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Asparagaceae’s large embryo sacs display a central cell nucleus polarized toward the
chalaza, which means the sperm nucleus that fuses with it during double fertilization
migrates an atypical long distance before karyogamy. Because of the size and inverted
polarity of the central cell in Asparagaceae, we hypothesize that the second fertilization
process is supported by an F-actin machinery different from the short-range F-actin
structures observed in Arabidopsis and other plant models. Here, we analyzed the
F-actin dynamics of Agave inaequidens, a classical Asparagaceae, before, during, and
after the central cell fertilization. Several parallel F-actin cables, spanning from the central
cell nucleus to the micropylar pole, and enclosing the vacuole, were observed. As
fertilization progressed, a thick F-actin mega-cable traversing the vacuole appeared,
connecting the central cell nucleus with the micropylar pole near the egg cell. This
mega-cable wrapped the sperm nucleus in transit to fuse with the central cell nucleus.
Once karyogamy finished, and the endosperm started to develop, the mega-cable
disassembled, but new F-actin structures formed. These observations suggest that
Asparagaceae, and probably other plant species with similar embryo sacs, evolved an
F-actin machinery specifically adapted to support the migration of the fertilizing sperm
nucleus within a large-sized and polarity-inverted central cell.

Keywords: Polygonum-type embryo sac, chalazal central cell polarity, cytoplasmic strands, double fertilization,
helobial endosperm, Asparagaceae

INTRODUCTION

Two sperm cells are released from the pollen tube at the egg apparatus boundary during
Angiosperm’s fertilization. One of the sperm fuses the egg cell leading to the first plasmogamy
and, subsequently, the first karyogamy that generates the zygote (Hamamura et al., 2011). Almost
simultaneously, the second sperm fuses with the central cell leading to the second plasmogamy
and karyogamy and further endosperm development (Berger et al., 2008). In Arabidopsis, whose
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central cell nucleus is polarized toward the micropylar end
(Sprunck and Gross-Hardt, 2011), the distance the second
sperm nucleus travels from the plasmogamy site to the
central cell nucleus is around 1 µm (Kawashima and Berger,
2015). However, species in the Asparagaceae family, along
with other 13 monocotyledonous families, harbor embryo
sacs with a polarity-inverted central cell nucleus, i.e., it
localizes near the chalazal pole (Davis, 1966; Bhojwani and
Bhatnagar, 1983). In Agave tequilana, the distance between
the egg cell and the central cell nucleus is about 200-
times longer than in Arabidopsis (González-Gutiérrez et al.,
2014). The latter implies that the second sperm nucleus
needs to undertake a longer journey in Asparagaceae. Thus,
it is plausible that these plant species evolved a specialized
long-range transport machinery to support the migration of
the sperm nucleus.

An established model to explain the sperm nuclei migration
during fertilization proposes they are carried to the fusion sites
by a cytoskeleton-supported mechanism (Huang and Russell,
1994; Zhang and Russell, 1999; Wallwork and Sedgley, 2000;
Ye et al., 2002). Kawashima et al. (2014) demonstrated that
F-actin, but not microtubules, transports the immotile sperm
nuclei during Arabidopsis fertilization. Once inside the central
cell, the second sperm nucleus is surrounded by an aster-shaped
F-actin structure (Kawashima et al., 2014) that migrates in
synchrony with inward moving (plasma membrane to central
cell nucleus) F-actin cables attached to the plasma membrane
by formins and ROP8 (Ali et al., 2020; Ali and Kawashima,
2021). These F-actin cables form a mesh-like structure whose
movement and stability depend on class XI myosin XI-G (Ali
et al., 2020). A similar F-actin arrangement and meshwork
movement have been observed in rice zygotes (Ohnishi and
Okamoto, 2017), which suggested the migration mechanism of
this sperm nucleus might be general among angiosperms (Ali
et al., 2020). Nevertheless, a physical connection between the
aster-shaped structure and the inward moving F-actin cables has
not been established yet.

The F-actin arrangement for cargo transport has been
demonstrated to largely rely on the distance the cargo has to
travel. Precise short-distance cargo exocytosis is usually mediated
by fanned thin actin cables arrays (Geitmann and Emons, 2000).
On the other hand, thick actin cables are primarily associated
with sizeable long-distance movements, such as those that allow
the movement of organelles in root hairs and pollen tubes
(Chebli et al., 2013). Nevertheless, the precise mechanisms that
determine the different conformations that actin can adopt
remain unknown (Geitmann and Emons, 2000).

