
fpls-12-791859 January 17, 2022 Time: 18:36 # 1

METHODS
published: 21 January 2022

doi: 10.3389/fpls.2021.791859

Edited by:
Diego Rubiales,

Institute for Sustainable Agriculture,
Spanish National Research Council

(CSIC), Spain

Reviewed by:
Maryke T. Labuschagne,

University of the Free State,
South Africa

Valheria Castiblanco,
International Center for Tropical

Agriculture (CIAT), Colombia

*Correspondence:
Giovanny Covarrubias-Pazaran

g.covarrubias@cgiar.org;
covaruberpaz@gmail.com

Specialty section:
This article was submitted to

Plant Breeding,
a section of the journal

Frontiers in Plant Science

Received: 09 October 2021
Accepted: 10 December 2021

Published: 21 January 2022

Citation:
Covarrubias-Pazaran G,

Gebeyehu Z, Gemenet D, Werner C,
Labroo M, Sirak S, Coaldrake P,
Rabbi I, Kayondo SI, Parkes E,

Kanju E, Mbanjo EGN, Agbona A,
Kulakow P, Quinn M and Debaene J

(2022) Breeding Schemes: What Are
They, How to Formalize Them,

and How to Improve Them?
Front. Plant Sci. 12:791859.

doi: 10.3389/fpls.2021.791859

Breeding Schemes: What Are They,
How to Formalize Them, and How to
Improve Them?
Giovanny Covarrubias-Pazaran1,2* , Zelalem Gebeyehu2, Dorcus Gemenet1,3,
Christian Werner1,3, Marlee Labroo1,3, Solomon Sirak1, Peter Coaldrake1, Ismail Rabbi4,
Siraj Ismail Kayondo4, Elizabeth Parkes4, Edward Kanju4,
Edwige Gaby Nkouaya Mbanjo4, Afolabi Agbona4, Peter Kulakow4, Michael Quinn1,3 and
Jan Debaene1,3

1 Excellence in Breeding Platform, Consultative Group on International Agricultural Research, Texcoco, Mexico,
2 Independent Researcher, Addis Ababa, Ethiopia, 3 International Maize and Wheat Improvement Center (CIMMYT), Texcoco,
Mexico, 4 International Institute for Tropical Agriculture (IITA), Ibadan, Nigeria

Formalized breeding schemes are a key component of breeding program design and
a gateway to conducting plant breeding as a quantitative process. Unfortunately,
breeding schemes are rarely defined, expressed in a quantifiable format, or stored in a
database. Furthermore, the continuous review and improvement of breeding schemes
is not routinely conducted in many breeding programs. Given the rapid development
of novel breeding methodologies, it is important to adopt a philosophy of continuous
improvement regarding breeding scheme design. Here, we discuss terms and definitions
that are relevant to formalizing breeding pipelines, market segments and breeding
schemes, and we present a software tool, Breeding Pipeline Manager, that can be used
to formalize and continuously improve breeding schemes. In addition, we detail the use
of continuous improvement methods and tools such as genetic simulation through a
case study in the International Institute of Tropical Agriculture (IITA) Cassava east-Africa
pipeline. We successfully deploy these tools and methods to optimize the program size
as well as allocation of resources to the number of parents used, number of crosses
made, and number of progeny produced. We propose a structured approach to improve
breeding schemes which will help to sustain the rates of response to selection and help
to deliver better products to farmers and consumers.

Keywords: breeding scheme, breeding pipeline, market segment, product profile, continuous improvement,
genetic simulation

INTRODUCTION

A breeding program is the sum of breeding pipelines to achieve breeding targets for a set of
market/target segments1 Only after rigorous market and social studies have been carried out and
an impactful pipeline investment case is presented to the leadership of an organization/institution,
a breeding pipeline is created to carry out trait discovery, population improvement, product
development, introgression efforts, seed dissemination/commercialization or a combination of one
or several of these (tiers). Any pipeline should have a clear deliverable/product to be handed
at the end of the pipeline and a clear customer (another pipeline lead, another organization,
etc.). A market segment is defined by the target population of environments in which the final

1Breeding Pipeline (2021). Breeding Pipeline: Scope and Approach. Available online
at: https://globalrust.org/dggw/breeding-pipeline

Frontiers in Plant Science | www.frontiersin.org 1 January 2022 | Volume 12 | Article 791859

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.791859
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2021.791859
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.791859&domain=pdf&date_stamp=2022-01-21
https://www.frontiersin.org/articles/10.3389/fpls.2021.791859/full
https://globalrust.org/dggw/breeding-pipeline
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-791859 January 17, 2022 Time: 18:36 # 2

Covarrubias-Pazaran et al. Improving Breeding Schemes

product is grown, as well as descriptions of the target
clients and product traits that are valued for production
and consumption by farmers and end-users. Products to be
placed in a market segment are described through product
profiles/concepts; detailed descriptions of the traits and their
thresholds (or range of values) to be found in the desired product
or variety (sometimes based on current variety in the market)
that aims to increase the likelihood of acceptance in the market.
A breeding pipeline within a program may target one or more
market segments and the associated product profiles using one
or more breeding schemes. Breeding schemes are a collection
of crossing, evaluation, and selection (CES) tasks and decisions
which vary across breeding stages (e.g., in the crossing block vs.
advanced yield testing in plants) and ultimately define a breeding
strategy (Henryon et al., 2014; Yabe et al., 2017; Cobb et al., 2019;
Pook et al., 2020; Gaynor et al., 2021; Figure 1).

