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Unknown genetic architecture makes it difficult to characterize the genetic basis of traits
and associated molecular markers because of the complexity of small effect quantitative
trait loci (QTLs), environmental effects, and difficulty in phenotyping. Seedling emergence
of wheat (Triticum aestivum L.) from deep planting, has a poorly understood genetic
architecture, is a vital factor affecting stand establishment and grain yield, and is
historically correlated with coleoptile length. This study aimed to dissect the genetic
architecture of seedling emergence while accounting for correlated traits using one
multi-trait genome-wide association study (MT-GWAS) model and three single-trait
GWAS (ST-GWAS) models. The ST-GWAS models included one single-locus model
[mixed-linear model (MLM)] and two multi-locus models [fixed and random model
circulating probability unification (FarmCPU) and Bayesian information and linkage-
disequilibrium iteratively nested keyway (BLINK)]. We conducted GWAS using two
populations. The first population consisted of 473 varieties from a diverse association
mapping panel phenotyped from 2015 to 2019. The second population consisted of
279 breeding lines phenotyped in 2015 in Lind, WA, with 40,368 markers. We also
compared the inclusion of coleoptile length and markers associated with reduced
height as covariates in our ST-GWAS models. ST-GWAS found 107 significant markers
across 19 chromosomes, while MT-GWAS found 82 significant markers across 14
chromosomes. The FarmCPU and BLINK models, including covariates, were able to
identify many small effect markers while identifying large effect markers on chromosome
5A. By using multi-locus model breeding, programs can uncover the complex nature of
traits to help identify candidate genes and the underlying architecture of a trait, such as
seedling emergence.

Keywords: covariates, single-locus model, multi-locus model, reduced height alleles, pleiotropic effects, seedling
emergence, coleoptile length
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INTRODUCTION

Complex traits are controlled by many quantitative trait
loci (QTLs) and are influenced by environmental conditions
(Bernardo, 2020). Challenges due to complexity, small effect
QTLs, and difficulty in phenotyping can make it difficult to
characterize the genetic basis of traits and associated molecular
markers, especially in biparental populations. Linkage mapping
for complex traits can often result in inconsistent estimated QTL
effects (Bernardo, 2020; Tibbs Cortes et al., 2021). Unfortunately,
many of these complex traits are essential for selection in
plant breeding programs, typically being associated with yield
potential, end-use quality, and certain biotic and abiotic stress
types of tolerance. Therefore, there is a need to increase the
knowledge of the inheritance and genetic architecture of these
complex traits (Bernardo, 2020).

In recent years, the use of genome-wide association studies
(GWASs) has enabled the discovery of QTLs in a collection
of diverse populations or diversity panels rather than using a
mapping population (Lander and Schork, 1994). GWAS can
be performed to dissect the genetic architecture of a trait by
exploiting all historical recombination events in the population
and allow for the ability to understand the genetic basis
by identifying the associations between genetic markers and
phenotypes (Lipka et al., 2015). Not only are complex traits
influenced by the environment and multiple QTLs, but they
also interact with correlated traits that result in a complex
genetic architecture. Using heritable covariates and correlated
secondary traits can help account for confounding factors that
bias marker effects and improve the power of a GWAS model
(Aschard et al., 2015). Additionally, using population structure
or genetic relatedness controls p-value inflation for each marker
and reduces false positives (Tibbs Cortes et al., 2021).

Statistical models have been developed for GWAS to
distinguish real associations from false positives caused by
population structure and linkage disequilibrium (LD). Some
of the first GWAS models, such as general linear models and
mixed-linear models (MLMs), were single-locus, single-trait
GWAS (ST-GWAS) models created to implement the covariates
along with kinship matrices (Yu et al., 2006). However, these
simple models resulted in false negatives caused by weakened
associations in order to control inflation of p-values due to
population structure (Liu et al., 2016). MLMs were improved
upon by compressed MLMs (CMLMs), which cluster individuals
and use them as random effects rather than individual genotypic
effects (Zhang et al., 2010). CMLMs were further improved by
using pseudo quantitative trait nucleotides (QTNs) to derive
kinship instead of all the genetic markers. The settlement of MLM
under progressively exclusive relationship (SUPER) model sorts
markers by association and then combines them into bins with
the most significant marker designated as pseudo QTNs and then
used to derive a reduced kinship matrix (Wang et al., 2014).
These methods improved computational efficiency and statistical
power over MLMs because of weakening real associations when
controlling the p-value inflation while accounting for population
structure (Liu et al., 2016). Compared to single-locus models,
newer multi-locus models were then developed to test multiple

markers simultaneously (Liu et al., 2016). These multi-locus
GWAS models, such as FarmCPU and BLINK, allow for the
evaluation of big datasets while also reducing false positives
and negatives (Huang et al., 2019). FarmCPU bins markers
and fits them as cofactors to control false positives for testing
the rest of the markers in a fixed-effect model, and then a
random effect model is used to select the associated markers.
BLINK eliminates the FarmCPU assumption that causal genes
are evenly distributed across the genome, which improves
speed, because of the optimization of bin size and number
no longer being required (Huang et al., 2019). Additionally,
multi-trait GWAS (MT-GWAS) can be used to analyze multiple
traits simultaneously. MT-GWAS methods were developed to
increase statistical power and identify pleiotropic loci (Porter
and O’Reilly, 2017). Correlations and pleiotropy can be used
to increase power compared to ST-GWAS (Galesloot et al.,
2014). MT-GWAS methods display increase in power even when
traits display negative correlation, when only one of the traits
is associated with the loci, or when genetic correlations among
traits are weak (Galesloot et al., 2014). However, because of the
intricate and pleiotropic nature of quantitative traits, there is no
best model for all situations, and it is recommended to compare
models to dissect the unique genetic architecture of complex
traits (Tibbs Cortes et al., 2021).

In Washington state, seedling emergence of deep-sown winter
wheat is a complex trait affected by many factors and is dependent
on the environment to display variation (Schillinger et al.,
1998; Lutcher et al., 2019). Seedling emergence is dependent
on deep sowing at depths of 10–15 cm when precipitation is
below 150–300 mm annually (Schillinger et al., 1998; Mohan
et al., 2013). Under these limited moisture conditions, a winter-
wheat summer fallow rotation is employed. Additionally, rod-
weeding is used in the fallow year to control weeds as well as
limit evapotranspiration, thereby conserving what moisture may
be in the soil at depths beneath the rod-weeding implement.
In deep-sowing practices, fast-emerging cultivars are required
to emerge before precipitation events create soil crusting that
can dramatically decrease emergence. Wheat seedlings have
decreased emergence when they cannot penetrate the soil surface
because of crusting, due to the inability to germinate under dry
soil conditions, or short coleoptiles. Seedling emergence and,
therefore, stand establishment are vital factors affecting grain
yield in these growing regions in Washington state and can
reduce grain yields by 35–40% (Schillinger et al., 1998).

Previous studies have shown a significant positive relationship
between coleoptile length and seedling emergence (Allan et al.,
1962; Sunderman, 1964; Chastain et al., 1995; Schillinger et al.,
1998; Botwright et al., 2001; Schillinger, 2011). The reduced
height (Rht) genes Rht-B1b and Rht-D1b are mutant alleles
that cause the semi-dwarfing stature of wheat (Vogel et al.,
1956; Allan et al., 1962). Dwarfing genes are responsible for
short stature and have pleiotropic effects that include gibberellin
insensitivity, coleoptile length, yield, protein content, and disease
resistance (Gale and Youssefian, 1983; Allan, 1989). Semi-
dwarf wheat cultivars have improved resistance to lodging
and grain yield but reduced coleoptile length by one-half to
three-fourths of the standard varieties at the time of their
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development (Allan et al., 1961; Allan, 1989; Mohan et al., 2013).
The reduced coleoptile length was due to decreased gibberellic
acid response, which reduced cell size and elongation (Allan
et al., 1959). Historically, when crusting was present, or other
unfavorable conditions, the shorter coleoptiles of semi-dwarf
cultivars resulted in poor stand establishment and yield potential
(Rebetzke et al., 1999).