Because of the exceptional configuration of the embryo
sac of Asparagaceae species and the F-actin arrangement
dependence on the distance the cargo needs to travel, we
hypothesize F-actin-supported migration of the second
sperm nucleus in Asparagaceae central cell fertilization
may be different from that observed in Arabidopsis and
other classical plant models. As this megagametophyte
configuration is found beyond Asparagales, a similar mechanism
for long-distance migration of the sperm nucleus may be
more widespread. Here, we addressed such hypotheses by

characterizing F-actin structures of the Agave inaequidens
megagametophyte, from the mature embryo sac and sperm
nuclear migration during double fertilization to the early
endosperm development.

MATERIALS AND METHODS

Plant Material
Inflorescences with mature flowers from A. inaequidens plants
were collected in the State of Jalisco, Mexico, during the flowering
seasons (May-June) of 2017–2020.

Pollination and Collection of Specimens
Inflorescences were maintained at the laboratory in freshwater.
Flowers were emasculated at anthesis and covered with glassine
paper bags to avoid free pollination. Extracted anthers were kept
in Petri dishes at 4◦C until dehiscence. At this time, mature
pollen grains were recovered from the anthers and tested for
viability using the in vitro method for pollen germination of
the Agave genus, described by López-Díaz and Rodríguez-Garay
(2008).

Once the stigmas of emasculated flowers were receptive
(presence of a pollination drop), ten flowers per inflorescence
were selected and processed as described below. Unpollinated
flowers collected at this stage were considered “time 0.” The
remaining flowers at this developmental stage were hand-
pollinated (cross-pollination) and collected at different times
between 1 and 48 h after pollination (HAP). Thus, it was
possible to record actin cytoskeleton dynamics in mature
A. inaequidens embryo sacs during double fertilization and
the first endosperm divisions (Table 1). Ovules of the same
flower were dissected with fine-point tweezers and an insulin
needle under the stereoscope and evenly divided into two
centrifuge tubes to be processed using the histological techniques
described below.

Only “normal” megagametophytes were considered, i.e.,
piriform embryo sacs with a pronounced haustorial tube and the
four cellular types contained in seven cells. Collapsed embryo
sacs and embryo sacs lacking any cellular type due to abnormal
growth of the nucellar tissue were discarded. At least 500 ovules
encompassing the different developmental stages were analyzed
with each staining technique.

Feulgen Staining
Although Feulgen staining (Barrell and Grossniklaus, 2005)
primarily binds to DNA (Kalinowska et al., 2020), some other
structures, such as cell walls (Barrell and Grossniklaus, 2005)
and cytoplasm can be weakly stained (Chieco and Derenzini,
1999). Feulgen staining adapted with minor modifications for
agave ovules was used as the primary method for analyzing the
general development stage of embryo sacs. In short, after fixation
in FAA (10:5:50:35 formaldehyde: acetic acid: ethanol: distilled
water) for 24 h and kept overnight in 70% ethanol, 4◦C, ovules
were treated with 1 M HCl for 1.5 h, 5.8 M HCl for 2 h, and 1
M HCl for 1 h at room temperature. Subsequently, ovules were
rinsed three times with distilled water and stained with Schiff
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TABLE 1 | Fertilization timing and F-actin dynamics in Agave inaequidens.

Hours after
pollination (HAP)

F-actin structural change before, during and after fertilization Sample number with reported
F-actin structures

Time
0–18*

Mature embryo sac-actin filaments are restricted to perinuclear and cortical areas of each cell of the four
cellular types.

n = 40

24–30 Actin filaments at the central cell micropylar and chalazal ends started to project from the cortical area to
the center of the cell. An arch-shaped F-actin accumulation is formed in the vicinity of the egg apparatus.

n = 43

3–36 Parallel F-actin cables extending from the central cell nucleus and aligned to the chalazal-micropylar axis,
formed the actin-tunnel.

n = 50

38–42 F-actin mega-cable connected the nucleus with the micropylar end of the central cell, close to the egg cell.
The sperm nucleus was observed at different stages of its journey (half-, 3/4 and close to the central cell
nucleus, just before karyogamy).

n = 81

44–48 Early stages of endosperm development, from first division of the primary endosperm nucleus to the eight
nucleate stage. F-actin is located around each endosperm nuclei and connects them to each other.