Because CES decisions are numerous in a breeding program,
breeding schemes can be difficult to describe succinctly and
consistently, especially in the context of particular modes of
crop reproduction and emerging breeding technologies (Yabe
et al., 2017). Breeding leads or other experts typically visualize
CES tasks and decisions as illustrative flow charts or tables.
Unfortunately, some may not contain all information necessary
to reproduce the breeding scheme in other places and may not
fully visualize the resource allocation at different stages. Examples
of these decisions, which may happen once or repeatedly at
different stages of the breeding scheme, are:

• Crossing decisions: number of parents, number of
crosses, number of progeny, type of cross, and mate
allocation method, etc.
• Evaluation decisions: number of locations, replication

level within and among locations, number of checks,
experimental design, and plot sizes, etc.
• Selection decisions: percentage of individuals selected

(selection intensity), the selection method (e.g., culling,
index, tandem), and the selection unit, etc.

Another layer of complexity in communicating breeding
schemes is that the number of stages in a scheme depends
on the biology of the species, the multiplication ratio, the
evaluation steps required to identify new parents, and the
complexity of the market segment and product profile(s) for
the desired final product (Henryon et al., 2014). Most breeding
programs have a crossing stage to recombine elite parents,
stages to multiply progeny and/or generate progeny derivatives
such as testcrosses or inbred derivatives (e.g., lines), and
multiple stages to test progeny derivatives for their potential as
new parents or products. This stage-gate process in breeding
programs is repeated cyclically, generating a recurrent selection
scheme which, if effective, increases the population mean for
the set of traits of interest (Allard, 1999; Chao and Ishii,
2005; Cooper, 2008). Additionally, programs do not wait until
a cycle of the stage-gate process is completed to restart the
process, and instead run several generations in parallel. A set
of genotypes at a given stage within a given cycle is commonly
referred to as a cohort or a selection stream (Figure 2).

Generations may be discrete or overlapping depending on
whether the parents of the cohort genotypes are selected from
a single unique cohort or from multiple cohorts. Overlapping
generations are more common and lead to more blurred genetic
boundaries between cohorts, as cohorts tend to be more related
with overlapping generations compared to discrete in absence
of inbreeding control (Meuwissen and Sonesson, 1998). In
summary, formalized breeding schemes are necessary to clarify
the structure of breeding program pipelines.

Despite the inherent complexity of CES decisions, in some
organizations breeding schemes are rarely shared formally or
presented in writing. It is common for breeding leads to inherit
a breeding program and its scheme from their predecessor.
Usually, the predecessor transfers the breeding scheme verbally
and practically rather than providing a quantitative description
of the scheme in a formal document or software. This requires
overlap between breeders and on-site presence of the predecessor,
potentially for years at a time. Information about the breeding
scheme may also be spread among several staff members within
the program, interspersed in various publications, or buried
in personal notes or presentations. Unfortunately, this method
of transferring breeding schemes has led to the total loss of
information (and even germplasm) of many breeding programs
that have disappeared in the last century (Baenziger, 2006; Gepts
and Hancock, 2006; Morris et al., 2006). Improved transferring
methods could allow increased interoperability among breeders
and better preservation of pedigrees, data, and germplasm.

In addition, codified, systematic documentation of breeding
schemes could spur continuous improvement and lead to
increased genetic gain and varietal turnover (EiB2). As suggested
by Bernardo (2002), plant breeding programs should be
managed as formal industrial processes that allow better
breeding methods to be adopted as they become available to
ensure sustainable, steady production of high-quality products.
Industrial processes require a clear flow of subprocesses
(tasks and decisions) and development of standard operating
procedures (SOPs) that ensure minimization of production
errors. Several methodologies, such as SixSigma and LEAN
among others, were proposed in the 20th century to manage
and continuously improve different components of industrial
processes in the automotive, communications, and robotics
industries (Bhuiyan and Baghel, 2005; Schroeder et al., 2008).
Project management tools used in these methodologies, together
with modern mathematical and computational tools like
simulation and optimization, could easily be extrapolated
to draft, formalize, manage, and improve breeding schemes
successfully, in contrast to the artisanal approach to breeding
common during the 20th century.

Improving a complex process like a breeding program requires
understanding of how each process-related decision affects the
outcome (e.g., genetic gain or probability of releasing a new
product) and how varying these decisions affect the outcome.
Given the cost and time associated with piloting new methods
or ways to run this complex process, the use of simulations

2https://www.cgiar.org/wp/wp-content/uploads/2018/05/SC6-04_Multi-Funder-
Breeding-Initiative-update.pdf
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FIGURE 1 | Graphical representation of the relationship between target segments and pipelines of a breeding program. Market segments defined by agroclimatic
regions, clients and product features are formalized in product profiles; trait descriptions of desired products to irrupt in the market. Breeding programs are
represented as the sum of breeding pipelines focused on one or more of the following tasks: product design, trait discovery, population improvement, product
development, trait introgression, or product dissemination. Each breeding pipeline may have one or more breeding schemes (strategies) to attend the market
segments and the associated product profiles.

has a particular relevance to the design of breeding schemes (Li
et al., 2012; Murray and Atlin, 2017; Yabe et al., 2017). Stochastic
simulations of whole breeding programs rarely have been used
to improve performance of breeding programs due to lack of
computational and software resources in past decades (Gaynor
et al., 2021). Currently, simulation technology is available and
practical, and it should be incorporated into breeding scheme
improvement efforts.