Recently, after 60 years of breeding, emergence in modern
varieties was shown to have a reduced correlation between
emergence and coleoptile length (Mohan et al., 2013). Coleoptile
length only accounted for 28% of the variability for seedling
emergence, and some lines with short coleoptiles had the best
emergence rating. The remaining variability is attributed to many
factors that affect seedling emergence, leading to a complex
system resulting in stand establishment. As stated previously,
the two main scenarios that affect seedling emergence include
adequate seed-zone water potential and the occurrence of surface
soil crust that prevents penetration (Schillinger, 2011). Successful
seedling emergence is dependent on the force exerted by the first
leaf. The first leaf protrudes through the coleoptile and emerges
around 10–12 days after planting. During this time, the first
leaf can be prone to buckling before it emerges, which can be
affected by coleoptile diameter, speed of emergence, emergence
force, and lifting capacity of the first leaf, along with the associated
coleoptile length (Arndt, 1965; Schillinger et al., 2017; Lutcher
et al., 2019). Adequate seed zone water potential is associated with
seed germination and impacts the speed of emergence because of
water availability (Evans and Etherington, 1990; Pill, 1995). These
studies showed that the genetic basis of seedling emergence is a
complex trait not solely controlled by genes for any one factor
and results in a poorly understood genetic architecture that is
dependent on the environment to display variation (Schillinger
et al., 2017; Lutcher et al., 2019). This study presents research to
assess the genetic architecture of a complex trait by (1) comparing
ST-GWAS and MT-GWAS models for correlated traits and (2)
assessing the inclusion of fixed effects to improve the power to
explore the genetic architecture of seedling emergence.

MATERIALS AND METHODS

Phenotypic Data
Seedling emergence notes were taken on research plots under
low annual precipitation (∼150 mm annual precipitation) at the
Washington State University Dryland Research Center in Lind,
WA (47.001552, −118.565556). The plots were planted using a
custom-built deep-furrow planting system to a depth of between
10 and 15 cm, depending on moisture variation among years. The
plots were planted 1.5 m wide and 6.1 m long with 31 cm row
spacing at a density of 120 seed per square meter. Emergence
notes were taken on two populations within the breeding
program. The diverse association mapping panel (DP) represents
a diverse panel of inbred breeding lines (BLs) from Pacific
Northwest breeding programs not selected exclusively in deep-
furrow trials. In contrast, the second population is composed of
F3:5 BLs and represents a population of closely related lines from
a single breeding program composed of pedigrees that have been

selected for emergence over previous generations and is a part
of the WSU breeding program. The two populations were used
to compare GWAS models. The DP was used as the primary
population for genetic dissection, and the BL population used as
the validating population. The DP was evaluated in 2015, 2017,
2018, and 2019 in Lind, WA (Table 1). The BLs were planted
using an unreplicated augmented design that was evaluated in
2015 for emergence (Table 1). In 2016, no data were collected for
the DP because of significant soil crusting that was severe enough
to impede the seedling emergence of all lines.

Seedling emergence was visually assessed and recorded as a
percentage of the total plot that emerged 6 weeks after planting
for each trial. Table 1 summarizes location, population, year, and
the number of genotyped individuals. The emergence issue for
each trial was attributed to moisture stress. Coleoptile length was
also measured for the DP in 2014 and in two replicates in 2016
under greenhouse conditions. Coleoptile length was recorded to
the nearest millimeter according to Murphy et al. (2008).

Phenotypic Adjustments
Adjusted means from the emergence data collected in the
unreplicated trials were adjusted using residuals calculated for
the unreplicated lines in individual environments and across
environments using the modified augmented complete block
design (ACBD) model (Federer, 1956; Goldman, 2019). The
adjustments were made following the method implemented in
Merrick and Carter (2021), with the full model in a single model
as follows:

Yij = µ+ Blocki + Checkj + εij, (1)

whereY ij is the phenotypic value for the trait of interest of the i-th
block and j-th check (i = 1,. . .,I, j = 1,. . .,J); µ is the mean effect;
Blocki is the fixed effect of the i-th block; Checkj is the fixed effect
of the j-th replicated check cultivar; and εij are residual errors
with a random normal distribution of ε ∼ N(0, σ2

ε). For adjusted
means across environments, the model is as follows:

Y ijk = µ+ Blocki + Checkj + Envk + Blocki : Envk

+Checkj : Envk + εijk (2)

where Y ij is the phenotypic value for the trait of interest of the
i-th block and j-th check in the k-th environment (i = 1,. . .,I,
j = 1,. . .,J, k = 1,. . .,K); µ is the mean effect; Blocki is the fixed
effect of the i-th block; Checkj is the fixed effect of the j-th

TABLE 1 | Populations for seedling emergence screened in unreplicated trials
under moisture stress in Lind, WA from 2015 to 2019.

Location Trial Year Individuals

Lind DP* 2015 473

Lind DP 2017 473

Lind DP 2018 473

Lind DP 2019 473

Lind F3:5 2015 276

*DP: quality association mapping diversity panel.
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replicated check cultivar; Envk is the fixed effect of the k-th
environment; and εijk are residual errors with a random normal
distribution of ε ∼ N(0, σ2

ε ).
Best linear unbiased predictors (BLUPs) for heritability were

calculated for each trial and across trials using a mixed linear
model for the full augmented randomized complete block design
in a single environment and is as follows:

Y ijk = µ+ Blocki + Checkj + Genl(j) + εijk (3)

where Y ij is the phenotypic value for the trait of interest of the
l-th genotype nested in the j-th check in the i-th block (i = 1,. . .,I,
j = 1,. . .,J, k = 1,. . .,K); µ is the mean effect; Blocki is the random
effect of the i-th block with the distribution Block ∼ N

(
0, σ2

Block
)
;

Checkj is the fixed effect of the j-th replicated check cultivar;
Genk(j) is the genotype k in the j-th check with the distribution
Gen ∼ N(0, σ2

Gen); and εij are residual errors with a random
normal distribution of ε ∼ N(0, σ2

ε). For the full model (3) across
environments is as follows:

Y ijkl = µ+ Blocki + Checkj + Genl(j) + Envk + Blocki : Envk

+Checkj : Envk + Genl(j) : Envk + εijkl (4)

where Y ijkl is the phenotypic value for the trait of interest of
the l-th genotype nested in the j-th Check of the i-th block and
k-th environment (i = 1,. . .,I, j = 1,. . .,J, k = 1,. . .,K, l = 1,. . .,L);
µ is the mean effect; Blocki is the random effect of the i-th
block with the distribution Block ∼ N

(
0, σ2

Block
)
; Checkj is the

fixed effect of the jth replicated check cultivar; Genl(j) is the
random effect of the genotype l in the j-th check with the
distribution Gen ∼ N(0, σ2

Gen); Envk is the random effect of
the k-th environment with the distribution Env ∼ N(0, σ2

Env);
and εijkl are residual errors with a random normal distribution
of ε ∼ N(0, σ2

ε). Heritability on a genotype-difference basis
for broad-sense heritability was calculated using the variance
components from models 3 and 4 implemented in Merrick and
Carter (2021) and using BLUPs for both individual environments
and across environments using the formula from Cullis et al.
(2006):

H2
Cullis = 1−

vBLUP
4..

2σ2
g

(5)

where σ2
g and VBLUP are the genotype variance and mean-

variance, respectively, of a difference between two BLUPs for the
genotypic effect BLUPs (Schmidt et al., 2019). Trial evaluation
and significant differences were evaluated using the coefficient of
variation, and by analysis of variance (ANOVA) in individual and
across trials using BLUP models 3 and 4. BLUPs for coleoptile
length were calculated across trials using a mixed linear model as
follows:

Yklm = Genl + Envk + Repm(k)Genl:Envk + εklm (6)

where Yklm is the trait of interest of the l-th genotype in the
k-th environment of the m-th replication (k = 1,. . .,K, l = 1,. . .,L,
m = 1,. . .,M); Genl(j) is the random effect of the l-th genotype
with Gen ∼ N

(
0, σ2

Gen
)
; Envk is the random effect of the k-th

environment with Env ∼ N
(
0, σ2

Env
)
; Repm(k) is the random

effect of the replication m in the k-th environment; and εijkl
are residual errors with a random normal of distribution of ε ∼
N(0, σ2

ε).
Adjusted means for coleoptile length were calculated across

trials using a linear model
as follows:

Y lm = Envk + Repm(k) + εlm (7)

where Y lm is the phenotypic value for the trait of interest
of the k-th environment of the m-th replication (l = 1,. . .,L,
m = 1,. . .,M); Envk is the fixed effect of the k-th environment;
Repm(k) is the fixed effect of the replication m in the k-th
environment; and εijk are residual errors with a random normal
distribution of ε ∼ N(0, σ2

ε). Means were adjusted for coleoptile
length following the method for models 1 and 2.

