H27NO8 0.2 0.5 282 HCAA

22 11.22 [M–H]- 609.148 Rutin C27H30O16 2.0 3.3 463, 301 Flavonoid

23 11.75 [M–H]- 490.170 Feruloyl dopamine
hexoside

C24H29NO10 0.5 1.0 328 HCAA

24 12.97 [M–H]- 328.118 Feruloyl dopamine C18H18NO5 0.3 0.9 177 HCAA

25 13.73 [M–H]- 282.112 Coumaroyl tyramine C17H17NO3 0.9 3.2 147 HCAA

26 13.98 [M+H]+ 792.599 Phosphatidyl choline
(16:0/22:6)

C46H82NO7P 2.2 2.8 704, 625 Lipid

27 14.4 [M–H]- 453.23 Phosphatidyl glycerol
(14:1)

C20H38O9P 2.0 4.4 379, 371, 299 Lipid

28 15.26 [M–H]- 423.221 Phosphatidic acid
(8:0/8:0)

C19H37O8P 5.2 12.3 343, 297, 169,
89

Lipid

29 15.26 [M–H]- 459.198 Cryptochlorophaeic
acid

C25H32O8 −4.5 −9.8 429, 415, 237 Benzoic acid
derivative

30 15.33 [M–H]- 495.253 Hydroxycysteinylglycinyl
eicosatetraenoic acid

C25H40N2O6S 1.9 3.7 451, 437, 351,
177

Lipid/amino
acid derivative

31 15.59 [M–H]- 495.255 Hydroxycysteinylglycinyl
eicosatetraenoic acid

C25H40N2O6S 2.1 4.2 451, 437, 351,
177

Lipid/amino
acid derivative

32 15.92 [M+H]+ 537.252 Phosphatidyl glycerol
(18:1)

C24H43O11P 8.7 16.2 - Lipid

33 17.40 [M–H]- 327.214 Trihydroxy
octadecadienoic acid

C18H32O5 −1.0 −3.5 309 Lipid

CGA, chlorogenic acid; HCA, hydroxycinnamic acid; HCAA, hydroxycinnamic acid amide.
The metabolites were annotated in both ionization modes as indicated using liquid chromatography coupled to mass spectrometry (UHPLC–MS). The metabolite features
were annotated according to level 2 of the Metabolomics Standards Initiative (Sumner et al., 2007).
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FIGURE 5 | The mass spectral fragmentation pattern of acetyl tryptophan deoxyhexoside (C19H26N2O7) in (A) positive and (B) negative ionization modes. The
MassFragment XSTM software, in conjunction with MSE , facilitated structural elucidation and compound identification, using the mass fragments in both ionization
modes. In ESI (+) mode, the molecular ion is present as an adduct, 412.21 [M+H+NH4]+, while the main fragment ions are 145.05 [M+H-C13H18N2O3]+, 163.06
[M+H+C10H18NO5]+, 227.09 [M+H+C6H16O5]+, 295.10 [M+H-C14H17NO6]+ and 331.17 [M+H-CH4O3]+. In ESI (–) mode, the precursor ion is 393.17 [M–H]−,
while the main fragment ions are 149.04 [M–H-C11H18NO5]−, 203.08 [M–H-C8H14O5]− and 245.09 [M–H-C6H12O4]−, 307.14 [M–H-C7H2]−and 439.18
[M–H+formic acid]−.

slowly decreased to a new cellular homeostasis level during
the 24 and 32 h intervals. A similar trend was observed with
the feruloyl hexoside derivative (Figures 6E,F). The hexoside
conjugate showed the highest cellular abundance in the leaf
tissue at the 16 h time point with a fold increase of ≥ 2.
Following the 16 h time point, the levels of feruloyl hexoside
decreased, returning to a newly established cellular homeostasis.
The increased production of the feruloyl derivatives over the
incubation period points to an elicitor-induced reprogramming
at that occurs at the metabolome level. The observed trend
indicates that the tomato leaf tissue produced most of its defense-
associated compounds during the 16 h time point that decrease,
either by metabolite degradation or conversion, during the 24 and
32 h incubation points.

The relative abundance of the coumarin, methylumbelliferone
was compared in the elicitor treatment and the MgSO4 control
over the three incubation times (Figure 7A). The data indicates
that methylumbelliferone production was increased up until the
16 h interval followed by a decline to a new cellular homeostasis.
The metabolite’s synthesis increased by a factor of ≥ 8 during the
16 h incubation interval indicating an early involvement in the
host immune response (Figure 7B).