Here, we propose a process to formalize and improve the
breeding schemes. In addition, we introduce a publicly available
software tool, Breeding Pipeline Manager (BPM), which has
capabilities to quantitatively document and record breeding
schemes as well as the market segments and product profiles
they target in a standardized yet customizable way. The BPM
module can be added to any compatible enterprise breeding
system (database) to link the phenotypic data to clear targets,
pipelines and breeding schemes (Gao et al., 2020). In addition,
we discuss the use of classical continuous improvement tools
combined with state-of-the-art simulation and mathematical
tools to continuously improve breeding schemes. We conclude

by providing a case study of the use of these tools and methods
in the improvement of the International Institute of Tropical
Agriculture (IITA)-cassava breeding scheme. We expect that this
framework will assist plant breeding professionals in conducting
breeding as a systematic process and to help establish continuity
and prevent inconsistency in breeding programs. Furthermore,
we expect that formalizing breeding schemes will increase their
rates of response to selection (i.e., genetic gain) by motivating
critical examination of the schemes used and their opportunities
for improvement.

MATERIALS AND METHODS

Enabling Methodology and Software to
Formalize Breeding Targets and
Schemes
We applied the continuous improvement methodology known
as six-sigma to approach breeding as a process and enable
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FIGURE 2 | Typical structure of a breeding pipeline. (A) Breeding scheme illustrating crossing, evaluation, and selection decisions (columns), which are made once
or multiple times across the stage gate process (rows) in a cyclical fashion to achieve genetic gain. (B) A graphical representation of cohorts (parallel cycles of
breeding) and how they overlap when recycling occurs and parents are taking from multiples stages.

breeding scheme improvements. Six-sigma is a five-step
method: define, measure, analyze, improve, and control
[DMAIC, (d@.′meı.ık)]. The steps are undertaken iteratively
to create a cyclical method for continuous improvements.
Six-sigma was originally proposed by Bill Smith at Motorola
in 1986 to improve industrial processes, in which 99.99966%
of all opportunities to produce some features of a part are
statistically expected to be free of defects (Tennant, 2017).

In the case of plant breeding, this would imply producing
better varieties than the ones existing in the market and
steady genetic gains with higher probability. The six-sigma
method reflects the scientific method, but it is used for process
management rather than hypothesis testing. To increase
the efficiency and ease of use of six sigma tools (e.g., value
stream mapping, correlation analysis, etc.) by breeding teams,
we developed a software named Breeding Pipeline Manager
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(BPM) to document, describe, and visualize market segments,
product profiles and breeding schemes. BPM is available at
http://bpm.excellenceinbreeding.org? In collaboration with
multiple breeding programs for a wide range of crops within
the CGIAR, such as line, hybrid, and clonally propagated
species, we identified breeding decisions which fell into three
categories: crossing, evaluation and selection decisions. We
then summarized breeding schemes and decisions as a table
containing the breeding stages in rows (e.g., seedling nursery,
stage 1 yield testing, etc.) and the CES tasks and decisions in
columns. BPM provides a graphical user interface for capturing
breeding schemes in a standard format. BPM also allows users
to create visualizations (flowcharts) of their breeding scheme.
In addition, the BPM allows market segment and product
profile definition and users can link breeding schemes to
market segments.

The BPM back-end was developed in Node JS, an open-source,
cross-platform, and scalable JavaScript runtime environment.
The front-end graphical user interface was developed in
React JS. The source code is available at https://gitlab.com/
excellenceinbreeding/module2. The platform leverages NodeJS
asynchronous technology to perform intensive calculations
without affecting the performance of other functionalities of the
system. In addition, the platform uses Docker containerization
technology for continuous development and integration (Merkel,
2014; Boettiger, 2015). This will not only enable automation of
the deployment process but also horizontal scaling on any cloud
infrastructure (depending on traffic). An online manual showing
the details of the available features of the software and their use
can be found once connected in the tool under the question mark
bar at the bottom menu.

Application of Continuous Improvement
in Breeding Programs: IITA-Cassava
Example
We selected the CGIAR IITA-Cassava program to showcase
the importance of using enabling tools and simulations to
continuously optimize breeding programs. The IITA cassava
program is situated in different parts of sub-Saharan Africa to
serve region-specific challenges and market segments. The IITA-
Cassava east-Africa pipeline, situated in Uganda, was chosen to
showcase the use of SixSigma and the BPM tool to improve
their breeding scheme. The five six-sigma steps were applied
as follows in the cassava program. The problem was defined as
lower than achievable genetic gain for traits of interest under
the current scheme. The breeding targets and scheme were
measured (documented) by capturing all CES decisions across
all stages using the BPM tool (as described in the next section)
through several interactions with the breeders. The analysis of
the measured decisions and the genetic gain indicators revealed
many possible improvements. We first chose to analyze the
crossing decisions in the breeding scheme to identify possible
improvements. The number of parents (nParents), number of
crosses (nCrosses), number of progeny per cross (nProgeny), and
recycling strategy were prioritized for evaluation via stochastic
simulation in AlphaSimR (Gaynor et al., 2021). We proposed
an improvement plan based on the close-to-optimal number of

parents, number of crosses, number of progeny, and recycling
strategy identified via simulation. The improvement plan used
the A3 format (referring to the size of an A3 sheet that
describes a project briefly) common in project management
(Anderson et al., 2011). We then controlled the improvement by
monitoring how key performance indicators (a set of quantifiable
measurements used to gauge an institution’s overall long-term
performance) stated in the improvement plan changed as the
improvements proceeded.