Phenotypic correlations were conducted between seedling
emergence in the DP across years along with coleoptile length.
Due to the unreplicated nature of the seedling emergence
phenotypes, genetic correlations between seedling emergence in
the DP and coleoptile length was calculated using the R package
“sommer” with the multivariate Newton-Raphson algorithm
used for multiple random effects and covariance structures using
the multivariate model in Covarrubias-Pazaran (2018):[

YA
YB

]
=

[
XA 0
0 XB

] [
βA
βB

]
+

[
ZA 0
0 ZB

] [
uA
uB

]
+

[
εA
εB

]
(8)

where YA and YB are vectors (n × 1; n = number of lines) of
trait-adjusted means for emergence using models 1 and 2, and
adjusted means for coleoptile length using model 7, respectively.
βi is a vector [p × 1; p = three principal components (PCs)]
of fixed effects of PCs, ui is a vector (1 × m; m = number of
markers) of random effects for individuals with u ∼ N(0, σ2

u),
and εi is a vector (n × 1; n = number of lines) of residuals
with ε ∼ N

(
0, σ2

ε

)
for each trait (I = A. . .B). X and Z are

incidence matrices for fixed effects (n × p; n = number of lines,
p = three PCs) and random genetic effects (n × m; n = number
of lines, m = number of markers), respectively, for each trait.
The distribution of the multivariate response and phenotypic
variance-covariance V following the models in Covarrubias-
Pazaran (2018) are:

Y = Xβ + Zu+ ε

Y ∼ MVN (Xβ,V)

Y =
[
YA
YB

]

X =

XA 0 0
...
. . .

...

0 0 XB



V =


ZAKσ2

uAZ
′

A + Iσ2
εA
· · · ZAKσuA,BZ

′

B + Iσ2
εA,B

...
. . .

...

ZAKσuA,BZ
′

B + IσεA,B · · · ZBKσ2
uBZ

′

B + Iσ2
εB

(9)

Frontiers in Plant Science | www.frontiersin.org 4 January 2022 | Volume 12 | Article 772907

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-772907 January 24, 2022 Time: 14:59 # 5

Merrick et al. Single and Multi-Trait GWAS Models

where K is the additive genetic relationship matrix (n × n; the
number of lines) calculated by K = WW′

2
∑

k pkqk
using the n × m-

centered genotype matrix W, with p and q being allele one and
two for the k-th genotype and was implemented using the “a.mat”
function in R for the k-th random effect (u = 1,. . .,k); and I is an
identity matrix (n× n; n = number of lines) for the residual term.
The terms σ2

uki
and σ2

εi
denote the genetic and residual variance

of the trait i, respectively, and σukAB and σεAB are the genetic and
residual covariance between traits A and B. Genetic correlations
(rG) between seedling emergence and coleoptile length were then
calculated using the function “cov2cor” in the R package sommer
(Covarrubias-Pazaran, 2018; R Core Team, 2018).

rG =
σukAB√

σ2
ukA
∗σ2

ukB

(10)

Genotypic Data
Lines were genotyped by using genotyping-by-sequencing (GBS;
Elshire et al., 2011) through the North Carolina State Genomics
Sciences Laboratory in Raleigh, NC, United States, using the
restriction enzymes MspI and PstI (Poland et al., 2012). Genomic
DNA was isolated from seedlings in the one- to three-leaf stage
using Qiagen BioSprint 96 Plant kits and the Qiagen BioSprint
96 workstation (Qiagen, Germantown, MD, United States).
DNA libraries were prepared following the protocol of DNA
digestion with PstI and MspI restriction enzymes (Poland et al.,
2012). Genotyping by sequencing (GBS; Elshire et al., 2011) was
conducted at North Carolina State University Genomic Sciences
Laboratory with either an Illumina HiSeq 2500 or a NovaSeq
6000. DNA library barcode adapters, DNA library analysis,
and sequence single-nucleotide polymorphism (SNP) calling
were provided by the USDA Eastern Regional Small Grains
Genotyping Laboratory (Raleigh, NC, United States). Sequences
were aligned to the Chinese Spring International Wheat Genome
Sequencing Consortium (IWGSC) RefSeq v1.0 (Appels et al.,
2018) using the Burrows-Wheeler Aligner (BWA) 0.7.17 (Li and
Durbin, 2009). GBS SNP markers were called using the TASSEL-
GBS v2 SNP calling pipeline in Tassel v5 (Bradbury et al., 2007;
Glaubitz et al., 2014). Since all the lines in both populations
were considered inbred lines, genetic markers with heterozygote
calls over 10% were filtered out. Genetic markers common across
both populations were combined for quality control, and markers
with more than 20% missing data, minor allele frequency of
less than 5%, and those that were monomorphic were removed.
The markers were then imputed using Beagle version 5.0 and
filtered once more for markers under a 5% minor allele frequency
(Browning et al., 2018). A total of 40,368 SNP markers remained.

All winter wheat lines in the DP were genotyped with
Kompetitive Allele Specific PCR (KASP R©) assays in the WSU
Winter Wheat Breeding Laboratory using allele-specific SNP
markers for semi-dwarf causing mutant alleles Rht-B1b and
Rht-D1b previously reported in Grogan et al. (2016) and
Rasheed et al. (2016). The KASP assays were performed using
PACETM Genotyping Master Mix (3CR Bioscience, Harlow,
United Kingdom) following the instructions of the manufacturer,
and endpoint genotyping was conducted from fluorescence

using a Lightcycler 480 Instrument II (Roche, Indianapolis,
IN, United States). The Rht markers were coded as lines with
Rht-B1b (1), Rht-D1b (2), Rht-B1b heterozygous (3), Rht-D1b
heterozygous (4), Rht-D1b with a heterozygous Rht-B1b (5), Rht-
B1b with a heterozygous Rht-D1b (6), and both Rht-B1b and
Rht-D1b heterozygous (7).

Linkage disequilibrium between marker pairs was evaluated
using JMP Genomics v.9.0 (SAS Institute, Inc, 2011). Significant
marker pairs in the same chromosome were considered in LD at a
p-value< 0.05. Population structure within both populations was
analyzed using PC analysis biplots and k-means clustering using
the markers in the DP and BL populations individually using the
function “prcomp” and “cluster” in R, respectively (R Core Team,
2018).

Genome-Wide Association Models
To dissect the genetic architecture of a complex trait (seedling
emergence), the ST-GWAS models were implemented using the
Genome Association and Prediction Integrated Tool (GAPIT;
Liu et al., 2016; Tang et al., 2016; Huang et al., 2019). Both
the ST-GWAS and MT-GWAS models were implemented with
three PCs fitted as fixed effects. Three PCs were used based on
BIC values using model selection in GAPIT (Tang et al., 2016).
The GWAS models were conducted on seedling emergence
using the adjusted means mentioned previously and on the
BLUPs for coleoptile length. The DP was used as the primary
population for genetic dissection, and the BL population was
used as the validating population. Three ST-GWAS models were
used for comparison. The single-locus ST-GWAS model used
was an MLM, and the multi-locus models were BLINK and
FarmCPU. Within the DP, we compared each model within each
year combination without covariates, then with the Rht markers
as covariates, coleoptile length BLUPs, and both Rht markers
and coleoptile length as covariates. This resulted in 28 datasets
for ST-GWAS for seedling emergence in the DP. The GWAS
models were then conducted within the BL without covariates
to validate the significant markers. In addition, the ST-GWAS
models were used to dissect coleoptile length within the DP for
further validation to determine whether the significant markers
affected coleoptile length.