Similarly, the cellular levels of the phytohormone derivative,
hydroxyjasmonic acid hexoside, were also monitored between
the two conditions over the incubation intervals (Figures 7C,D).
The phytochemical displayed two cellular increases during the
16 h and 32 h intervals, with a drop in the overall abundance
during the 24 h point (Figure 7C). It should be noted that the
metabolite levels at the 16 h time points, although statistically
validated, demonstrated high levels of intra-sample variability.
The jasmonic acid derivative showed a ≥ 2-fold change during

the 16 h interval followed by a delayed but more intense≥ 4-fold
change in the 32 h interval (Figure 7D). A similar pattern
was observed in the cellular levels of coumaroyl tyramine
hexoside (Figures 7E,F). This HCA amide (HCAA) produced
two statistically significant increases during the 16 and 32 h time
intervals, while the 24 h point showed levels overlapping with
the MgSO4 control. The compounds produced a≥ 2-fold change
during the 32 h time interval (Figure 7E).

DISCUSSION

Immune surveillance by the host involves an integrated
network operating at different levels: MAMP perception and
receptor activation, ROS production, calcium influx, activation
of mitogen-activated protein kinase cascades, activation of G
proteins, activation of transcription factors, etc. The intensity
and/or sustainability of the oxidative burst can be determining
factors that affect down-stream signal transduction events and
recent studies have shown that pathogens manipulate host redox
signaling to shape the eventual plant-pathogen interaction (Bleau
and Spoel, 2021).

The metabolome of a biological system provides a functional
readout of the cellular state, thus serving as direct signatures
of up-stream biochemical events that define the dynamic
equilibrium of metabolism and the correlated phenotype. The
possibility of applying progressively improved metabolomic tools
and approaches in plant-microbe studies has opened new ways
to investigate the intricate details of how plant metabolism
is activated and re-directed upon immune activation (Mareya
et al., 2019; Tugizimana et al., 2019). Previously we have utilized
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FIGURE 6 | Fluctuating levels of ferulic acid derivatives in S. lycopersicum at selected incubation times (16, 24, and 32 h–red) after treatment with the csp22
peptide. The relative peak intensities of (A) feruloyl dopamine, (C) feruloyl quinic acid, (E) feruloyl hexoside in the treated samples (red). The corresponding fold
changes (B,D,F) are displayed (blue) at the described time intervals. A MgSO4 control (C–green) was included for each time point as a comparative measure. Each
data bar is presented as a mean value (x̄of n = 9 samples) with the error bars indicating the calculated standard deviation (σ). A two-condition paired Student’s t-test
was performed to compare the treatments with the MgSO4 control where the asterisks indicate levels of statistical significance (∗∗p ≤ 0.001, ∗∗∗p ≤ 0.0001).

metabolomics for comparative metabolic phenotyping of tomato
plants for the identification of metabolic signatures associated
with different response capacities conferred by phenotypic
plasticity in cultivars differing in resistance to R. solanacearum
(Zeiss et al., 2018). Metabolomic profiling of the tomato host
response following infection by R. solanacearum revealed that
the phenylpropanoid pathway, represented by flavonoids and
HCAs, acts as the central hub of induced defenses (Zeiss et al.,
2019). Increased concentrations and variability of metabolites
associated with defense pointed to cultivar-specific variation in
the speed and manner of resource redistribution between the
host tissues. Differential metabolic signatures were linked to the
resistant vs. susceptible metabolic phenotypes, underlying the
defense metabolism and defining their defensive capabilities to
R. solanacearum (Zeiss et al., 2019).

In this study, the changes to the composition of the tomato
leaf metabolome again reflects an inducible resistant phenotype
in the host. A comparative summary of discriminant metabolites
(that could be positively annotated), present in leaf extracts from
tomato plants infected with R. solanacearum vs. those present in
leaf extracts from csp22-treated plants, are presented in Figure 8.
It is evident that the single elicitor was able to trigger the

synthesis of only a subset of metabolites compared to that of the
consortium of MAMPs that are present during infection with live
bacteria. Interestingly, csp22 was also able to elicit metabolites
that were not annotated in the data set corresponding to the
R. solanacearum infection (Zeiss et al., 2019).

In general, plants seem to mobilize similar chemical defense
responses as reflected by activation of similar pathways leading to
secondary metabolite synthesis. At a metabolite level, this might
be reflected in enhanced synthesis of secondary metabolites
with antimicrobial and antioxidant activities. Moreover, plants
execute the triggered defense based on the perceived stimulus
and the existing biochemical background operative in the naïve
vs. stress-related conditions. Allowing for the dynamic nature
of plant metabolism, qualitative and quantitative differences
of specific metabolites or classes of metabolites within the
broader metabolomic profiles, may modulate the eventual
outcome of a host response to attempted infection (Mhlongo
et al., 2021). These molecules (Table 1 and discussed below)
were found to accumulate in varying amounts in the csp22-
elicited leaves and exhibit differential accumulation patterns.
These patterns indicate differential reprogramming over time
(either high or low accumulation at specific time points,
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FIGURE 7 | Fluctuating levels of selected metabolites in S. lycopersicum at selected incubation times (16, 24, and 32 h–red) after treatment with the csp22 peptide.
The relative peak intensities of (A) methylumbelliferone, (C) hydroxy jasmonic acid hexoside, (E) coumaroyl tyramine hexoside in the treated samples (red). The
corresponding fold changes (B,D,F) are displayed (blue) at the described time intervals. A MgSO4 control (C–green) was included for each time point as a
comparative measure. Each data bar is presented as a mean value (x̄ of n = 9 samples) with the error bars indicating the calculated standard deviation (σ).
A two-condition paired Student’s t-test was performed to compare the treatments with the MgSO4 control where the asterisks indicate levels of statistical
significance (∗ = p ≤ 0.01, ∗∗ = p ≤ 0.001, ∗∗∗ = p ≤ 0.0001).