Stochastic Simulation to Improve
Crossing Decisions in IITA-Cassava
East-Africa Pipeline
Current and Alternative Programs
As a clonally propagated crop, cassava breeders currently have
adopted a four-stage evaluation strategy in addition to the
crossing block stage and the seedling nursery stage where
planting material is multiplied. These evaluation stages include
stage 1 (clonal evaluation; CE), stage 2 (preliminary yield trial;
PYT), stage 3 (advanced yield trial; AYT), and stage 4 (uniform
yield trial; UYT; Table 1). The summary of the advancement
decisions across the different stages in the current (baseline)
pipeline that was to be improved is as shown in Table 1. The
pipeline began with only four parents selected to have the target
traits for the target markets. From the four parents, 12 crosses
were made, each with 136 progeny, thus resulting in 1,632
individuals. All 1,632 were multiplied in the seedling nursery and
then evaluated at stage 1 in one environment and one replication
per environment. Based on performance at stage 1 testing, 120
individuals were selected and advanced to stage 2 testing in
two environments and two replications per environment. From
stage 2 evaluation, 64 individuals were selected and advanced to
stage 3 testing in two environments and three replications per
environment. Finally, 24 individuals were selected and advanced
to stage 4 testing in two environments and three replications
per environment. Recycling of parents was planned to occur
at PYT and UYT. This information was input into BPM and
the scheme was simulated to address specific questions related
to crossing decisions as prioritized by the breeding team. The
program was interested in knowing if the use of four parents
was adequate to sustain genetic gain. The program also inquired
how to improve their recycling strategy, particularly from which

TABLE 1 | Summary of IITA-Cassava east-Africa pipeline numbers
handled by stage.

Stage Year nParents nCrosses nProgeny/
cross

nIndividuals %
Selected

Crossing block 1 4 12 136 1,632 –

Seedling
nursery

1 – 12 136 1,632 100

Stage 1 (CE) 2 – 12 136 1,632 100

Stage 2 (PYT) 3 – – – 120 7.35*

Stage 3 (AYT) 4 – – – 64 53.3*

Stage 4 (UYT) 5-6 – – – 24 37.5

*Stages where the recycling occurs to form the new crossing block. Recycling from
the combined PYT and AYT leads to an average cycle time of 3.5 years.
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stage to recycle and whether to recycle from multiple stages. Here,
we share the results for improving these decisions among many
others that are currently being improved. It should be noted
that the IITA pipelines in other regions, particularly for West
Africa, use a greater number of parents (∼100) in their crossing
block and therefore were not subject to this improvement. The
simulation exercise is expected to find an optimal number of
parents between these two extremes and useful for the East-Africa
pipeline and develop some high-level guidelines for the test of the
IITA-cassava pipelines.

Simulation Parameters: Treatments
To keep the resources constant with the baseline, we restricted
the number of individuals (nIndividuals) at the F1 stage to 1,632
in all experimental simulation treatments. We then developed
a grid to evaluate different numbers of parents in the crossing
block using the following possible numbers of parents (nParents):
4, 8, 16, 32, and 64. The number of possible crosses for each
level of number of parents was constrained to a maximum of
nParents ∗ (nParents − 1)/2, which is equivalent to all possible
combinations of parents or a half-diallel, while considering
the initial restriction that the number of individual progeny
(nIndividuals) must be equal to 1,632. This resulted in the
following possible numbers of crosses: 6, 12, 24, 48, 96, 204, 408,
or 816. To keep the number of individual progeny constant at
1,632, the number of progeny per cross was set to 272, 136, 68,
34, 17, 8, 4, 2 for numbers of crosses equal to 6, 12, 24, 48, 96, 204,
408, and 816 respectively. The number of individual progeny is
always equal to the number of crosses multiplied by the number
of progeny per cross.

As such, a total of 24 simulation treatments were defined
(Table 2). To identify the optimal number of parents, number
of crosses, number of progeny per cross, and the best recycling
strategy, a stochastic genetic simulation was conducted in the R
package AlphaSimR (Gaynor et al., 2021).

Simulation Parameters: Genome and
Evaluation
Burn-In Genome Sequence
For each replicate, a genome consisting of 18 chromosome
pairs was simulated for the hypothetical plant species similar
to cassava. These chromosomes were assigned a genetic length

TABLE 2 | Summary of factor values combined for number of parents, number of
crosses, and number of progeny per cross to produce a total of 1,632 progeny.

Number of Parents Number of Crosses Number of Progeny per cross

4 6 2

8 12 4

16 24 8

. . .* . . .* . . .*

64 816 272

. . .* indicates the numbers duplicate until reaching the final numbers in the row.
All treatment combinations going beyond the 1,632 progeny were not run.
This allowed comparison of these factors’ influence on genetic gain at a
fixed program size.

of 1.43 Morgans and a physical length of 8 × 108 base
pairs. Sequences for each chromosome were generated using
the Markovian coalescent simulator (MaCS; Chen et al.,
2009) implemented in AlphaSimR (). Recombination rate was
inferred from genome size (i.e., 1.43 Morgans/ 8 × 108 base
pairs = 1.8 × 10−9 per base pair), and mutation rate was set to
2 × 10−9 per base pair. Effective population size was set to 30 to
mimic an evolution history of natural and artificial selection.

Burn-In Founder Genotypes
Simulated genome sequences were used to produce 4
founder non-inbred individuals. These founder individuals
served as the initial parents in the burn-in phase. Sites
segregating in the founders’ sequences were randomly selected
to serve as 100 quantitative trait nucleotides (QTN) per
chromosome (1,800 total).