Additionally, MTMM was implemented using the “sommer”
package for MT-GWAS to identify pleiotropic interactions
between seedling emergence and coleoptile length within the DP
using the multivariate models 8 and 9. The MT-GWAS model
was then implemented in the package “sommer” to obtain marker
effects using the inverse of the phenotypic variance matrix (V)
and is a generalized linear model of the form:

b =
(
X
′

V − X
)
X
′

V − y (11)

with X = ZMi (12)

where b is the marker effect (1× 2), y is the multivariate response
variable (1 × 2), V- is the inverse of the phenotypic variance
matrix V (2 × 2), Z is the incidence matrix for the random effect
to perform the GWAS, and Mi is the i-th column of the marker
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matrix. Furthermore, we implemented three additional F-tests
for joint analysis using the scripts proposed in Korte et al. (2012).
The full (FULL) model, which includes the effect of the marker
genotype and its interaction, was tested against a null model
and identified both loci with common and interaction effects.
The interaction model (IE) for identifying the interaction effects
between the traits tested the full model against a genetic model.
Finally, we identified common (COM) genetic effects and tested
the genetic model against a null model.

Significant associations were based on a Benjamini–Hochberg
false discovery rate (FDR) threshold (Benjamini and Hochberg,
1995). The phenotypic variation and effect explained by each
significant marker were calculated by conducting stepwise
linear regression between phenotypic and genotypic data and
calculating the difference between the effects and variation when
a single significant marker was added to the null model in R (R
Core Team, 2018; Lozada et al., 2019). Significant markers were
deemed consistent when they were significant in at least 2 years
or in both populations and were used to display reliability of the
effect and significance of the markers. We then tested the additive
effect of pyramiding the consistent markers identified across
populations and the consistent markers identified in multiple
years from the DP in each population individually. Manhattan
plots were created using the “ggplot2” package, and QQ plots
were plotted using the package “CMplots” in R (R Core Team,
2018; Yin et al., 2021).

RESULTS

Phenotypic Data
Heritability for seedling emergence was moderately high in the
BLs and a few years in the DP, whereas the heritability decreased
in combined years. The highest heritability in a single trial
was 0.88 in the DP in 2018, and the BLs had a heritability of
0.77 (Table 2). The trials with larger negative adjusted mean
values have a larger SD, which indicates a wider range of
seedling emergence and increased environmental pressure and
phenotypic variation for selection purposes (Supplementary
Figure 1). Heritability for coleoptile length was very high in the
DP (0.89) (Supplementary Table 1).

Since the variation for seedling emergence depends on
environmental effects, it is important to examine the variance
components of trials. ANOVAs were conducted using models 3
and 4. Genetic variances were significant for the DP in 2015, 2017,
and for all the combined trials (Supplementary Table 2). The
environmental effect was not significant in any of the combined
trials but had a very large variance for the combined trials.
However, for the nested genotype to environment and nested
block to environment had large significant variances displaying
significant genotype-by-environment interaction (GEI) over the
combined trials of 2015–2018 and 2015–2019 (Supplementary
Table 2). Furthermore, phenotypic correlations allow for us to
compare the results in our GWAS models. The DP trials are
significantly positively correlated to each other except for three
scenarios: DP 2015 to DP 2018, DP 2017 to DP 2018, and DP
2017 to DP 2019 (Supplementary Table 3). The BL F3:5 trial

in 2015 was significantly correlated to DP 2017. The genetic
correlations between the DP seedling emergence to coleoptile
length showed moderate to large correlations in and across years
(Table 3). The highest genetic correlation was found in DP 2019,
with a correlation of 0.66. However, this was not the case for the
phenotypic correlations. The phenotypic correlations in all years
were near zero between seedling emergence and coleoptile length
(Table 3 and Figure 1).

Genotypic Data
The PC biplot using the SNP markers for the DP displayed
four clusters according to the elbow method with much overlap
between clusters 1 and 2, and a slight overlap between clusters
3 and 4 (Figure 2A). PC1 explained 12.9% of the variation, and
PC2 explained 6.9% of the variation. However, most of the lines
clustered within a single cluster in the BL population even though
the elbow method revealed four clusters using k-means, and the
biplot explained less variation with 9 and 5.2% for PC1 and PC2,
respectively (Figure 2B). We can visually see the larger genetic
variation in the DP than in the BLs; therefore, it is important to
be accounted for in our GWAS models.

The frequency of the Rht alleles in the DP population can
be seen in Supplementary Table 3. The majority of the lines in
the DP had either Rht-B1b (0.564) or Rht-D1b (0.347), with Rht-
B1b conveying higher mean seedling emergence than Rht-D1b
(Figure 3). Furthermore, Figure 3 displays outliers for seedling
emergence for lines with certain Rht alleles. The outliers were
not removed because the cause of poor seedling emergence was
indeterminate because of the complexity between phenotypic
variation and genotypic effect.

Single-Trait Genome-Wide Association
Studies
To investigate the pleiotropic effects of significant markers, the
ST-GWAS was conducted on coleoptile length within the DP.
Genome-wide association for coleoptile length displayed three
unique markers using MLM, BLINK, and FarmCPU (Table 4).
BLINK and MLM both identified a marker, S1A_14084576, on
chromosome 1A. Marker S1A_14084576 conveyed the largest R2

value of any significant marker with a value of 7% and an effect
of 14.5 mm. The marker with the next largest R2 of 0.05 was
S6A_543395015. It was identified by both BLINK and FarmCPU
on chromosome 6A, and it also conveyed the largest effect with
34.4 mm. A third marker was identified only by FarmCPU,
S2A_765677087, and was located on chromosome 2A. However,
S2A_765677087 had a rather small effect and R2 of 3.2 mm and
0.04, respectively. The three markers significantly associated with
coleoptile length were not identified in any population, year, or
model for seedling emergence (Supplementary File 1).

There were 107 unique markers over all the combinations of
ST-GWAS for seedling emergence (Supplementary File 1). Of
the 107 significant markers, 96 markers were significant in the DP
and 15 were significant in the BLs, with four markers significant
in both populations. Seventy-five of the markers were significant
in at least two combinations over both populations. Seventy-one
and five markers were significant in at least two combinations in
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TABLE 2 | Cullis heritability and trial statistics for adjusted means for deep-sowing seedling emergence in individual and combined trials for the diversity panel (DP)
population and breeding line (BL) population phenotyped from 2015 to 2019 and 2015, respectively.

Population Trial Year Heritability CVa Maxb (%) Mean (%) Minc (%) SDd

DP DP 2015 0.75 78.91 139 48 −43 38

DP DP 2017 0.70 24.18 118 87 −26 21

DP DP 2018 0.88 45.46 118 62 −43 28

DP DP 2019 0.68 106 135 43 −45 45

DP DP 2015–2017 0.63 34.53 126 68 −17 23

DP DP 2015–2018 0.61 28 110 66 2 18

DP DP 2015–2019 0.64 31.58 101 60 1 19

BL F3:5 2015 0.77 53.55 121 61 −59 33

aCV: coefficient of variation.
bMax: maximum.
cMin: minimum.
dSD: standard deviation.

TABLE 3 | Genetic and phenotypic correlations between adjusted means for coleoptile length and deep-sowing seedling emergence in individual and combined trials for
the DP population phenotyped from 2015 to 2019.

Year DP 2015 DP 2017 DP 2018 DP 2019 DP 2015–2017 DP 2015–2018 DP 2015–2019

Genetic correlations (R2) 0.42 −0.40 0.38 0.66 0.19 0.32 0.52

Phenotypic correlations (R2) 0.00 −0.01 −0.06 0.03 0.00 −0.04 −0.01

FIGURE 1 | Effect of coleoptile length on seedling emergence in the diversity panel varieties across the combined years of 2015–2019.

the DP and BLs, respectively. Significant markers were found on
19 of the 21 chromosomes in the DP, with the majority (34) of the
significant markers located on chromosome 5A. In the BLs, 15

unique markers spanned nine chromosomes. All the three models
had more significant markers in the DP population than in the
BL population. The MLM identified 36 unique markers over all
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FIGURE 2 | Principal component (PC) biplot of single-nucleotide polymorphism (SNP) genotyping-by-sequencing (GBS) markers and k-means clustering from the
(A) diversity panel and (B) breeding line population consisting of the F3:5 trial.