n = 50

*These patterns were observed in embryo sacs from non-pollinated (time 0) and pollinated flowers up to 18 HAP.

reagent (Sigma cat. no. S5133) for 3 h at room temperature.
Dehydration was carried out by an increasing concentration
series of 30, 50, 70, 90, 95, 100% ethanol for 30 min, and an
additional 100% ethanol incubation for 30 min. Finally, ovules
were clarified by a series of methyl salicylate: ethanol solutions of
3:1, 1:1, 1:3 for 1 h each. For observation, samples were mounted
in 100% methyl salicylate and examined on a Leica TCS SPE
confocal microscope at Ex = 532 nm and Em = 555–700 nm.
Images were acquired and processed with the LAS X R© software
(Leica Microsystems).

F-Actin Whole-Mount Staining
F-actin whole-mount staining was performed as reported by
González-Gutiérrez et al., 2020. Ovules previously dissected
were pre-incubated in ASB (Actin Stabilizing Buffer) (50 mM
PIPES, 10 mM EGTA, and 1 mM MgCl2, pH 6.8 adjusted
with 10 M KOH) at 55◦C for 5 min. Then, ovules were
fixed with 4% formaldehyde in ASB for 10 min at room
temperature (25◦C). Afterward, ovules were washed twice with
ASB. Two quick rinses with acetone (−20◦C), followed by a
5 min incubation in acetone (−20◦C), were performed for
cuticle solubilization and membrane permeabilization. After
this time elapsed, acetone was removed from the microtubes,
and ovules were washed 3 times with ASB until the solution
remained crystalline. Ovules were then incubated in blocking
solution (1% BSA in ASB) for 20 min at room temperature
and stained with 0.33 µM rhodamine-phalloidin and 3 µg/ml
Hoechst 33258 (diluted in blocking solution), overnight at 4◦C.
Before clarification, ovules were dehydrated in an increasing
concentration series of isopropanol (diluted in ASB) at 4◦C,
for 7 min each: 75, 85, 95, 100%, and an additional 100%
isopropanol step for 12 min. Tissue clarification was carried
out by adding 1:1 methyl salicylate-isopropanol solution until
all ovules precipitated at the microtube bottom. Finally, ovules
were incubated in 100% methyl salicylate for at least 30 min
before observation. Samples were analyzed under a Leica
TCS SPE confocal microscope using a 532 nm laser for
rhodamine-phalloidin (ex/em = 540/556 nm) and a 405 nm
laser for Hoechst 33258 observation (ex/em = 352/461 nm).

Images were taken and managed with the LAS X R© software
(Leica Microsystems).

RESULTS

Agave inaequidens Harbors a Central
Cell With Inverted Polarity
To elucidate the mechanism that supports the transport of sperm
nuclei during the central cell fertilization in Asparagaceae species,
we studied the mature embryo sac of non-pollinated flowers
of a so far uncharacterized family member: A. inaequidens.
A. inaequidens mature embryo sac (238.58 ± 16.28 µm,
long; and 128.51 ± 12.20 µm, wide; n = 40) was piriform
with an hypostase at the chalazal end, below which three
antipodal cells were located (Figures 1A,B). Moreover, the
embryo sac harbored a large central cell (144.03 ± 13.96 µm,
long; 124.79 ± 8.89 µm, wide; n = 40). Its vacuole occupied
most of the central part of the cell, while its nucleus was
polarized toward the chalazal pole, just below the antipodal
cells (Figures 1A,B). The egg apparatus was located at
the opposite side of the embryo sac (central cell nucleus-
egg cell nucleus distance: 156.28 ± 22.62 µm, n = 40),
composed of an egg (Figures 1A,C) and two synergid cells
(Figures 1A,D).

F-Actin in the Mature Embryo Sac Is
Restricted to Perinuclear and Cortical
Areas
To observe F-actin structures, mature ovules from A. inaequidens
non-pollinated flowers were stained with rhodamine-phalloidin.
Actin filaments were observed layering the cytosolic side
of the membrane of each cell of the mature embryo sac
of A. inaequidens flowers (Figure 2A). The nuclei of
these cells were also enveloped by actin filaments that
extended until reaching the cell periphery (Figures 2A–D).
Compared to profuse actin filaments in the egg apparatus
(Figures 2A,C,D), perinuclear actin filaments were less
abundant around nuclei of antipodal cells (Figure 2B).
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FIGURE 1 | The mature female gametophyte of Agave inaequidens (time “0”). (A) Scheme of a seven-celled embryo sac arranged in four cell types: three antipodal
cells, placed just below the hypostase, and a large central cell with its nucleus polarized toward the chalaza (B). At the micropylar end, the egg apparatus is
composed of an egg cell (C) and two synergids (D). (B–D) Are Feulgen-stained z-stack images. a, antipodal cells; ccn, central cell nucleus; ec, egg cell; ecn, egg
cell nucleus; sy, synergids; syn, synergids nuclei. Bar in (B,C) = 20 µm and (D) = 10 µm.