Burn-In Phenotypes
A single highly complex trait representing an index of tuber
yield, dry matter, cassava mosaic disease, total carotenoids and
sprouting was simulated for all founders. The genetic value of
this trait was determined by summing its QTN allelic effects. To
model genotype-by-environment (GxE) interaction, allele effects
depends on the value of an environmental effect which changes
over years. For a given year, the allele effects followed this
formula:

ai
(
wj

)
= bi +miwj,

where ai is the allele effect for QTN i, wj is the environmental
effect for year j, bi is the QTN intercept and mi is the
QTN slope on the environmental effect. The slope, intercept,
and environmental effects were sampled from the following
normal distributions. This equation is equivalent to Finlay–
Wilkinson regression. Details on the full formulation of genotype
by environment interaction simulation features enabled in
AlphaSimR can be found in Gaynor (2021). In the case of
the cassava program, a variance component for genotype by
year (σ2

GxY 2) and genotype by location (σ2
GxL 1) interactions

were defined and summed to produce the genotype by year by
location (σ2

GxYxL 3) interaction variance components used in the
addTraitAG() function in the varGxE argument in AlphaSimR
for a trait with additive gene action and GxE interaction. Main
genotype variance component was assumed equal to 1 (σ 2

G 1).
The genetic values of each non-inbred individual were used to
produce phenotypic values by adding random noise sampled
from a normal distribution with mean 0. The variance of
the random error was varied according to the three stages of
evaluation in the breeding program based on the plot size and
number of replications per entry currently used according to
the different experimental designs used at the different stages
(augmented design at stage 1 and randomized completely blocked
design in posterior stages). The values for these error variances
were set to achieve levels of plot heritability reported by the
cassava program currently estimated at the different stages.

In order to simulate the multi-environment testing common
in breeding programs, the variance components for genotype by
year and genotype by locations were used to simulate a matrix
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TABLE 3 | Summary of simulation features for the genome and phenotypes.

Simulation features

Burn-in Genome sequence 100,000 generations of evolution

18 chromosome pairs

1.43 Morgans per Chromosome

8 × 108 base pairs per chromosome

2 × 10−9 mutation rate

Founder genotypes 4 non-inbred founders

1,800 QTN (additive GxE effects)

Normally distributed QTN effects
σ2

GxY 2, σ2
GxL 1, σ2

GxYxL 3, σ2
G 1

Recent breeding 20 years of modern breeding

Non-inbred cloned individuals

Conventional breeding

Evaluation Future breeding 20–60 years of breeding

Testing alternative allocation of resources

Equal cost programs

Conventional breeding

of possible slopes for the environmental covariate used by the
setPheno() function in the p-value argument (years in rows and
locations in columns). The values were sampled depending on

the year and number of locations used for a given stage to
approximate the GxE. A summary of simulation features for the
genome and phenotypes can be found in Table 3.

Population means and standard errors at Stage 1 of yield
evaluation across the 20–60 years of breeding for the treatments
described previously were computed using the dplyr library in R
(Wickham et al., 2021), and plotted using the ggplot2 library in
R (Wickham, 2011). One hundred replicates were run for each
simulation treatment.

RESULTS AND DISCUSSION

Adapting Continuous Improvement Tools
and Concepts in the Improvement of
Breeding Schemes
Following the paradigm of approaching breeding as an industrial
process (Bernardo, 2002), we adapted the six-sigma methodology
to continuously improve the breeding schemes of breeding
programs (Figure 3). Under this framework, we follow the
project methodology Plan-Do-Study-Act inspired by William
Edwards Deming named DMAIC, an acronym standing for
Define, Measure, Analyze, Improve and Control steps that

FIGURE 3 | Graphical representation of breeding as a process. The design component of the breeding process, which includes activities such as defining market
segments, product profiles, and breeding schemes, is shown in blue. The engineering component of the process, where crossing, evaluation, and selection activities
for product development and population improvement are made, is shown in red. The delivery component of the breeding process, where activities like material
increase and registration, occur are shown in green. Image taken with permission from Covarrubias-Pazaran (2020).
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FIGURE 4 | Graphical representation of the six-sigma process applied to the continuous improvement of breeding schemes (strategies). (A) Description of the
DMAIC steps. (B) Different tools to support continuous improvement of crossing, evaluation, and selection (CES) decisions in breeding schemes.

are cyclically repeated to reflect the continuous or cyclical
approach (Aguayo, 1991; Figure 4). To demonstrate the use
of the continuous improvement methodologies to optimize
breeding processes leveraging from measuring tools like the
breeding pipeline manager (BPM) and stochastic simulation,
we engaged in discussions with the IITA Cassava program.
First, the cassava team registered their breeding pipelines
and the market segments targeted per pipeline. We found
the IITA-cassava program to be composed of five breeding
pipelines and on average tackling six market segments. The
market segments and accompanying pipelines are stratified
by a combination of regional consumption preferences and
prevailing biotic and abiotic stresses. For example, most of the
produced cassava in West Africa goes to processed (granulated
and paste) products while in east Africa, the predominant
preference is for fresh consumption with minimal processing
(boiling, roasting and flour from dried roots). Subsequently,
we focused on the IITA-Cassava east-Africa pipeline targeting
market segments listed by breeders and generally described

as fresh market and high-quality flour. Even though we
proposed six-sigma for improving breeding schemes, the reader
should keep in mind that continuous improvement applies
to all components of the breeding process including the
management roles which are responsible of the encouraging and
incentivizing improvements.