reflecting early-, late or oscillatory responses). The time-
dependent reprogramming is an indication that plants re-adjust
their metabolomes toward defense responses in order to ward
off infection (Mhlongo et al., 2021). In the absence of a real
infection by R. solanacearum, the levels of the csp22-induced
metabolites decrease again with the establishment of a new
cellular homeostasis.

HCAs and—amides (HCAAs) (reviewed in Zeiss et al., 2021)
are frequently associated with the metabolic stress responses
of Solanaceous plants. In a comparative study of the effect
of the MAMPs (lipopolysaccharides, chitosan, and flagellin-
22) on Nicotiana tabacum cells, overlapping metabolomes were
found that indicate common aspects where the phenylpropanoid
pathway (modulated by both salicylic acid and the methyl ester
of jasmonic acid) is activated by these elicitors and where
HCA derivatives are consequently synthesized (Mhlongo et al.,
2016). The results generated from this untargeted metabolomics
study revealed that csp22-elicitation lead to the production of
several ferulic acid derivatives. This is believed to be the first
report of csp22-induced accumulation of HCAAs in tomato.
The increased production of feruloyl dopamine at the described

incubation periods highlights a significance in the tomato
metabolome. Several research publications have described the
production of HCAAs, such as coumaroyl- and feruloyl tyramine,
coumaroyl- and feruloyl dopamine, coumaroyl- and feruloyl
noradrenaline (Figure 9), implicated as phytoalexins of tomato
after infection with bacterial pathogens (Von Roepenack-Lahaye
et al., 2003; Zacarés et al., 2007; López-Gresa et al., 2011;
Zeiss et al., 2019). The exact biological function of these
compounds has not yet been fully elucidated (Zeiss et al.,
2021). It has, however, been shown that these small molecules
possess strong antioxidant activity, with radical scavenging
abilities comparable if not better than that of the synthetic
antioxidant butylhydroxytoluene (López-Gresa et al., 2011).
The HCAA feruloyl dopamine has been shown to have good
antimicrobial activity against Pseudomonas syringae (Zacarés
et al., 2007). The quantity of scientific research surrounding
these compounds remains limited. Transgenic studies involving
S. tuberosum using Arabidopsis transporter genes have revealed
that the rapid secretion of HCAAs positively correlates to a
decreased ability of Phytophthora infestans spore germination
(Dobritzsch et al., 2016).
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FIGURE 8 | Metabolome perturbations and adaptive defense responses. A Venn diagram highlighting the partial overlap (%) of metabolites positively correlated to
R. solanacearum and csp22 treatments in the leaf tissue of S. lycopersicum. The numerical values represent the annotated metabolites that are unique to each
treatment and conversely are also shared. It should be noted that the experimental conditions—including the biological, technical, instrumental, and laboratory
performance aspects—for both publications were identical and could thus be compared (Zeiss et al., 2019, 2021).

Although caffeic acid and sinapic acid derivatives of
HCAs were also amongst the identified variables, it is the
HCA derivatives that carry a ferulic acid (o-methoxyphenol)
substitution pattern that predominate: feruloyl hexoside, feruloyl
glucaric acid, feruloyl quinic acid, feruloyl dopamine hexoside,
feruloyl dopamine and eugenyl cinnamate. At an interactome
level, from the pathogen’s perspective, the production of ferulic
acid and other HCA derivatives represents an obstacle that
must be overcome to facilitate the early stages of infection
and host colonization. HCA degradation is a conserved trait
that shields R. solanacearum from the chemical defenses of the
hosts to promote pathogen virulence (Lowe et al., 2015). The
study demonstrated that mutants lacking the enzymes required
for HCA degradation were less virulent on tomato plants and
simultaneously more susceptible to cellular toxicity (Lowe et al.,
2015). It should be noted that this trait is specifically directed
toward the degradation of HCAs, rather than the HCAAs. In
addition, literature has documented that umbelliferone may
serve as a plant-derived inhibitor capable of attenuating the
Type 3 secretion system (T3SS) of R. solanacearum in tobacco,
suppressing transcription of T3SS regulators and effectors (Yang
et al., 2017). The R. solanacearum virulence factors are tightly
regulated by a complex interlocking network involving quorum
sensing and plant signals (Schell, 2000; Mole et al., 2007). It
has been shown that the rapid and timely expression of these
genes is a crucial and conserved virulence strategy employed
by the bacterial wilt pathogen (Jacobs et al., 2012). The
hydroxycoumarin umbelliferone has been shown to inhibit the