In addition to perinuclear actin, synergids displayed a
pronounced aggregation of actin filaments at the micropylar end,
around the space occupied by their nuclei (Figure 2C).
A similarly biased F-actin accumulation, but oriented
to the chalazal pole, was observed around the egg cell
nucleus (Figure 2D).

In the central cell nucleus, perinuclear F-actin was observed as
a dense coat from which several actin filaments extended toward
the cell periphery, attaching it to the chalazal area of the cell
(Figure 2A). Most of the space in the central cell was occupied by
a large vacuole (Figure 2A), and actin filaments were restricted to
the cell periphery (Figure 2A).
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FIGURE 2 | Perinuclear and cortical F-actin in the Agave inaequidens mature embryo sac from time “0” up to 18 HAP. (A) Rhodamine-phalloidin-stained actin
filaments were located at the periphery of the central cell. (B) The central cell nucleus displayed a dense perinuclear F-actin coat, while it was less abundant in the
antipodal cells. (C) F-actin was denser at the synergids’ micropylar end, where their nuclei were located. (D) Egg cell cortical and perinuclear actin filaments. ccn,
central cell nucleus; ccv, central cell vacuole; a, antipodal cells; sy, synergids; syn, synergid nucleus; ec, egg cell; ecn, egg cell nucleus. Arrow heads, cortical actin
filaments of the central cell. All micrographs are z-stack projections oriented with the chalazal pole at the top. Bar in (A–C) = 20 µm and (D) = 10 µm.

F-Actin Cables Projected From the
Central Cell Nucleus Form a Tunnel-Like
Structure Before Fertilization
To observe changes in the actin cytoskeleton during double
fertilization, A. inaequidens flowers were hand-pollinated and
collected at different hours after pollination (HAP, Table 1). In
female gametophytes processed between 24 and 30 HAP, actin
filaments at the central cell micropylar end started to project
from the cortical area to the cell center (Figure 3A); in addition,
an arch-shaped accumulation of filaments could be seen close
to the egg apparatus (Figure 3A). Simultaneously, the F-actin
coat of the central cell nucleus began to extend toward the
middle part of the cell, forming thick F-actin cables parallel to
the chalazal-micropylar axis (Figure 3B). Finally, around 32–36
HAP, those F-actin cables reached the micropylar end, in the
vicinity of the egg apparatus, building a structure we named

“actin tunnel,” which generated a lobular chamber (Figure 3C
and Supplementary Video 1).

An F-Actin Mega-Cable Interacts With
the Migrating Sperm Nucleus During the
Central Cell Fertilization
As stated in section “F-Actin in the Mature Embryo Sac Is
Restricted to Perinuclear and Cortical Areas” for rhodamine-
phalloidin staining, Feulgen-stained mature embryo sacs from
non-pollinated flowers also showed a large vacuole occupying
most of the space in the central cell. This developmental
configuration was preserved even in ovules from pollinated
flowers up to 18 HAP (Figure 4A); later, cytoplasmic
accumulations in the form of thin longitudinal strands started
to appear into the central cell (32–36 HAP) (Figure 4B).
Subsequently, the pollen tube arrived at the receptive synergid in
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FIGURE 3 | The formation of the Agave inaequidens actin-tunnel. (A) Central cell F-actin starts accumulating at the cell body. (B) Actin filaments projected from the
central cell nucleus toward the embryo sac micropylar pole (24–30 HAP). (C) Actin-tunnel formed by several parallel filaments extends from the central cell nucleus to
the micropylar pole, next to the egg cell (32–36 HAP). ec, egg cell; sy, synergid; ccn, central cell nucleus; at, actin tunnel. Arrowheads in (A,B) = actin filaments. In all
cases, F-actin was stained with rhodamine-phalloidin. Nuclei were stained with Hoechst 33258. All micrographs are z-stack projections oriented with the chalazal
pole at the top. Bar in (A–C) = 20 µm.