Defining a Problem
The step of defining the problem was adapted to breeding
scheme improvement by defining the problem as a suboptimal
rate of response to selection (genetic gain) but pointing to
one of the many crossing-evaluation-selection (CES) tasks
and decisions at a given stage as the possible root of the
problem. We found tools such as Project charter useful to
define the problem (McKeever, 2006). We proceeded to use
the project charter to define or state the problem in the IITA-
Cassava east-Africa pipeline as having “potential for greater
response to selection without increased expenditures.” Details
in the business case, goal statement, timeline, scope, and
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TABLE 4 | Project charter applied to the IITA-Cassava east Africa program.

Problem statement
The rate of genetic gain in the
IITA-Cassava east-Africa breeding
program is less than or equal to 1% per
year for traits of interest, and the rate of
variety turnover is lower than possible.

Business case
By optimizing the breeding schemes
using quantitative genetics principles,
we can increase the response to
selection per dollar invested per unit
time.

Goal statement
Reduce cycle time to the biological
limit, optimize the trade-off between
selection intensity and accuracy,
manage the genetic variance, while
constraining possible alternatives to
similar level of resources.

Team members
Cassava head of breeding Cassava
breeders Quantitative Geneticist

Scope
Crossing, evaluation and selection
(CES) decisions included in the
breeding scheme.

Timeline
One to two CES tasks and decisions
improved per year.

TABLE 5 | Features defining a market segment.

Client features Environment features Product features

Geographical region Temperature Mode of reproduction

Income Humidity Maturity

Education Vegetation Color

Farm size Water availability Shape

Soil fertility Biofortification

Altitude End use

Soil pH

Production system

Prevailing biotic stresses

The features of the client being served, the features of the target population
of environments (TPE), and the final product characteristics are displayed.
These three sets of features define a market segment in the breeding pipeline
manager (BPM) tool.

team members can be found in Table 4. Unfortunately, we
found that estimates of realized genetic gain were not available
in the program to justify the definition of the problem.
However, given the lack of an efficient recurrent selection
strategy, we assumed the definition of the problem to be
relevant to the program.

Software Development to
Measure/Document Breeding Programs
To facilitate the measuring step of the continuous improvement
approach proposed, in which CES decisions are recorded for
further analysis (Bhuiyan and Baghel, 2005), we developed the
BPM software. The breeding pipeline manager tool (BPM) is
equipped with a module to define breeding pipelines as the sum
of efforts to deliver a product. Breeding pipeline definition is
the highest-level unit of information clustering in the BPM tool.
The pipeline can be linked to market segments defined by the
user. The market segment is defined in the BPM tool as the
sum of the client, the target population of environments (TPE),
and final product characteristics displayed in Table 5. These aim
to capture the characteristics that can make breeding a more
targeted effort according to Ragot et al. (2018) (Figure 5A). The

BPM module can be incorporated to any enterprise breeding
system (database) to properly link the generated phenotypic
data to clear target segments and pipelines. Market segments
for the cassava pipeline were captured using the BPM tool
and are shown in Figure 5A. The major focus is on lowland
high-rainfall, late maturity, long, hard cassava for fresh and
flour consumption.

On top of defining the market segments, breeding programs
must describe specifics of the product to be released in the
market. Here, the concept of product profile (sometimes referred
to as product concept) applies (Ragot et al., 2018; Carey et al.,
2021). The existence of these profiles can make the difference
between success and failure (Carey et al., 2021; Mwanga et al.,
2021). The BPM tool has a module to define product profiles and
link them to specific market segments, and the cassava breeders
used the tool to formalize such profiles (Figure 5B). One of
the product profiles for example is focused on achieving defined
levels of fresh yield, plant height, dry matter and cassava mosaic
disease resistance.

Part of the design of breeding pipelines is the creation
of a blueprint or a breeding scheme that will allow the
breeder to achieve the product profile for the market segment
while maximizing the genetic gain of the breeding population
per dollar invested (Henryon et al., 2014). The blueprint
should specify all the crossing, evaluation and selection
tasks and decisions occurring at the different stages (e.g.,
recombination, multiplication and testing stages) for the
purposes of population improvement and product development.
Most breeding programs have these two purposes coupled
in a way that advancement decisions influence the recycling
decisions. Others have proposed and shown that decoupling the
population improvement from product development by moving
the recycling decision to very early stages (e.g., F2, nursery or
multiplication stages) will increase the rates of genetic gain.
Better products can be expected when the product development
process is regarded as separate from a rapid cycling population
improvement strategy (Gaynor et al., 2017).

Crossing, evaluation and selection (CES) decisions comprising
the breeding scheme can and should be recorded at the highest
level of detail and safeguarded for the benefit of the breeding
organization in case of any adverse circumstances. In Table 6
we show the CES decisions that should be considered to
capture the level of resolution and detail necessary to avoid
loss of valuable information; these can be recorded by the BPM
tool in the breeding scheme module. The software allows for
breeding pipelines to manage multiple breeding schemes, as
may happen when a program has a principal breeding scheme,
but one or more parallel experimental breeding schemes, to
accelerate genetic gains.

Measuring the Process
The measuring step of the six-sigma process was adapted by
recording numerically and categorically all the different CES
decisions across the various stages directly impacting genetic
gain (e.g., number of parents, # crosses, # progeny, coupling
method, etc.). The lack of available tools to measure/record
breeding schemes was the motivation to develop the BPM
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FIGURE 5 | Snapshot of some market segments and product profiles defined in the breeding pipeline manager (BPM) tool for the IITA-cassava east-Africa pipeline.
(A) Two market segments for a cassava program with defined client, environment and product features, mainly distinguished by the end use. (B) Example product
profile for a cassava market segment featuring quality, survival, output, and agronomic traits.