GWAS, three in the BLs, and 23 in the DP. FarmCPU identified
65 unique markers overall, nine in the BLs, and 57 in the DP.
BLINK identified 31 unique significant markers overall, eight in
the BL, and 23 in the DP. The MLM identified significant markers
mainly on chromosome 5A with many neighboring significant
markers. In contrast, FarmCPU and BLINK identified the same
markers on chromosome 5A and identified more markers on
various other chromosomes (Supplementary File 1).

Additionally, there was a differential effect of BLINK and
FarmCPU to detect significant markers by including covariates.
First, we compared the number of significant markers identified
within the DP (Figure 4). For FarmCPU, including both
coleoptile length and Rht alleles individually and in combination
decreased the number of significant markers compared to
FarmCPU without covariates. However, for BLINK, Rht alleles,
and the combination of Rht alleles and coleoptile length increased
the number of significant markers. Coleoptile length alone
decreased the number of significant markers compared to BLINK
without covariates. Conversely, the effect of covariates was
limited in the MLM. For example, including coleoptile length and
Rht alleles as covariates alone resulted in a similar number of
significant markers (64 and 63) compared to the MLM without
covariates. Including both Rht alleles and coleoptile length did
reduce the number of significant markers to 55. Furthermore,
a large number of markers in the LD increased the number
of significant markers identified by the MLM compared to the
other ST-GWAS models.

Second, we compared the effect of including covariates by
examining QQ plots. The markers should follow the quantile line
in the QQ plot with the exception of a few markers toward the
end of the line. A large deviation for a few markers, with the
remaining markers on the quantile line, can indicate the power to
identify significant markers and fewer false positives. However, a
large number of markers deviating from the line can indicate an
increase in false positives. For example, in the combined analysis
of 2015–2018 and in the BLs in 2015, the MLM was consistent
regardless of covariates, which show little effect on the ability to
identify significant markers (Supplementary Figure 2). However,
this was not the case with BLINK or FarmCPU. Within the
DP, the inclusion of Rht or Rht and coleoptile length increased
the deviation from the quantile line for the markers at the end
of the quantile line more than the models without covariates
(Supplementary Figures 3, 4). This displays the advantage of
using covariates, such as Rht alleles, within the DP for an increase
in detection of significant markers when the trait in question
is genetically correlated with another trait. In addition, the QQ
plots reveal the difference between the models in the different
populations. For both BLINK and FarmCPU, the BL population
had the largest deviations compared to the DP GWAS, whereas
the opposite was seen in the MLM.

In addition, the environmental impact on seedling emergence
had a large effect on the power to identify significant markers.
The varying number of significant markers showed the GEI for
seedling emergence in different years for the DP. The GWAS
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FIGURE 3 | Effect of Rht allele frequency on seedling emergence in the diversity panel varieties across the combined years of 2015–2019. The Rht markers were
coded as lines with Rht-B1b, Rht-D1b, Rht-B1b heterozygous, Rht-D1b heterozygous, Rht-D1b with a heterozygous Rht-B1b, Rht-B1b with a heterozygous
Rht-D1b, and both Rht-B1b and Rht-D1b heterozygous.

TABLE 4 | Significant markers for coleoptile length in a Pacific Northwest winter wheat diversity panel using Bayesian information and linkage-disequilibrium iteratively
nested keyway (BLINK), fixed and random model circulating probability unification (FarmCPU), and mixed linear (ML) genome-wide association study (GWAS) models.

Marker Positiona Allelesb Chra Model p-Value MAFc Effect (mm)d R2e

S1A_14084576 14084576 T/A 1A BLINK 1.82E−11 0.01 14.52 0.07

MLM 4.78E−08 0.01 14.52 0.07

S2A_765677087 7.66E+08 G/T 2A FarmCPU 4.22E−09 0.14 3.23 0.04

S6A_543395015 5.43E+08 T/G 6A BLINK 4.70E−08 0.00 34.44 0.05

FarmCPU 6.32E−14 0.00 34.44 0.05

aChromosomes and positions of markers were determined according to IWGSC RefSeq v.1.1.
bAllele: favorable allele is underlined.
cMAF: minor allele frequency.
dEffect: increase of seedling emergence (%) with the inclusion of favorable allele of associated marker.
eR2: phenotypic variance explained by associated marker.

models were able to identify the most significant markers in
the 2015 trial, with 132 markers (Supplementary Figure 5).
However, only a few significant markers were identified in the
other individual years, with two in 2017 and five in 2019.
Furthermore, combining years and accounting for GEI in our
phenotypic adjustments allowed for the GWAS models to
increase the ability and power to dissect seedling emergence

compared to individual years. All 3-year combinations increased
the number of significant markers consistently compared to
individual years, with 109 in year combinations 2015–2017
and 105 in 2015–2018. Additionally, there was a decrease
in significant markers identified with an increase in year
combinations with the combination of all years (2015–2019),
identifying only 47 markers (Supplementary Figure 5).
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FIGURE 4 | Models compared are Bayesian information and linkage-disequilibrium iteratively nested keyway (BLINK), fixed and random model circulating probability
unification (FarmCPU), and mixed-linear model (MLM) with and without Rht and coleoptile length as covariates in the DP and without covariates in the breeding line
(BL).

Multi-Trait Genome-Wide Association
Studies
The MT-GWAS models were used to identify pleiotropic
loci between seedling emergence and coleoptile length. The
MT-GWAS models displayed very similar results for the
individual traits compared to the ST-GWAS models, especially
in comparison to the single trait results from the MT-GWAS
model. However, we used the Bonferroni cut-off with an
alpha = 0.05 instead of FDR because of the large deviations and
inflation of p-values seen on the QQ plots for the joint models
(Supplementary Figure 6). Using FDR resulted in 924 unique
markers across the majority of chromosomes. In comparison,
the Bonferroni cut-off resulted in 82 unique significant markers
across 14 chromosomes with the majority of the large effect
alleles on chromosome 5A (Supplementary File 2). In comparing
the results for MT-GWAS FULL, IE, and COM F-tests to the
single trait results from the MT-GWAS, we see no significant
markers for coleoptile length for any other model (Figure 5).
The significant markers for coleoptile length were the same
two significant markers on chromosomes 1A and 6A identified
in the ST-GWAS models. Additionally, the significant markers
for seedling emergence were located on chromosomes 2B
(1) and 5A (15).

Furthermore, there were no significant markers in the IE,
indicating no contradictory effect markers between seedling
emergence and coleoptile length. The lack of significant IE
markers is why the FULL and COM models are very similar.
The COM model also identified significant markers in every
year in the DP compared to the single trait results for seedling

emergence, which did not identify significant markers in the
2017 through 2019 individual years (Supplementary File 2).
Additionally, there were 64 significant markers in the COM
model, with 16 significant markers also found significant for
seedling emergence (Figure 5). These markers indicate the
potential for confounding effects and the ability to identify them
using a joint analysis model compared to the single trait results
implemented in the MT-GWAS models.

Consistent Significant Markers
Because of the lack of identified loci for seedling emergence,
the identified markers were compared for significance across
years, populations, and correlated traits to insure consistency.
No markers were significantly associated for both seedling
emergence and coleoptile length in either ST-GWAS or MT-
GWAS. Using ST-GWAS models within the DP, 23 out of 107
unique markers were found significant in more than 1 year.
BLINK only identified one marker, S5A_522153944, across years.
FarmCPU identified six markers across years on chromosomes
2A (2), 2B (1), and 5A (3). The MLM identified 16 markers across
years, with all but one on chromosome 5A, and with the other
marker located on chromosome 5B. For these markers in the DP,
only S5A_522153944 was identified by all three models.