the embryo sac (38–42 HAP) and released the two sperm cells
that moved together toward the chalazal end of the synergid
(Figure 4C and Supplementary Video 2). At this stage, a
“central strand” traversing the putative central cell vacuole
could be observed (Figures 4C, 5A). This trans-vacuolar strand
connected the central cell nucleus directly to the micropylar end
at the egg cell boundary (Figure 5A). Afterward, plasmogamy
and karyogamy of one of the sperm with the egg cell had
occurred (Figure 5A). Meanwhile, the second sperm and the
central cell fused their membranes, and the nucleus of the
former started a journey through the large central cell vacuole
moving along the trans-vacuolar strand (Figure 5A) to reach the
central cell nucleus at the opposite side of the embryo sac (38–42
HAP) (Figure 5B).

Just before the second fertilization took place, a new thick
F-actin cable that we name “mega-cable” began to extend from
the actin coat of the central cell nucleus toward the micropylar
pole of the cell, more precisely at the boundary of the central

cell with the egg cell (Figure 5C). Since it was not possible
to catch the early stages of the mega-cable development, it
remains unclear whether the mega-cable formed from one or
several of the pre-existing tunnel-forming cables or emerged
de novo as a specialized structure. Moreover, the mega-cable
encompassed the DAPI-stained sperm nucleus in transit to the
central cell nucleus (Figures 5C,D). Imaging showed that the
sperm nucleus moved “inside” the mega-cable rather on it, as may
be expected if the nucleus migrates in a myosin-dependent way
(Figures 5C,D).

The actin tunnel, the F-actin mega-cable, and the
transvacuolar strand were present until karyogamy of the
two sperm nuclei with the egg and central cells, respectively, was
completed (Figure 6A). Those structures were disassembled just
before the primary endosperm nuclei divided for the first time
(Figures 6B,C). Subsequently, new F-actin structures around
all endosperm nuclei were built, which connected them to each
other (Figure 6D).
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FIGURE 4 | Feulgen stained ovules of Agave inaequidens show the
developmental specificity of the transvacuolar strand. (A) Mature embryo sac
at 1–18 HAP. (B) Embryo sac at 32–36 HAP. (C) Detection of the
transvacuolar strand at 38–42 HAP. The two sperm nuclei remain at the
chalazal end of the receptive synergid after their discharge but before
karyogamy with central and egg cells occurs. a, antipodal cells; ccn, central
cell nucleus; ccv, central cell vacuole; oa, ovular apparatus; ec, egg cell; tvs,
transvacuolar strand; sc, sperm cells; ds, degenerating synergid. The bracket
indicates the accumulation of longitudinal cytoplasmic strands. All
micrographs are z-stack projections oriented with the chalazal pole at the top.
Bar in (A–C) = 20 µm.

DISCUSSION

Enormous progress has been gained in understanding the cellular
mechanisms involved in sperm nuclear migration for karyogamy
during double fertilization. It is generally accepted that the
sperm nuclear migration is an actin-dependent process in both
monocot and dicotyledonous species (Kawashima et al., 2014;
Ohnishi et al., 2014; Peng et al., 2017). Recent analysis of central
cell fertilization in A. thaliana shows that an F-actin mesh-like
structure which moves from the periphery to the center of the
cell, along with an F-actin star-shaped structure that encloses the
sperm nucleus, mediates the transit of the latter to the central
cell nucleus (Kawashima et al., 2014). Similar processes have
been observed in other plant models (Ohnishi and Okamoto,
2017) and the mechanism has been proposed as a general one
for Angiosperms (Ali et al., 2020). However, none of the plant
species analyzed thus far have possessed a chalazal-polarized
central cell nucleus. Members of the Asparagaceae family exhibit
this feature, which, together with their large-sized embryo sacs,
requires the sperm nucleus to travel an atypical long distance
through the central cell in order to achieve karyogamy (González-
Gutiérrez et al., 2020). Moreover, it has been observed that
the conformation of the F-actin cables largely depends on the
distance the cargo needs to travel (Geitmann and Emons, 2000).
Because of the latter, we hypothesized that Asparagaceas could
support the migration of the sperm nucleus during fertilization of
the central cell in a different way to that described for Arabidopsis.