TABLE 6 | Examples of crossing, evaluation and selection decision recorded by the BPM tool across the different stages of the breeding program, defining the
breeding strategy.

Evaluation Selection Crossing

Plant portion harvested in the previous season to be
planted in the current season (e.g., seed, tuber, cutting)

Surrogate of merit (e.g., BLUE, BLUP, GBLUP) per
phenotyped trait

Crossing or multiplication unit (e.g., family,
individual)

Cultivation method of the plant portion (e.g., pot, plot, petri
dish)

Number of locations per phenotyped trait Crossing or multiplication method (e.g., 2-way
cross, 3-way cross)

Experimental design Selection method (e.g., visual, culling, index) Parent coupling method (e.g. random mating,
optimum contribution)

Total number of locations Method to model genotype x environment
interaction

Number of potential female parents

Replications per location Method to model spatial adjustment Number of potential male parents

Plot width and units (e.g., 1 m2) Selection intensities for different selection units
(e.g., families, lines, female parents)

Total number of crosses or total number of unique
materials to multiply

Plot length and units (e.g., 1 m2) Recycling unit Number of progeny per cross or number of clones
multiplied

Sparse testing percentage Recycling generation Molecular technology

Sparse testing bridging method Number of selection units recycled Number of molecular marker sites

Number of checks Purpose of molecular technology (QC, GS, etc.)

Percentage of check plots Population used in genomic selection as the
training (prediction) set

tool presented above, although the BPM tool is inspired by
the Value Stream Mapping approaches commonly used in
process management (Singh et al., 2011). We measured or
recorded the breeding scheme of the IITA-Cassava program
using the BPM tool to capture all crossing, evaluation and
selection decisions across the different breeding stages and a

portion can be observed in Figure 6. We captured seven stages
(crossing block, multiplication and five stages of yield and
agronomic evaluation) across 52 different CES decisions for
the East-Africa cassava pipeline that informed the analysis
step to identify areas for improvement (Figures 4, 5).
These decisions comprise the crossing, evaluation and
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FIGURE 6 | Graphical representation of BPM capabilities to record and display breeding schemes. (A) The evaluation decision across stages of an IITA-Cassava
breeding scheme mapped in the breeding pipeline manager (BPM) tool are displayed in columns, and sequential stages are displayed in rows. (B) The capability to
draw flowcharts with the available information in the breeding schemes is displayed.

selection strategies for both population improvement and
product development.

Analyzing the Problem
The analysis step was adapted to breeding scheme improvement
by replacing approaches such as correlation analysis. Correlation
analysis is a method that links a response variable or
key performance indicator (KPI) to another variable in the
production process to understand relationships that could
indicate the part of the process that needs to be refined. We

instead conducted an analysis based on known quantitative
genetic relationships between the various CES decisions and
genetic gain (e.g., program size affects genetic gain depending
on how effectively genetic variance is utilized and also linked to
selection intensity). Additional tools like Fishbone (diagram to
articulate the root causes of the problem) are not discouraged
but we limited this exercise to one-to-one meetings with the
breeding team to discuss the possible gaps while analyzing
the current scheme together in the light of quantitative
genetic principles (Ishii and Lee, 1996). We initially found
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FIGURE 7 | Results from simulations comparing different numbers of parents and crosses combinations subject to the constraint of ∼1,600 individuals manageable
for a time-horizon of 20 and 60 years of breeding. In panels (A,B) the genetic gain (relative to the mean) measured in advanced yield trial (AYT) individuals is shown
(y-axis) as a function of a different number of crosses (x-axis) for two breeding-time horizons (20 and 60 years) for different number of parents (colored boxes) is
shown. In panel (C) the genetic gain (relative to the mean) measured in advanced yield trial (AYT) individuals is shown (y-axis) as a function of a different number of
parents (x-axis) for the breeding-time horizon of 20 years comparing different compositions of the crossing block are shown. The red, green and blue boxes
represent crossing blocks composed by recycling AYT, PYT, or a mix of PYT and AYT individuals respectively.

several possible areas of improvement, including the small
size of the program, the experimental design used at yield
and agronomic evaluation stages, the coverage of the target
population of environments (TPE), the opportunity to use
molecular information, the potential improvement of analytical
methods for genetic evaluation, a possibility to select the best
families at earlier stages, the possibility to reduce the cycle length,
and other decisions such as an improved crossing plan. Since it is
well-known from classic quantitative genetics theory that using
resources properly to maximize the genetic variance observed
among and within families can maximize response to selection
(Lynch and Walsh, 1998; Hallauer et al., 2010), we chose to
optimize the decisions of number of parents, number of crosses
and number of progeny per cross given the low number of
parents used by the program in the crossing block and very likely
limiting the rate or sustainability of genetic gains. Although we
first focused on improving the resource allocation for the number
of parents, crosses and progeny, the reader should remember
that as a continuous improvement process, the other areas of
opportunity identified should also be improved right after or at
the same time depending on the resources available. This is just
an example of how to implement breeding scheme improvement.