For the number of significant markers across chromosomes,
QQ plots, covariate effect, and populations, FarmCPU displayed
the ability to identify both the consistent large effect and
small effect markers with fewer false positives because of LD
on chromosome 5A (Figure 6). In comparison, the MLM
consistently identified 13 markers on 5A with R2 LD values
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FIGURE 5 | Venn diagram for the number of unique significant markers across
the multi-trait genome-wide association studies (MT-GWASs) for seedling
emergence (EM), coleoptile length (CL), and the joint analysis for seedling
emergence and coleoptile using the full effect (FULL), interaction effect (IE),
and common effect (COM) multi-trait mixed models for identifying significant
loci controlling deep-sowing seedling emergence and coleoptile length in a
Pacific Northwest winter wheat diversity panel (DP) phenotyped across trials
from 2015 to 2019 in Lind, WA.

above 0.8. The two largest effect consistent markers in the
DP, S5A_522153944, and S5A_522153953, were found on
chromosome 5A and improved seedling emergence by 30%.
These two markers had a maximum R2 of 10% in the DP. Other
consistent markers identified across years in the DP were located
on chromosomes 2A (2), 2B (3), 5A (15), 5B (1), and 7A (1).
Overall, the consistent markers across years accounted for 30%
of the combined 2015–2019 DP variation. The GWAS on the
BL population displayed more consistent results than in the DP,
and only identified consistent markers on chromosome 5A. There
were four significant consistent markers identified in the BLs
(Table 5). The four consistent markers were all found in the DP,
and had effect ranges of 17–30%, with R2 values of 12–13%. The
consistent markers in the BL population accounted for 18% of the
total variation for seedling emergence, displaying more consistent
dissection of the complex trait compared to the DP.

Out of the 107 unique significant markers, only four
were identified in both populations. Furthermore, only
S5A_522153944, S5A_522153953, and S5A_523025549 were
identified across both populations with the same model
(Table 5). The MLM identified all three of these markers in both
populations. Whereas BLINK did not identify any markers in
both populations, FarmCPU only identified S5A_522153944.
The effect of covariates on identifying the consistent markers
was inconsistent in the DP. The MLM displayed no response to
the inclusion of covariates (Supplementary Figure 7). However,
FarmCPU identified the consistent marker S5A_522153944 on

chromosome 5A using the Rht alleles, coleoptile length, and
Rht alleles with coleoptile length in combination as covariates
(Supplementary Figure 8). Furthermore, BLINK was able to
detect S5A_522153944 with and without covariates but was not
able to identify it in the BL population (Supplementary Figure 9).

The MT-GWAS models displayed very similar results for
identifying consistent markers across years for both the single
trait and joint models as the ST-GWAS models. Using single trait
MT-GWAS models, consistent markers for seedling emergence
were located on 2B and 5A, whereas for coleoptile length, they
were identified on chromosomes 1A and 6A. These results are
similar to those found using ST-GWAS models. The COM MT-
GWAS model identified 19 consistent markers on chromosome
5A, including the large effect marker S5A_522153944 (Figure 7).
In addition, the COM model identified consistent markers on
chromosomes 2B (1), 5B (1), and 7B (3). The 2B and 5B markers
were S2B_301162652 and S5B_491273019. The 7B markers are
all completely linked with R2 values of 1, with the marker
S7B_663828309 having the largest effect. The 7B markers were
the only consistent markers in MT-GWAS not found consistent
in the ST-GWAS models.

Effect of Combining Favorable Alleles
The frequencies of the favorable allele for consistent markers
across populations and the consistent markers across years
for seedling emergence are important for understanding the
selection and makeup of the populations. The consistent markers
with LD above 0.8 R2 were binned together with the marker,
and the largest effect marker was identified to represent the
bin. This resulted in three bins for the markers identified across
populations remaining and 12 bins for the markers identified
across years remaining (Supplementary Table 5). In addition,
the significant marker on 7B identified in the COM MT-
GWAS model was included with the markers consistent across
years. These bins were used to display the additive effect for
seedling emergence. Most of the markers had high favorable allele
frequencies (∼90%) in both the DP and BLs (Supplementary
Table 5). This shows that these markers have been indirectly
selected in both populations.

Even though the consistent markers across populations and
years had high favorable allele frequency in the populations, the
differences were shown when we combined them and compared
the cumulative effect of favorable alleles on seedling emergence
(Figures 8A–D). For the consistent markers across populations,
the majority of lines in both populations had favorable alleles
for all the three bins, which were all located on chromosome
5A. Both populations showed an additive effect, but in the DP,
the lines with all three bins had a lower mean compared to the
lines with just two bins (Figure 8B). However, in the BLs, there
was an increasing trend in emergence with the accumulation of
favorable alleles (Figure 8A). The consistent markers across the
populations only accounted for 8% of the total variation in the DP
and 19% in the BLs. For consistent markers across years, the DP
showed an additive effect for all 12 bins, whereas the BLs showed
a diminishing return, signifying some of the bins may not have a
large effect within the BL population (Figures 8C,D). For the DP
and BLs, the majority of lines had either eight or nine favorable
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FIGURE 6 | Stacked Manhattan plots for GWASs using MLM, FarmCPU, and BLINK for identifying significant loci controlling deep-sowing seedling emergence in a
Pacific Northwest winter wheat diversity panel (DP) phenotyped across trials from 2015 to 2018 and a BL trial phenotyped in 2015 in Lind, WA. Red triangles display
GWAS results in the DP, and blue circles identify GWAS results in the BL. Significant markers using a false discovery rate (FDR) cut-off with an alpha = 0.05 are
placed above the solid black line for the DP and the dashed black line for the BL. Significant markers across both populations are identified with a vertical red solid
line identifying their positions. Markers enclosed in a white text box display significant markers identified in GWASs for coleoptile length.

alleles. The consistent markers across years accounted for only
23% of the variation in the BLs and 31% in the DP.

DISCUSSION

Complex Traits and Seedling Emergence
Complex traits are quantitative in nature and are affected by
many small-effect QTLs (Holland, 2007). The challenges that
impede the understanding of complex traits are the inability
to statistically detect and map minor effect QTLs, accurately
understand GEI, and account for pleiotropic effects (Luo et al.,
2017). This study attempted to characterize one such trait,
seedling emergence for deep-sown winter wheat, to be used as
a model for other complex traits.

Our study found no significant associations between seedling
emergence and coleoptile length. In previous literature, major
QTLs for coleoptile length was reported on chromosomes 4BS,
4BL, and 5AL in wheat (Rebetzke et al., 2001). The QTLs on 4B
were reported on either side of the Rht-B1 gene. This study was
further enhanced by a subsequent QTL analysis that resolved the
two 4B QTLs directly to the Rht-B1 locus (Rebetzke et al., 2007).

Our study found no significant markers on chromosome 4B for
coleoptile length or seedling emergence. Two small effect markers
were found on chromosome 4D using the joint COM and
FULL MT-GWAS models but were not consistent across years.
The major consistent markers validated across populations for
seedling emergence in our study were identified on chromosome
5A. In the follow-up study by Rebetzke et al. (2007), QTLs for
coleoptile length on chromosome 5A were identified but were
not repeatable across populations. In the same study, Rebetzke
et al. (2007) identified small-effect QTLs for coleoptile length
on wheat chromosomes 1A, 2B, 2D, 3A, 3B, 5A, and 6A. In
our study, significant markers for coleoptile length were found
on chromosomes 1A, 2A, and 6B and only in the DP, but
none were also significant for seedling emergence. Therefore, we
conclude that the GWAS models tested are not selecting major
markers for coleoptile length, and that the seedling emergence
we are dissecting is indeed due to other factors affecting seedling
emergence, similar to what was indicated in Mohan et al. (2013).

Our study demonstrated that chromosome 5A is associated
with seedling emergence, with four large effect markers identified
consistently across both years in the DP and validated in the BLs.
Therefore, a major effect of QTL for seedling emergence, with
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TABLE 5 | Consistent significant markers across both the diversity panel and breeding lines for controlling deep-sowing seedling emergence in a Pacific Northwest
winter wheat breeding trial using BLINK, FarmCPU, and ML genome-wide association studies (GWAS) models using covariates for coleoptile length and Rht alleles.