growth and development of Ralstonia strains on solid media
in a concentration-based manner (Yang et al., 2018). The
same study also demonstrated that tobacco root irrigation with
hydroxycoumarins 24 h prior to pathogen challenge delayed
symptoms typically associated with bacterial wilt (Yang et al.,
2018). With tobacco and tomato being phylogenetic relatives,
both belonging to the Solanaceae, it is feasible to suggest that
tomato also utilizes umbelliferone, in conjunction with other
phytochemicals, to act as protective agents in the management
of R. solanacearum.

As discussed above, the changes to the composition of the
tomato leaf metabolome speaks to the resistant phenotype of
the host. Jasmonic acid (JA) and its associated derivatives have
been reported to be produced during biotic perturbations as
key regulators of plant defense leading to several alterations in
metabolic pathways resulting in the biosynthesis of secondary
metabolites (Okada et al., 2015; Mhlongo et al., 2016). JA-
mediated signaling pathways are linked to host resistance,
prompting plant defense responses to external damage and
pathogen infection, inducing gene expression typically observed
in a resistant phenotype (Ruan et al., 2019). Hydroxylation
and glycosylation are common steps used by plants to reduce
or attenuate the bioactivity of particular metabolites in vivo.
The finding of a hydroxyjasmonic acid derivative in the leaf
extracts in response to csp22 elicitation thus indicates prior JA
activity (Miersch et al., 2008; Hamany Djande et al., 2020) in
the intracellular signaling cascade that leads to the production
of defense-related compounds (e.g., the HCAAs). This can
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FIGURE 9 | Induced production of hydroxycinnamic acid amides (HCAAs) in the leaf tissue of S. lycopersicum in response to csp-22 elicitation. Biosynthesis starts
with increased levels of the aromatic amino acids: flux from chorismate to prephenate (for phenylalanine and tyrosine) and anthranilate (for tryptophan). The synthesis
of the HCAAs involves the amide conjugation of the aromatic amino acids to hydroxycinnamic acid CoA-thioesters. The HCA thioesters can also feed into
downstream pathways leading to the production of flavonoid derivatives as well as the formation of lignin. Compound names in bold were found in the present study,
while the remaining phytochemicals have been reported in other studies related to the Solanaceae.

contribute to the host plant displaying an accelerated and
heightened state of plant defense. Using an untargeted approach,
this upregulation of the JA- and coumaroyl tyramine derivatives
could be observed over the 16, 24, and 32 h incubation intervals,
bolstering the knowledge described in literature (Mhlongo et al.,
2016). Based on the results obtained, it would be feasible to
suggest that JA production induced by csp22 leads to a more
resistant host phenotype that may be more equipped against
future infection against a broad-spectrum of pathogens including
R. solanacearum.

CONCLUSION

The results generated from this untargeted metabolomics study
revealed that csp22 perception by leaf tissue of the tomato plant
results in metabolome perturbation and the redirection of cellular
metabolism to lead to the production of defensive and protective
metabolites. This can be regarded as part of a functional
metabolic strategy to cope with external environmental
threats such as combating biotic stressors. These biochemical
perturbations, primarily involving the phenylpropanoid pathway
and sub-branches thereof, are linked to a csp22-triggered
oxidative burst and associated downstream signal transduction
events. The metabolites identified as signatory biomarkers
include HCAs, HCAAs, and ferulic acid derivatives, emphasizing

the role of the phenylpropanoid pathway as the central hub of
induced defenses in tomato. Previous studies have associated
the production of HCAAs (with antimicrobial and antioxidative
properties) with biotic stress and elicitor treatments, and a
dedicated function for these phytochemicals during plant-
pathogen interactions is starting to emerge. Furthermore,
the csp22-induced production of the hydroxyjasmonic acid
derivative bolsters evidence of the phytohormone’s involvement
in intracellular signaling that leads to the production of defense-
related compounds, contributing to an enhanced defensive
capacity within the plant tissue. This heightened state may equip
the host plant to better defend itself against present pathogen
attack or future infection against a broad-spectrum of pathogens.
These results, from a metabolomics perspective, thus support a
role for csp22 treatment of tomato in order to increase resistance
to R. solanacearum infection and contribute to greater insights
into the mechanism of perception of R. solanacearum, aiding
multi-omics approaches to generate resistance.
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