In order to test this hypothesis, we characterized the mature
embryo sac of non-pollinated flowers from A. inaequidens, an
agave mainly distributed in temperate areas of Mexico (1400–
3000 MASL) (Torres-García et al., 2019). This monocarpic
species belongs to the subfamily Agavoideae of the Asparagaceae
family, formerly Agavaceae (Angiosperm Phylogeny Group
[APG III], 2009). Typically, the flowering stalk is cut off when
it starts to grow at 8–10 years and is used as food, or is allowed
to accumulate carbohydrates in order to produce alcoholic
beverages (Gentry, 1982; Figueredo et al., 2014). It is used in
the traditional Mexican beverage industry, but less studied than
classical Agave species, such as Agave tequilana. The mature
embryo sac of A. inaequidens displays the Polygonum-type with
the typical shape and polarization of the central cell nucleus also
seen in A. tequilana, A. colimana (González-Gutiérrez et al., 2014;
Barranco-Guzmán et al., 2019) and other Asparagales (Figure 1).
It also shows the classical Asparagales final position of the
secondary nucleus in the central cell relative to the micropylar-
chalazal axis (Figure 1; Tilton and Lersten, 1981), as well as the
presence of an hypostase at the proximal part of the nucellus,
close to the antipodal cells (Rudall, 1997).

Polygonum-type megagametophyte is considered the
Angiosperm’s ancestral development pattern (Palser, 1975;
Haig, 1990). It is present in more than 70% of the Angiosperms
(Maheshwari, 1950). In Polygonum-type, the central cell
nucleus is generally positioned at the central part of the cell or
close to the egg apparatus at the micropylar pole, i.e., like in
the classical gametophyte developmental models A. thaliana
and Zea mays (Russell, 1978; Webb and Gunning, 1990).
Variations to this developmental pattern have been reported
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FIGURE 5 | The central cell fertilization of Agave inaequidens occurred from 38 to 42 HAP. (A) A cytoplasmic trans-vacuolar strand and the second sperm nucleus
revealed by Feulgen staining were observed at the central cell. (B) Second sperm nucleus getting close to karyogamy. (C) The rhodamine-phalloidin stained actin
mega-cable traversing the central cell vacuole wrapped the second sperm nucleus (stained with Hoechst 33258). (D) Close up of the sperm (in C) wrapped by actin.
(E) Model of the central cell fertilization in Agave embryo sac where an actin-based mega-cable traverses the central vacuole, wraps the sperm nucleus and supports
its migration for the second karyogamy event. (F) In Arabidopsis, during the second fertilization, the sperm nucleus is surrounded by an aster-shaped structure that
moves it toward the central cell one (inspired in Dresselhaus et al., 2016). ccn, central cell nucleus, 2sn = second sperm nucleus, ec, egg cell; ds, degenerated
synergid; m, actin mega-cable. All micrographs are z-stack projections oriented with the chalazal pole at the top. Bar in (A–C) = 20 µm and (D) = 10 µm.
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FIGURE 6 | Changes in the embryo sac of Agave inaequidens after karyogamy and early endosperm development (44–48 HAP). (A,B) Color-coded projection of
z-stacked micrographs of similar thickness from Feulgen-stained fertilized ovules. (A) A transvacuolar strand connected the chalazal and micropylar poles right after
karyogamy of the egg and central cells. (B) The transvacuolar strand was no longer detectable before the primary endosperm nucleus divided. (C) Close up of the
primary endosperm nucleus at anaphase; the dashed line shows the division plane. (D) F-actin (red) surrounded and connected (arrowheads) each nucleus (blue) of
the developing endosperm in the coenocyte. F-actin was stained with rhodamine-phalloidin; nuclei were stained with Hoechst 33258. ccn, central cell nucleus; tvs,
transvacuolar strand; fec, fertilized egg cell; zy, zygote; dsy, degenerated synergid; pen, primary endosperm nucleus; en, endosperm nuclei. Micrographs are z-stack
projections oriented with the chalazal pole at the top. Bar in (A–D) = 20 µm.

for different plant families and are conserved within them
(Bhojwani and Bhatnagar, 1983; Herr, 1984; Tobe, 1989).
Variations include the behavior of mature antipodal cells (which
can be ephemeral, persist after fertilization, or proliferate)
(Tilton, 1978; Williams and Friedman, 2004; Holloway and
Friedman, 2008), the timing of the polar nuclei fusion (Jensen,
1973), and the final position of the secondary nucleus in the
central cell relative to the micropylar-chalazal axis (Tilton
and Lersten, 1981). Embryo sacs with the central cell nuclei
polarized toward the chalazal end have been observed in several
members of the Asparagaceae family, and in other 17 angiosperm
families, 14 of them belonging to the monocotyledoneae class
(Davis, 1966).