Marker Positiona Allelesb Chra Popc Year Model Covariated p-Value MAFe R2f Effect (%)g

S5A_514260464 5.14E+08 C/T 5A BL 15 FarmCPU N 7.86E-07 0.23 0.13 17

DP 15 MLM N, R, C, B 1.81E-09 0.11 0.08 19

DP 15–17 MLM N, R, C, B 6.69E-07 0.11 0.05 9

DP 15–18 MLM N, R, C, B 6.48E-06 0.11 0.02 5

S5A_522153944 5.22E+08 C/T 5A DP 15 BLINK N, C 1.58E-11 0.04 0.09 29

DP 15–17 BLINK N, C, B 3.27E-12 0.04 0.08 17

DP 15–18 BLINK N, R, C 1.83E-06 0.04 0.10 15

DP 15–19 BLINK N, R, C, B 1.82E-09 0.04 0.06 12

BL 15 FarmCPU N 1.69E-06 0.04 0.12 30

DP 15 FarmCPU N, C 2.44E-06 0.04 0.09 29

DP 15–18 FarmCPU N, R 5.13E-06 0.04 0.10 15

DP 15–19 FarmCPU R, C, B 6.15E-06 0.04 0.06 12

BL 15 MLM N 9.29E-07 0.04 0.12 30

DP 15 MLM N, R, C, B 3.62E-09 0.04 0.09 29

DP 15–17 MLM N, R, C, B 7.77E-09 0.04 0.08 17

DP 15–18 MLM N, R, C, B 2.67E-09 0.04 0.10 15

S5A_522153953 5.22E+08 A/G 5A DP 15–17 BLINK R 6.88E-13 0.04 0.08 17

DP 15 FarmCPU B 1.03E-07 0.04 0.09 29

DP 15–18 FarmCPU B 4.54E-07 0.04 0.10 15

BL 15 MLM N 9.29E-07 0.04 0.12 30

DP 15 MLM N, R, C, B 3.62E-09 0.04 0.09 29

DP 15–17 MLM N, R, C, B 7.77E-09 0.04 0.08 17

DP 15–18 MLM N, R, C, B 2.67E-09 0.04 0.10 15

S5A_523025549 5.23E+08 A/G 5A BL 15 BLINK N 4.56E-11 0.04 0.12 31

BL 15 MLM N 2.57E-06 0.04 0.12 31

DP 15 MLM N, R, C, B 1.03E-06 0.05 0.06 23

DP 15–17 MLM N, R, C, B 1.15E-05 0.05 0.05 13

DP 15–18 MLM N, R, C, B 1.33E-06 0.05 0.07 12

aChromosomes and positions of markers were determined according to IWGSC RefSeq v.1.1.
bAllele: favorable allele is underlined.
cPop: BL, breeding lines; DP, diversity panel.
dCovariate: N, none; R, reduced height alleles; C, BLUPs for coleoptile length; B, both reduced height and coleoptile length.
eMAF: minor allele frequency.
f R2: phenotypic variance explained by associated marker.
gEffect: increase of seedling emergence (%) with the inclusion of favorable allele of associated marker.

an increase of up to 30%, may be present in that chromosomal
location. According to Bernardo (2014), a major marker accounts
for >10% of the phenotypic variation. Since this 5A locus
is associated with seedling emergence and not with coleoptile
length, other associated traits are improving seedling emergence.
These associated traits may be fast emergence, the ability to
germinate and/or grow under moisture stress, or other unknown
mechanisms. Since the variation for emergence in the DP and
BLs was due to moisture stress, the 5A locus may affect both
fast emergence and the ability to germinate and grow under low
moisture. The identification of a few large effects and many small
effects significant markers confirms that seedling emergence is
a complex trait controlled by multiple pleiotropic factors other
than coleoptile length.

Genome-Wide Association Models
Genetic mapping through association studies has been performed
to dissect the genetic architecture of various traits in wheat

(Adhikari et al., 2012; Lozada et al., 2017, 2019; Bajgain et al.,
2019; Lozada and Carter, 2020). However, GWAS has not been
implemented for deep-sowing seedling emergence in winter
wheat but has been conducted in rice (Zhao et al., 2018).
Even further, few studies have compared ST-GWAS models,
and fewer have compared FarmCPU and BLINK (Liu et al.,
2016; Huang et al., 2019). By comparing multiple covariates and
GWAS models, we attempted to compare the ability of models
and covariates to identify significant markers to dissect a trait
with unknown genetic architecture. This allowed us to identify
large effect markers with up to 30% effect and 10% R2 values.
Therefore, we can conclude that these markers are important for
seedling emergence.

The single-locus model used in our study was MLM. The
MLM identified significant markers mainly on chromosome 5A
and was consistent in identifying large effect markers without the
inclusion of covariates. However, the MLM displays low ability in
identifying both major markers and other lower effect significant
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FIGURE 7 | Stacked Manhattan plots for multi-trait genome-wide association studies (MT-GWASs) using seedling and emergence overlapped (EM_CL), the full
effect (Full), interaction effect (IE), and common effect (COM) multi-trait mixed models for identifying significant loci controlling deep-sowing seedling emergence and
coleoptile length in a Pacific Northwest winter wheat diversity panel (DP) phenotyped across trials from 2015 to 2017 in Lind, WA. For the overlapped plot, EM_CL,
red triangles display GWAS results for seedling emergence, and blue circles identify GWAS results for coleoptile length. Significant markers using a Bonferroni cut-off
with an alpha = 0.05 are placed above the solid black line for seedling emergence and the dashed black line for coleoptile length. Significant markers across three
models are highlighted with a solid red vertical line, and significant markers across two models are highlighted with a dashed green vertical line identifying their
positions.

markers in the presence of high levels of LD. Furthermore, while
MLMs have been shown to be comparable to FarmCPU (a multi-
locus model) for simple traits, the MLMs have been shown to
have difficulties with low power and false positives for complex
traits (Habier et al., 2011; Liu et al., 2016; Ward et al., 2019).
MLMs evaluate the relationship and overall variation of each
genetic marker independently; therefore, as the trait increases in
complexity and number of pleiotropic effects, the proportion of
variation due to a locus decreases (Miao et al., 2019).

Fixed and random model circulating probability unification
and multi-locus models provide the best trade-off between power
and false positives (Liu et al., 2016; Miao et al., 2019). Multi-locus
models increase the proportion of genetic variance using major
effect markers as fixed effects and identifying more significant
markers (Miao et al., 2019). This is why our multi-locus models
were able to dissect the complex trait of seedling emergence
accurately and identify both major and minor effect markers. The
multi-locus models used in our study were FarmCPU and BLINK
and had very similar results in the BL population, but there
were fewer significant markers discovered by BLINK in the DP.
The difference between BLINK and FarmCPU is that Bayesian
Information Criteria in a fixed-effects model replaces REML in
the random-effects model, and LD information is used to replace

the bin method implemented in FarmCPU. Therefore, since the
LD is high among significant markers on the same chromosome
in both populations, the amount of markers grouped together
may be different, which reduces the ability to identify significant
markers on 5A across populations. Apart from the markers on
5A that the MLM also found, most markers found significant
by FarmCPU and BLINK had relatively small effects and R2

values, indicating the ability of multi-locus models to identify
small-effect markers for complex traits.

There was little to no increase in identifying pleiotropic loci
using MT-GWAS compared to ST-GWAS models. This may be
due to the lack of similar significant markers or pleiotropic loci
between seedling emergence and coleoptile length, along with the
inflated p-values we observed in the joint analyses. We observed
such large inflation of p-values that we had to use the more
stringent Bonferroni cut-off as the threshold. The MT-GWAS
model we used implemented a single-locus model and, therefore,
suffered limitations in identifying small effect loci similar to the
MLM. However, the COM model did identify consistent markers
across years on chromosome 7A, whereas the ST-GWAS model
only identified a single-year combination. The identification
of a significant marker in the COM model not seen in the
ST-GWAS, combined with the lack of significant interaction
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FIGURE 8 | Effect of pyramiding favorable alleles for seedling emergence for the consistent markers identified in both populations (A,B), and consistent markers
identified across years in the DP (C,D) across both the (A,C) diversity panel (DP), and (B,D) BL populations.

effect loci, confirms the positive genetic correlation seen in the
majority of years between seedling emergence and coleoptile
length. However, due to the lack of evidence of pleiotropic loci
in our other methods, the genetic correlation may be due to the
correlation of shared loci such as the Rht alleles.