Using Simulation to Optimize the
Process
Prior to recommending an improvement plan, we used genetic
simulation (Gaynor et al., 2021) to identify optimal use of
resources (plots available) by defining a grid of possible
treatments that contained different combinations of number of
parents, crosses and progeny subject to the constraint of 1,632
individuals at the F1 stage assuming other factors constant (e.g.,
properly resourced, properly tested, etc.). Regarding recycling
strategy, using overlapping cohorts to recycle (i.e., a mixed
crossing block composed half of parents from the PYT and

half of parents from the AYT) lead to higher genetic gain
regardless of the number of parents (Figure 7A). Based on
this observation, we evaluated the effect on genetic gain of the
number of parents, crosses and progeny while recycling from the
mixed PYT and AYT.

For the single complex trait which represented an index of
multiple traits, the decision of the number of parents provided
the greatest opportunity to increase genetic gain. An excessive
number of parents -here, more than 30- always resulted in
decreased genetic gain compared to use of fewer than 30 parents
at both the 20 and 60-year time horizons (Figure 7C). At the
20-year time horizon, the optimal number of parents was ∼8–
16. However, at the 60-year time, the optimal number of parents
increased to between 16 and 32.

Increasing the number of crosses generally increased gain,
but with diminishing returns to additional crosses at a given
number of parents. At low numbers of parents, not enough
possible unique crosses were available to take advantage of gains
possible by increasing the number of crosses. Interestingly, the
optimal number of crosses also differed in the short (20-year)
and long (60-year) terms. At the 20-year timepoint, schemes with
fewer crosses and more progeny per cross tended to have higher
gain across numbers of parents, but at the 60-year timepoint
schemes with relatively more crosses and fewer progeny had
higher gain. However, even at the 60-year timepoint, the optimal
number of crosses was much less than the possible half-diallel
of unique crosses.

Given the genetic parameters specified for the cassava
program, the use of ∼8–16 parents, ∼24 crosses and ∼68
progeny per cross in each crossing block per year was the
optimal distribution to maximize genetic gain at the 20-year time
horizon (Figure 7A). At the 60-year time horizon, the optimal
distribution was 16–32 parents, 60 crosses, and ∼30 progeny
per cross (Figure 7B). To consider both short- and long-term
interests of the breeding program, we chose to recommend use
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of 15–30 parents recycled from the combined PYT and AYT
stages with 40 crosses and 40 progeny, given the constraint of the
program to handle∼1,632 materials to start.

Improving the Process
The improvement step in the six-sigma method was adapted
to breeding scheme improvement by using management tools
like the A3 format to reflect the current and future state of
the CES decision (subprocess) together with an action plan
laying with detail the actions required to achieve the future state
(Supplementary File 1; Anderson et al., 2011). We included a
RACI chart (responsible, accountable, consulted and informed
people in the improvement plan) to formalize the process
to achieve the desired improvement. Is important to notice
that a RACI chart can and should be employed during the
management of the different tasks of the breeding process and
not only for the continuous improvement of breeding schemes.
We propose that the future state and actions included in the
improvement plan should be guided by sound quantitative
genetics principles and recommendations coming from state-
of-the-art tools, such as evaluation of new strategies by genetic
simulation (Mi et al., 2014; Gaynor et al., 2017; Pook et al., 2020,
2021). We expect that results obtained through simulation can
identify close-to-optimal solutions and changes to the breeding
CES tasks and decisions.

Based on the simulation findings, a meeting with the
IITA-cassava breeding team was held to discuss the optimal
scenarios revealed by simulations and the next steps. The
recommendation to use between 15 and 30 parents in
the crossing block depending on the target breeding-time-
horizon was and to use a mixed crossing block of parents
from both the PYT and the AYT was accepted by the
team. The improvement plan developed by the IITA-cassava
program included detailing the current and future state can
be found in the Supplementary File 1. The improvement
plan developed included actions like team agreement on the
modification of the number of parents, number of crosses
and number of progeny per cross used in the crossing block,
the development of a new SOPs for the crossing block
stage, training the technicians to execute the new SOPs,
monitoring the genetic gain across years to confirm the positive
change, among others.

Controlling the Improvement Process
The control step was adapted to breeding program improvement
by adding a monitoring section to the improvement plan
that keeps track of the progress of the action plan through
the inclusion of key performance indicators (KPIs), deadlines,
and risks, as it does in other industrial processes. To
monitor or control the progress of the improvement plan in
the IITA-cassava, deadlines and key performance indicators
for the different actions were defined and monitored to
ensure that changes occur. Once the new process was
adopted, we moved to the next possible crossing evaluation or
selection decision that could be causing low rates of genetic
gain. This process is still undergoing together with other
improvements identified.

CONCLUSION

There is tremendous potential of systematizing breeding as
an industrial process and enabling continuous improvement
methodologies (e.g., six-sigma) to the different crossing,
evaluation, selection decisions and other parts of the breeding
process. Successful implementation of these methodologies has
potential to increase the rate of genetic gain and delivery
of better products in breeding programs. To guarantee such
improvements in genetic gain, the recommended changes must
be near-optimal or at least better than the current strategy.
We propose the use of genetic simulation to identify these
solutions to guide the continuous improvement steps. The
work with the IITA-cassava program resulted in improved
resource allocations and adjustments to the proper number
of parents to sustain gains for the breeding time horizon
of interest. These and other improvements achieved through
the same approach in other CES decisions are ongoing. We
expect that this generalized framework will assist plant breeding
professionals in transitioning toward conducting breeding as an
industrial process, help prevent discontinuity and inconsistency
in breeding pipelines and their schemes and implement a
culture of continuous improvement in all areas of their
breeding programs.
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