After confirming the Asparagales-like embryo sac
configuration of A. inaequidens, the F-actin dynamics along the
fertilization of its central cell was characterized. When staining
non-pollinated mature embryo sacs with rhodamine-phalloidin,
actin filaments were found at each cell’s cortical and perinuclear
areas (Figure 2). Actin filaments provide structural stability to
the plasma membrane and contribute to the polarization and
anchoring of nuclei within a cell (Davidson and Cadot, 2020),
which, in turn, are developmentally programmed and associated
with the cell function (Smith, 2003; Starr and Han, 2003; Gu
et al., 2005). In the central cell of A. inaequidens, cortical actin
filaments were restricted to the cell periphery, alongside the
plasma membrane, while most of the space was occupied by
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its large vacuole (Figures 2A, 4A). The link between the actin
cytoskeleton and vacuole structure has been previously studied
in Arabidopsis root epidermal and egg cells, as well as in Tobacco
somatic BY-2 cells, showing that the size and dynamics of
vacuoles are F-actin-dependent (Higaki et al., 2006; Kimata et al.,
2016; Scheuring et al., 2016).

A. inaequidens possesses a highly chalazal polarized central cell
nucleus, whose position seems to depend on the actin filaments
displayed between the nucleus and the central cell plasma
membrane (Figures 2A,B). The positioning of the central cell
nucleus by actin filaments was demonstrated by Kawashima and
Berger (2015), who disrupted central cell F-actin in A. thaliana
mature embryo sacs causing a shift of the central cell nucleus
from its micropylar to a central position.

After pollination, cortical and perinuclear actin filaments at
the central cell gradually changed their configuration, which
finally formed an “actin tunnel” mainly composed of several
parallel actin cables running from the central cell nucleus
to the ovular apparatus at the opposite pole (Figure 3C
and Supplementary Video 1). Considering the spatio-temporal
establishment of the actin tunnel in A. inaequidens, it seems
to represent the functional equivalent of the actin cables
meshwork of Arabidopsis central cell, which show an inward
(plasma membrane to nucleus) movement associated with the
sperm nuclear migration (Kawashima et al., 2014). Nevertheless,
the structure and organization of actin filaments in both
systems are distinct. While in Arabidopsis central cell F-actin
forms a mesh-like structure growing from and attached to
the plasma membrane by formins and ROP8, Agave actin-
tunnel is predominantly formed by parallel actin cables that run
along the chalazal-micropylar axis from the central cell nucleus
(Figure 3C and Supplementary Video 1). When Ali et al. (2020)
inhibited the myosin activity with 50 mM BDM (2, 3-butanedione
monoxime) in the Arabidopsis central cell, they observed the
straightening of the F-actin meshwork, which adopted a similar
configuration to those observed in Agave.

The exact physiological role of the actin tunnel is intriguing
as it is associated with the fertilization process here. Because of
the opposite polarity of the tunnel cables (central cell nucleus
to the micropylar plasma membrane), it is unlikely they have a
homologous function to the mesh-like structure of Arabidopsis
that seems to escort the sperm nucleus in its transit to the central
cell nucleus (Kawashima et al., 2014). Alternatively, Agave actin
tunnel could have a role in remodeling the central cell vacuole as
suggested by the positioning of the tunnel cables, the timing of
their development, and the appearance of a trans-vacuolar strand
necessary for the transit of the sperm nucleus that fertilizes the
central cell (Figures 4, 5A,B).

This trans-vacuolar strand, which traversed the central cell
vacuole and was putatively composed of cytoplasm, was observed
in Feulgen-stained ovules whose pollen tube had already arrived
at one of the synergids (Figures 4, 5A,B and Supplementary
Video 2). After plasmogamy, Agave sperm nuclei were detected
in different regions of the cytoplasmic strand from the egg cell
boundary to the border of the central cell nucleus (Figures 5A,B).
In Torenia fournieri, a similar thick cytoplasmic strand appeared
above the ovular apparatus approximately 15 HAP and 5 h after
karyogamy of the first sperm nucleus with the egg cell one

(Higashiyama et al., 1997). In tobacco, after plasmogamy, some
cytoplasmic strands appeared between the sperm nucleus and the
central cell nucleus, allowing the former to migrate (Peng et al.,
2017). In the presence of cytochalasin B, the cytoplasmic strands
were disrupted, and the sperm nucleus migration was prevented
(Peng et al., 2017).