The lack of increase in ability to identify pleiotropic loci using
the MT-GWAS models may also be due to the lack of phenotypic
correlation between seedling emergence and coleoptile length
(Korte et al., 2012). Even though we see a positive genetic
correlation, the phenotypic correlation is near zero, indicating a
small genetic effect in comparison to the environmental effect.
In this scenario, it has been shown that the MT-GWAS models
do not outperform ST-GWAS models and confirm why our
MT-GWAS models did not outperform the ST-GWAS models
(Korte et al., 2012). However, MT-GWAS can still be used as a
complement to ST-GWAS models to identify interactions and
pleiotropic loci such as the loci on chromosome 7A.

Covariates
Covariates are commonly used in GWAS studies to allow for
models to differentiate genetic and environmental effects (Tibbs
Cortes et al., 2021). For a complex trait, more confounding
associations such as correlated traits or pleiotropic effects may
account for a portion of seedling emergence variation (Saltz
et al., 2017). To account for these correlated traits, we compared
the use of covariates for Rht alleles and coleoptile length.
These correlated traits were used because of previous studies
reporting large associations between the traits (Allan et al., 1962;
Sunderman, 1964; Chastain et al., 1995; Schillinger et al., 1998;
Botwright et al., 2001; Schillinger, 2011).

The Rht and coleoptile length covariates had an effect on
identifying significant markers for the multi-locus models but
not for the MLM. The multi-locus models required the inclusion
of covariates in order to identify the major effect of significant
markers on chromosome 5A, but not for identifying the small
effect markers. Including covariates or secondary traits can
account for potential confounding factors that bias marker
effect estimates (Aschard et al., 2015). There were no common
significant markers between seedling emergence and coleoptile
length, including covariates, that affected the ability of the multi-
locus models to identify the large effect markers. This indicates
that there may be confounding effects between coleoptile length
and seedling emergence and that the relationship between
coleoptile length and Rht alleles in our populations is no longer
linear. Therefore, even though modern varieties are no longer
dependent on coleoptile length for improved emergence, it may
still confer some confounding effects. This is further confirmed
by the results of our MT-GWAS models and moderate genetic
correlations. Therefore, we recommend using both multi-locus
models and covariates for correlated traits to identify both small
and large effect loci.

Association Mapping Populations and
Environments
Closer relationships between genotypes indicate that fewer
recombination events have occurred, which preserves marker
LD and requires a less genetic variation to be accounted for
by the models (Habier et al., 2007; Bernardo, 2020). The DP
had a more distinct population structure compared to the BLs,
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indicating that the BL population is more genetically related.
The BL population was purposely selected over generations
for deep-sowing seedling emergence in the Washington State
University breeding program. Even though these lines have
diverse pedigrees, they are based on specific founder lines with
good emergence, which may be the reason for the increased
relatedness. In contrast, the DP is composed of varieties from
various breeding programs in the Pacific Northwest, with the
majority of lines not bred specifically for deep-sowing seedling
emergence. Even with the differences in population structure, we
were able to identify the consistent markers on chromosome 5A
in both populations.

In addition to the differences between the composition
and genetic relatedness of the populations, the number of
environments examined between the two populations differed.
The BLs only had emergence data for 2015, whereas the DP,
an unselected population for seedling emergence, had trait data
for multiple years. The combining of years and accounting
for GEI in our phenotypic adjustments of the DP allowed for
the GWAS models to increase the power to dissect seedling
emergence compared to individual years. Furthermore, the lack
of consistency between GWAS models and populations confirms
the complexity of seedling emergence and the need for evaluation
across multiple environments. Since the environment can create
phenotypic variation in seedling emergence, it displays GEI. If a
trait displays GEI, it follows that so would the QTLs responsible
for the phenotypic expression (Bernardo, 2020). A change in
the ranking of QTLs across environments indicates QTL-by-
Environment Interaction (QEI), with the detection of QTLs in
some environments and not others (Bernardo, 2020). Therefore,
QEI can be seen with the differing number of significant markers
in individual and combined years.

Furthermore, the difficulty in dissecting seedling emergence
within and across years can be seen in the difference between
the varying genetic and phenotypic correlations between years
and traits. The differences in genetic correlations for seedling
emergence and coleoptile length from year to year and the near-
zero phenotypic correlations can be explained by the large effect
of the environment and the multitude of factors that affect
seedling emergence. The phenotypic effect can be partitioned into
both genetic and non-genetic effects (Searle, 1961). Since genetic
correlation only takes into account the genetic effect, we still see
moderate values. The negative genetic correlation in 2017 can be
explained by the different factors that affect seedling emergence,
such as coleoptile diameter, force, and speed of emergence, and
not coleoptile length. The fact that other factors are affecting
seedling emergence is further confirmed because of the lack of
significant markers for the interaction effect in the MT-GWAS
models (Korte et al., 2012). If the negative genetic correlation
was due to the significant loci for coleoptile length, we would see
significant markers for the interaction effect (Korte et al., 2012).
Additionally, the near-zero phenotypic correlations display that
coleoptile length, while having moderate genetic correlations,
has a much smaller genetic effect than the environmental effect,
and therefore has little overall phenotypic effect for seedling
emergence. In other terms, when the environment has large
control over the expression of the trait but a low correlation, the

phenotypic correlation would be expected to be lower than the
genetic correlation (Searle, 1961).

Combining Favorable Alleles
We see an increase in seedling emergence and additive effect
of accumulating favorable alleles using the consistent markers
identified across years in the DP. In contrast, in the BLs, there
was an additive effect of accumulating favorable alleles for the
consistent markers identified over populations. The difference
between the two sets of markers was that the consistent markers
over populations were exclusively located on chromosome 5A,
whereas the consistent markers over years were located on
various chromosomes. All the consistent markers displayed
high frequencies in both populations, which demonstrated the
success of accumulating favorable alleles through traditional
phenotypic selection.

There was a general additive effect with the accumulation of
favorable alleles for both marker sets. The consistent markers
identified across years were based on the results of the DP and
showed a continual increase in seedling emergence as favorable
alleles were accumulated. In the BLs, seedling emergence
improved through additivity but only to a point; once the number
of favorable alleles was high, no improvement was found with
continual accumulation. This may be because the DP is an
unselected population, whereas the BLs had previously been
selected for improved emergence, and therefore may already have
fixed a high number of alleles for emergence. Since there was
not a large decrease in seedling emergence with the accumulation
of favorable markers, we can presume that seedling emergence
is generally additive with the possibility of some interaction
or non-additive gene action, as seen in other complex traits
(Bonnafous et al., 2018). Pyramiding favorable alleles has shown
to be successful for disease resistance traits (Naruoka et al., 2015;
Lewien et al., 2018; Lozada et al., 2019) and can be equally
successful for abiotic traits such as seedling emergence.

CONCLUSION

This study displayed the ability of GWAS to dissect the
genetic architecture of a complex trait such as deep-sown
seedling emergence. Both the ST-GWAS and MT-GWAS models
identified a few large effects and many small effect markers
for seedling emergence. Additionally, neither the ST-GWAS
nor the MT-GWAS models identified large pleiotropic effect
markers between seedling emergence and coleoptile length. The
ST-GWAS and MT-GWAS models did not identify the same
significant markers for seedling emergence or coleoptile length,
and the MT-GWAS models did not identify any interaction effect
markers. However, by using multi-locus models in conjunction
with covariates for correlated traits, we were able to identify
more small effect loci over single-locus models to dissect a
complex trait in both the DP and BL populations. Additionally,
the DP displayed the necessity for combining years for consistent
identification of significant markers for a trait dependent on the
environment for phenotypic variation. Furthermore, the MT-
GWAS models displayed a lower ability to identify small effect
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loci over ST-GWAS models for single-trait analysis and inflated
p-values for joint analysis but still identified the large effect
markers on 5A. Therefore, using multi-locus models combined
with covariates (such as major genes), breeding programs can
uncover the complex nature of traits to help identify candidate
genes and the underlying architecture of a trait to make more
efficient breeding decisions and selection methods.
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