Transvacuolar strands also aid in the mobility of polar nuclei,
which fuse to form the central cell nucleus. In Polianthes tuberosa,
another member of the Asparagaceae family, before the migration
of the micropylar polar nucleus toward the chalazal end, where
the other polar nucleus is located, a thin cytoplasmic strand
appears traversing the central vacuole and connecting both
polar nuclei (Gonzalez-Gutierrez and Rodriguez-Garay, 2016).
Similarly, analysis of the developmental dynamics of A. thaliana
female gametophyte demonstrated that the migration of polar
nuclei occurs through the middle (Susaki et al., 2021) but not
along the periphery of the cell (Higaki et al., 2006). Therefore,
dynamic changes in the central vacuole could be involved
(Susaki et al., 2021).

In agreement with the previous observation, the apparition
of the trans-vacuolar strand in Agave, and the movement
of the sperm nucleus through it was simultaneous with the
emergence of a vigorous F-actin mega-cable that extended from
the central cell nucleus to the micropylar end (Figures 5C,D).
Because of the similar position of the cytoplasmic strand and
the F-actin mega-cable within the embryo sac, it is reasonable
to hypothesize that the latter fills the space created by the
cytoplasmic strand to allow the transit of the sperm nucleus. It
is well known that actin filaments are involved in cytoplasmic
streaming and that cytoplasmic strands function as transport
routes for proteins and organelles (Shimmen and Yokota,
2004). In A. inaequidens, the actin mega-cable seems to be the
functional equivalent of Arabidopsis actin track and aster-like
structure associated with the migration of the second sperm
nucleus during central cell fertilization (Kawashima et al., 2014).
Nevertheless, due to the differences between both structures,
the mechanistic implications are also different. While the actin
track and the aster-like structure are pleomorphic and do not
connect the sites of plasmogamy and karyogamy, the mega-
cable establishes a continuous connection between the central cell
nucleus and its micropylar end, where most probably the second
plasmogamy occurs (Figure 5C). There, the sperm nucleus may
be taken and actively transported by the mega-cable until it
gets in touch with the central cell nucleus (Figure 5D). In
addition to Agave, F-actin mega-cables have been observed in
other Asparagaceae members such as Prochnyantes, Yucca, and
Manfreda (González-Gutiérrez et al., 2020).

Although our staining methodology did not allow either
higher-resolution or live imaging, our observations suggest that
the fertilizing sperm nucleus is wrapped by the F-actin mega-
cable, implying that an actin-associated motor protein does
not move the sperm nucleus. Instead, the sperm nucleus might
be transported together with the mega-cable by a treadmilling
mechanism. Although these observations demonstrate a
direct association of the actin mega-cable with the second
sperm nucleus migration, the sperm nucleus transporting
mechanism should be further investigated. Comparative
diagrams summarizing the principal differences and similarities
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between the F-actin structures during the second fertilization of
Agave and Arabidopsis are shown in Figures 5E,F.

Our observations suggest the actin tunnel, but especially the
actin-mega cable might be an evolutionary solution in these
plant species to the challenge of transporting an immotile sperm
nucleus a long distance. Despite the actin tunnel and the mega
cable seem to have functional analogs in Arabidopsis central
cell fertilization (the track and the aster-like structure), their
structure and functional scope are clearly different. Why is
the fertilizing sperm nucleus in A. inaequidens not moved by
an aster-like structure? We hypothesize that the differences in
F-actin structures developed on each system depend on the
distance the sperm nucleus needs to be transported. Actin
structures adopt different configurations depending on the
distance the cargo needs to be transported in plant cells.
Individual or thin actin filaments are associated with short-range
cargo targeting, while thicker actin cables are necessary for long-
distance transport (Geitmann and Emons, 2000). Because of its
thin-cable configuration, an aster-like structure might be more
convenient for a short-range movement. Thus, as observed, a
robust mega-cable seems a better solution for a long journey.
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Supplementary Video 1 | The structure of the actin tunnel in an embryo of Agave
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(38–42 HAP). After their release from the pollen tube, the two sperm cells stayed
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color-coded projection of z-stacked micrographs. Bar = 20 µm.
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